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introduction

HOW TO ATTACK THE PROBLEM ?

EQUILIBRIUM

DYNAMICAL COUPLING how to couple parametrized systems ina
consistent pre-symplectic description
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pre-symplectic formulation

A general covariant system is defined by a Lagrangian that leads to a vanishing canonical
Hamiltonian. The Legendre transform of the Lagrangian defines a phase space with
constraints: the dynamics is coded in the constraints

The constraints generate Hamiltonian vector
fields XdC , which are tangent vectors to the
constraint surface, given by

I )
Xy = =228, + —8

(

dp ! dq

)

and  W'(Xgo) =0

the integral curves of these Hamiltonian vectors
fields constitute the gauge submanifold or the
orbits of the constraint surface, and the dynamics
of the system with respect to T is the unfolding of
this gauge symmetry, i.e., dynamics is gauge

L sin(f

Each pointin Iph is a motion, and establishes a system of relations (defined by its orbit)
among the functions on lex . These correlations are defined without specifying one of these as
the independent time variable
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C - coupling general covariant systems

Take two non-relativistic systems S1 and S2, with phase spaces 't and I'2 and Hamiltonians
H1 and Ha.

We can write a unified description of the two by considering the coupled phase space
I =T1 x 2, with Hamiltonian H = H1 + H2. This kinematical coupling allows a dynamical
coupling between the systems, for instance by adding a term to H.

recipe: e  SET KINEMATIC COUPLING

e DYNAMICAL COUPLING FOLLOWS

CAN THE SAME BE DONE FOR GENERAL COVARIANT SYSTEMS ?
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kinematical level : cartesian product

o Consider two general covariant systems S1 and S2, with (extended) phase spaces NMex and
M2ex with Hamiltonian constraints C1 - 0 and C2 - 0. How do we couple them?

The answer is to consider the (extended) phase space [ex - [Tex x [Zax, with symplectic form
w = w1 + w2 and the two constraints C1 - 0 and C2 - o.

(T

,wl)‘

T

single out a time variable, deparametrize

Let Mex admit canonical coordinates (g1, t1. p1, —~E1)and C1 - E1 — Hi(p1, g1). This is the

general covariant form of a system with one degree of freedom and Hamiltonian H(q,p).
Similarly for (q2.t2,p2,—E2) and C2 - E2 — H2(p2, q2).

e The surface where the constraints are satisfied admits coordinates (g1, p1, t1, gz, pz, t2).
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choosing among two times

DINAMICAL LEVEL (C,w")

CZC] ng

X

/ !/
=wp t+wp

1 2
rh X prh

no interacton!

=> ]‘,,h =]

The constraint orbits are two-dimensional, and (t1, t2) can be taken as parameters along
each orbit. The physical phase space (the space of the orbits) can be coordinatized by
the values of (q1,p1,g2,p2) at t1 - t2 = 0.

PROBLEM 1 dynamics is characterized by two times. we would like one reference observable.

When coupling two covariant systems there is a certain redundancy in the partial
observable description. A dynamical system is defined by stating which are its
partial observables, which represent the quantities to which we have access.

UNIFIED DESCRIPTION => CHOICE
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hamiltonian constraint and gauge?

REDUCTION

assume that the partial observable are, say, (q1, p1, g2, p2) and t = 1/2 (t1 +t2),

®
while the difference x =1/2 (t1 — t2) is not observable

C-Ci+C2 must be interpreted as the physical time evolution in t.
hamiltonian constraint

generates an evolution in x at fixed t which we must interpret
as a gauge. In particular, without loss of generality, we can
restrict the description to the surface x - 0, which is to say

A-C1-0C2

t1 = t2. gauge constraint

the relation between the coupled systems and a system with a single time variable is
obtained by interpreting one combination of constraints as gauge, and the other as the

Hamiltonian constraint.

PROBLEM 2: what is hamiltonian and what is gauge is arbitrary here. Is
there any physical interpretation for this choice?
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the thermal time criterium

In classical systems, the information on the time flow is coded into the Gibbs states p - exp (— BH)
as well as in the hamiltonian, namely the Gibbs state is dual to the time flow Xt in the sense that
Bp w(Xt) - ~dp.

Define a statistical state p as a positive function p: 'ph — R+, normalized with respect
to the Liouville measure . Any statistical state defines a “hamiltonian” vector field Xp
by p oXp) - —dp

s

(4]

“\ cell in Fph

by

6A

™o = o'

pull back

The field Xp generates a flow arP on ph called thermal flow; its generator h = —Inp
is called the thermal hamiltonian, while the flow parameter 1 is called thermal time of p.
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factorizing the statistical state

This thermal flow determines a time flow T on the constraint surface by Xp -1+ T,
In turn, X is a time flow in lex if X-i*T. In this way, the statistical state select a
time variable t on the extended phase space.

A generic statistical state of the combined system is defined by a probability
distribution p on the physical phase space of the coupled system,

p:Tph1 x Mph 2 =R+

We assume p to be an equilibrium state, so that we can factorize it in terms of two
states, p1 and p2 defined on the respective physical phase space,

p(q1,p1,q2.p2) = p1(q1,p1) - p2(q2, p2)

Thus, given an arbitrary separation of the system into two macroscopic subsystem, the
time vector field defined by the equilibrium state has two independent components

associated to the two thermal hamiltonians, o(Xp) - ~dInp- - dh1 - dh2

In this case, the thermal hamiltonian of the coupled system is a sum of two terms,
each one defining a flow in its own physical phase space. However, at same time, the

statistical state p naturally defines a common flow, a single time for the two.
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equilibrium, information & gauge

The thermal time T parametrizes a curve defined by a sequence of physical states on
lph. Along this history of states, one can think thermal time T - t/to as time measured

in number of elementary “time steps”, where a step is the characteristic time taken to
move to a distinguishable cell in the phase space at a given temperature.

p o~ eBA”

fh‘l (/.T-_g

cell in Fph
AA =1/3

to = h/AA

consider two systems are coupled via some interaction during a certain interval. During
the interaction interval the first system transits N1 states, and the second N2,
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equilibrium, information & gauge

The thermal time T parametrizes a curve defined by a sequence of physical states on
lph. Along this history of states, one can think thermal time T - t/to as time measured

in number of elementary “time steps”, where a step is the characteristic time taken to
move to a distinguishable cell in the phase space at a given temperature.

P~ eBA”

fh‘l (/.T-_g

cell in Fph
AA=1/8

to = h/AA

consider two systems are coupled via some interaction during a certain interval. During
the interaction interval the first system transits N1 states, and the second N2.
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equilibrium, information & gauge

If system 2 has access to an amount of information |1 - logN1 about system 1, and
e system 1 has access to an amount of information I2 - log N2 about system 2, then
the net flow of information can be defined as &1 - 12 — I1.

POSTULATE

At equilibrium, one can postulate that, as any other flow, also information flow 8l
must vanish,

Rovelli, Haggard

In particular, since the rate that states are transited is given by T and we assume a
fixed interaction interval, the equilibrium conditions also reads

T = T2

| The gauge fixing in is equivalent to the equilibrium condition.
the gauge is implicitly fixed where the equilibrium is assumed.
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DISCRETE GRAVITY

Application of Discrete Differential Forms

Eugene Kur

With
Robert Littlejohn

University of California, Berkeley

July 26, 2013

LOOPS 2013
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WHY DISCRETE DIFFERENTIAL FORMS?

Numerical schemes require discretization

Symplectic integrators for ODE’s have greater numerical stability
Discrete forms implement symplectic integration for field theories
Conservation laws and constraints preserved exactly

Simplifies classical limit of some quantum gravity theories

Regge action central to classical limit of loop quantum gravity
Discrete forms simplify Regge calculus
Greater flexibility in discrete theories, smoother transition to continuum GR
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DISCRETE DIFFERENTIAL FORMS

Natural approach to discretizing actions
Preserve multisymplectic structure

Exact conservation laws; constraint preservation
Numerical Stability

Relatively new in GR®

*Stern 2009; McDonald, Miller, et. al. 2012; Frauvendiener 2006
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DISCRETE DIFFERENTIAL FORMS

Manifold Differential k-form

Triangulation

/Og — <O£, ak> Discrete k-form

k

oﬁ(
<«

* Hirani 2003; Hirani, Marsden, et. al. 2005; Bossavit 2001-2012; Whitney 1957
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DISCRETE EXTERIOR DERIVATIVE

(,0")
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DISCRETE WEDGE PRODUCT




DISCRETE WEDGE PRODUCT




DUAL CELL
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DUAL CELL
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DISCRETE GRAVITATIONAL ACTION

16

1 1 .
GR action as integral of 4-form™: S = /—6”;\'[, e! nel A RKL
G J 2
M

o _ 1 1 I .J 2 KL .2
Discretize, then wedge product: S = e Z;<§£”1‘Le ANe’,o ><R , X0

o

* Cartan, 1929
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DISCRETE GRAVITATIONAL ACTION

16

1 1 .
GR action as integral of 4-form™: S = /—6”;\'[, el nel A RKL
G J 2
M

o _ 1 1 I .J 2 KL .2
Discretize, then wedge product: S = 16nC Z;<§£”1‘Le ANe’,o ><R , X0

o

* Cartan, 1929

Pirsa: 13070085 Page 32/89
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VISUALIZING THE ACTION Arealo?) Py
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VISUALIZING THE ACTION

Curvature generates
transformation of parallel
transport

Full curvature two-form, not just
one angle
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CONNECTION WITH REGGE CALCULUS

Triangulate manifold

Require 4- and 3- simplexes to
be flat (curvature concentrated
on 2-simplexes or “bones”)

Curvature produces rotation in
plane orthogonal to bone

* Tulio Regge, 1960
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VARIATONAL PRINCIPLE

_ 1 I ] 2 KL , 2
S m= 167!‘GZ£<§6”KL6 Ne o ><R , X0
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VARIATONAL PRINCIPLE

_ 1 I ] 2 KL , 2
S = 1GTFGZ‘;<§€”KL6 Ne o ><R , X0

05 = 161@ ((561- Ul><51JA’L e/ AR*E, *01} t (5“””’- Ul><fIJKL De' ne’, *‘71>)
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VARIATONAL PRINCIPLE
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VARIATONAL PRINCIPLE

_ 1 I ] 2 KL , 2
S = 1GTFGZ‘;<§€”KL6 Ne ,o ><R , O

1

5= 167G ({9’ o' Yersxr e’ AR x0t) + (0w, o' ) erskr De' A xat))
<€]JKL e’ A RKL, *01> =0

<€IJKL Del A e‘], *01> =0
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A NEW APPROACH TO DISCRETE GRAVITY

. 1 1 . . ’
S = 16C z; <§f;,”\'L Pl A ("1.02><R}‘L. *02>
a
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A NEW APPROACH TO DISCRETE GRAVITY

1 1 . , . l Z vl a2 cf 2\ — @
S= E <§f’llf\'L()lA(’J.02><RI\L‘ *02> ﬁ Hr(" ;\l(:\(_n ] _((T ] — 'Hi{"&‘_‘"
o? o°

167G
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A NEW APPROACH TO DISCRETE GRAVITY

1 1 ) , y l a2\ o A2\ — @
k4 o2 .

167

l

Z “(0%) cot [0, (a%)] =0

L ]
T
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TIME EVOLUTION

SADM = /Edt
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TIME EVOLUTION

SADM = /Edt
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TIME EVOLUTION

SADM = /Edt

L= / eabeNe® A [P RY + KO A K) + 245N A DK€ + €qpee® A €® A (K€ + Q.dK? — DgV©)
2t
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TIME EVOLUTION

SADM = /Edt

L= / eabeNe® A [P R + KO AK€ + 245N A DK€ + €qpee® A €® A (K€ + Q.dK? — DgV°©)
L

L= (eacNe* A[VR*+ K* AK|+ 260N %" A Dg K+ eqpee® Ne® A (K +Q°gK® - DgV°), 0°)
3

g
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FUTURE DIRECTIONS

Numerical simulations

Understand conservation laws and constraint preservation

Study the (multi)symplectic structure

Use approaches closer to loop quantum gravity (Ashtekar connection,
Plebanski area forms, etc.)

Consider quantum aspects (path integral, semiclassics, etc.)
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SUMMARY

Discrete differential forms:
New approach to discrete gravity

Suited for symplectic time evolution

Generalize Regge calculus

Lead to Regge action

General approach to discrete theories
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Studying Topology Change with Topspin Networks

LOOPS 13, Perimeter Institute

Christopher Duston!
with Matilde Marcolli?

'Physics Department, Stony Brook University

“Mathematics Department, Caltech

July 2013

Christopher Duston (SBU) Topology Change in LQG

July 2013
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QOutline of Talk

o lTopology and Loop Quantum Gravity

o Topspin Networks: Representations of spatial sections
as a branched covering space

o Examples: The topology of simple topspin networks
and topspin foams.

o (Model building)

Christopher Duston (SBU) ~~  Topology Changein LQG e July 2013 2 /32
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Topology in Quantum Gravity: Why?

N
N

o By “Topology" we mean things measured by topological
invariants, the fundamental group, homology groups, etc...

o Unlike geometry, topology is not part of the background
independence of GR; we must specify a topology a priori.

9 A similar thing is true of dimension and differential structure...
o “GR is not a purely relational theory"!

o "Where does this topology come from?" A nice answer would be:
the quantum nature of gravity.

1Smolin 2005, The Case for Background Independence
Christopher Duston (SBU) Topology Change in LQG July 2013 3/12
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Topology in Loop Quantum Gravity

o At first glace, the canonical LQG approach to QG destroys all
topological knowledge.

o Restricting from a 3-sphere to an embedded graph trades smooth
information for discrete information; one can embed a given graph

(spin network) in a large number of topologically inequivalent
3-manifolds:

Christopher Duston (SBU) Topology Change in LQG July 2013 4 /12
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Topology in Loop Quantum Gravity

o At first glace, the canonical LQG approach to QG destroys all
topological knowledge.

o Restricting from a 3-sphere to an embedded graph trades smooth
information for discrete information; one can embed a given graph
(spin network) in a large number of topologically inequivalent
3-manifolds:

Can one modify LQG in such a way that includes
topological information and also preserves the
geometrical structure?

Christopher Duston (SBU) Topology Change in LQG July 2013 4 /12
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Representation of Space as a Branched Covering

@ A covering space M is a space and a surjective map p: M — B to a base
space B. The inverse image of any set U < B is a disjoint product of sets in
M:

)y =viuVau.. UV,

@

e
<i>

Cheistophar Duston (SBU) ... RO CHONGR IV LQG e RIS ..
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Topspin Networks?

Based on the following observation:
Alexander's Theorem (1920)

Any compact oriented 3-manifold can be described as a branched covering of S3,
branched along a graph.

2Denicola D, Marcolli M and Zainy al-Yasry A 2010 Classical and Quantum Gravity 27(20)
Christopher Duston (SBU) Topology Change in LQG July 2013 6/12
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The Point:
2 Is a spatial section! Topspin networks track both
topology and geometry.

(1.(12))

(L (13)

2CD 2012 Class. Quantum Grav. 29 205015
bCD 2011, IJGMMP (08), Asselmeyer-Maluga 2010, CQG (27)
cCD 2013 Class. Quantum Grav. 30 165009.

Christopher Duston (SBU) Topology Change in LQG July 2013

Pirsa: 13070085 Page 58/89



The Point:
2 iIs a spatial section! Topspin networks track both
topology and geometry.

(1.(12))

(L (13)

2CD 2012 Class. Quantum Grav. 29 205015
bCD 2011, IJGMMP (08), Asselmeyer-Maluga 2010, CQG (27)
cCD 2013 Class. Quantum Grav. 30 165009.

Christopher Duston (SBU) Topology Change in LQG July 2013

Pirsa: 13070085 Page 59/89



2 is a spatial section! Topspin networks track both
topology and geometry.

Can think of this as a modification to the construction of LQG:

@ Completely compatible with usual spin networks, and allow for arbitrary
spatial sections.

@ Hilbert space and operator structure compatible with LQG?.

@ Slight Aside:

o Alexander’'s theorem applies dimension d = 4 as well...

o Provides a complete specification of the geometry and topology (no exotic
smoothness!®?).

o Provides a reparametrization of the gravitational field in terms of surfaces and
topological labels®.

ICD 2012 Class. Quantum Grav. 29 205015
bCD 2011, IJGMMP (08), Asselmeyer-Maluga 2010, CQG (27)
“CD 2013 Class. Quantum Grav. 30 1650009,

Christopher Duston (SBU) Topology Change in LQG July 2013 7/12
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2 iIs a spatial section! Topspin networks track both
topology and geometry.

Can think of this as a modification to the construction of LQG:

@ Completely compatible with usual spin networks, and allow for arbitrary
spatial sections.

@ Hilbert space and operator structure compatible with LQG?.

@ Slight Aside:

o Alexander’s theorem applies dimension d = 4 as well...

o Provides a complete specification of the geometry and topology (no exotic
smoothness!®?).

o Provides a reparametrization of the gravitational field in terms of surfaces and
topological labels®.

2012 Class. Quantum Grav. 29 205015
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2013 Class. Quantum Grav. 30 165009,

(Christopher Duston (SBU) ~~ ~  Topology Changein LQG e July 2013 7 /12
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The Fundamental Group of the Spatial Section

In the case of a connected spatial section represented as a g-fold cover, the
fundamental group can be found by the following algorithm?:

@ G =my(S?—T)is the graph group

generated by edges a. b, c. ... under relations
r.rn.r....

Map the elements of G to the cover under a

specific homeomorphism ¢ which respects
the permutation elements:

G={(ab.c..nnm..

U(G) = ':_3,7(0). Ag(1)- -+ 1M (0): NR2e(1)

There will be elements in this group which
connect all the sheets together, and also
elements belonging to the branch locus -
these are trivial and should be removed.

3Adapted from Fox R 1961 A Quick Trip Through Knot Theory.
Cheistopher Duston (SBU) ..oV OPOIORY CHONGRINLQG e S SORD
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2 vertices, 3 edges, g=3.

G =m(S®-T) = (a b, clc=ab).

—p_l(r))ng = (ag.a1.a2. bg. by. br. . ¢c1. ¢/ co = aghy.c1 = a1by. ©» = arby)

F3 j— j(“]o.c?li:'.

%(a)ot(a)o?(a) = agarar = 1.

OO(b)p (b) = boby = 1. »*(b) = by = 1.
agbo = 1.

= ¢l(ab) = ajby = 1.

m1(X2) = 0

“

Christopher Duston (SBU) ~~ ~ Topology Changein LQG e July 2013 0 /12

Pirsa: 13070085 Page 64/89



(g — p_l(l'))

¢ .1)0. 0. do. €n., Co = boaf_). € =
¢ .1)1.C1.d1. €1. = [)130. € =
an.by.or.drer.h | ¢ =bay.e =

After relations:

"_'1(24) = f:_()’o. dl. dg d_? - (fl_ldo_l:: ~ 74

Hi(Z4) = H*(Z4) ~Z - Z

July 2013 10 /12
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Dynamics of Topology Change: Topspin Foams

Dynamics underlying LQG still unknown, but we have spinfoams. With
topological labels these are topspin foams.

@ Example: set 0 = S3 to be any cycle

of maximum length ( (012),(201),
etc.) <

The boundaries of this topspin foam
are connected by induced action of
the (graph-changing) Hamiltonian.

By ensuring that the topological
labels are consistent we can be sure
the foam represents a smooth
4-manifold M with

OM = 251 2,.

The above topspin foam represents a transition between trivial spatial topology

and m(X4) = Z * Z.
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Look for topology change in LQG.

Include topological data into the spin networks to allow for arbitrary spatial
sections — topspin networks

The (modified) Fox algorithm can be used to identify the topological class of
the spatial section.

Examples: Any 2 vertex topspin network is a sphere!

Examples: Topspin foam representing topological transitions.

Future:

9 Continue with Topspin foams

o 5,-GFT a /a Ben Geloun & Ramgoolam (1307.6490)

o Modeling building to study topology change: Schwinger representations and
coherent states -

H="Ho+Hr.  Hi=3_ vi(t")ai()al (") + bi(()b]((")).
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Spectral dimension: an observable of quantum geometry

Motivation
Characterize geometric meaning of quantum gravity states/quantum histories in

LQG/SF/GFT

To this end, the spectral dimension ds is an example much discussed:

[Ambjorn et al 2008], [Lauscher, Reuter 2005], [Horava 2000], [Benedetti 2000], [Modesto et al 2008/00]

d

(P(TDQG = (TrK(x.y; 7)) oc = <TreTA>QG x 772
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Spectral dimension: an observable of quantum geometry

Motivation
Characterize geometric meaning of quantum gravity states/quantum histories in

LQG/SF/GFT

To this end, the spectral dimension ds is an example much discussed:

[Ambjorn et al 2008], [Lauscher, Reuter 2005], [Horava 2000], [Benedetti 2000], [Modesto et al 2008/00]

d

(P(7)oc = (TrK(x.y: 7)) o = <TreTA>QG x 7%
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Definition for discrete geometries

@ So far either purely combinatorial (CDT) or smooth setting (AS, HL,
NCFT,...)
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Definition for discrete geometries

@ So far either purely combinatorial (CDT) or smooth setting (AS, HL,
NCFT,...)

@ LQG/SF/GFT and Regge calculus built on discrete geometries
— Use discrete (exterior) calculus (DEC) [pesbrun et af 2008):

Definition of A = do + od acting on p-forms on abstract simplicial (or polyhedral)
d-complexes with geometric interpretation (assignment of volumes to simplices).

On dual scalar fields :

aS

1 i V! ler!
Ar! —_— t '— r'!, r'JHg
( )n \//I, — V‘( ( ( )

'
ala )

Bra-ket formulation conceptually unifying the necessary duality between
chains/cochains and between combinatorially primal/dual complex
. Johannes Thilrigen (AEI) | Spectral dimension in LQG
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GGeometric data

Volumes can be defined (motivated by simplicial setting) as functions of
@ edge lengths
@ (d — 1)-face normals
o face bivectors/fluxes or area-angle variables (in 4d)

Barycentric vs. circumcentric dual volumes:

Positivity of Laplacian on generic geometries — barycentric dual preferred
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Topology and geometry

Before analyzing ds of LQG
states/SF histories:

@ Understand classical
features of underlying
complexes!
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Topology and geometry

Before analyzing ds of LQG
states/SF histories:

@ Understand classical
features of underlying
complexes!

Finite closed complexes
— compact topology of a
certain kind

R

k‘—,."_

Curvature R just shifts the plot (= rescaling of 7)
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Topology and geometry

Spheres S?, 4 12345

Before analyzing ds of LQG
states/SF histories:

d.

d

@ Understand classical o
features of underlying
complexes!

Finite closed complexes
— compact topology of a
certain kind
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Discreteness effect

Minimal distance effects small 7 behavior

Refined triangulations of the sphere

Only boundary of platonic solids are
equilateral:

Plots for tetrahedron, octahedron,
icosahedron

Complexes are to small to even peak
on the value of topological
dimension!
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Discreteness effect

Minimal distance effects small 7 behavior

The dipole triangulation of §¢

d-independent analytic solution of ds
(maximum at ~ 0.557)
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Discreteness effect

Minimal distance effects small 7 behavior

The dipole triangulation of ¢

d-independent analytic solution of ds
(maximum at ~ 0.557)

Lesson: For a concept of ds as dimension at all, complexes must be large enough,

l.e. regime between discreteness and topological effect is needed.

For these reasons, toroidal complexes are used in the following.
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LQG states in 241 dimensions

d =2+ 1. LQG states are geometric, direct observation of quantum effects

(| Tre™® Z|: s\TreTA\s Z\r \ Tre™ (s1815)
< (Ve =

Edge length Laplacian on SN states A = A’(T:’) ( ) = A())
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LQG states in 241 dimensions

d =2+ 1. LQG states are geometric, direct observation of quantum effects

1), x (imrer®le) = ST 10(s) (siTrer®ls) = 3 fu(s) Trer G121

Edge length Laplacian on SN states A = A’(T:’) = A7) = A())

Coherent states

@ peaked on equilateral (/ = /(J))
intrinsic geometry, spread o

@ semiclassical approximation —
Gaussian sum

@ implementation: approximation
by sum over some Gaussian
samples
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LQG states in 241 dimensions

d =2+ 1. LQG states are geometric, direct observation of quantum effects

(P(), x (vImremv) = 37 [u(s)? (s[TreB|s) = 37 Ju(s)? Trer (8"

—— ;

Edge length Laplacian on SN states A = A(/z) = A7) = A())

Coherent states
@ peaked on equilateral (/ = /(J))
intrinsic geometry, spread o

@ semiclassical approximation —
Gaussian sum

@ implementation: approximation
by sum over some Gaussian
samples

1 L L 1 |

J=10,0=15.2.250n N, = 1152
torus
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LQG states in 241 dimensions

d =2+ 1: LQG states are geometric, direct observation of quantum effects

(P(7) o (vITrem]e) = 3 [0(s) (sTrem®]s) = 37 [u(s)|? Trer (141

Edge length Laplacian on SN states A = A’(ﬁﬁ’) = A(/AE) = A())

Coherent states

@ peaked on equilateral (/ = /(J))
intrinsic geometry, spread o

@ semiclassical approximation —
Gaussian sum

@ implementation: approximation
by sum over some Gaussian ool
samples o6 T TR Y™ ;

J=10,0=15.2.250n N> = 1152
Only small ((107?)) “quantum torus
corrections’ even for small J, large o
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LQG states in 241 dimensions

d =2+ 1: LQG states are geometric, direct observation of quantum effects

(P(7) o (vITrem]e) = 3 [0(s) (s[Trem®]s) = 37 [u(s)|? Trer (1479

Edge length Laplacian on SN states A = A’(ﬁ/‘?) = A(/AE) = A())

Coherent states

@ peaked on equilateral (/ = /(J))
intrinsic geometry, spread o

@ semiclassical approximation —
Gaussian sum

@ implementation: approximation
by sum over some Gaussian -
samples o6 T TR Y™ ;

J=10,0=15.2.250n N> = 1152
Only small (O(107?)) “quantum torus
corrections’ even for small J, large o
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Conclusion

@ for discrete geometries new definition of Laplacian is needed — extension of
discrete exterior calculus to QG
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Conclusion

for discrete geometries new definition of Laplacian is needed — extension of
discrete exterior calculus to QG

concept of dimension only for states on large complexes

semiclassical states provide good approximation to classical case

stronger quantum effects (e.g. dimensional reduction) don’t show up

superpositions of states peaked on different scales and states on complexes of
different size under investigation (compare CDT)
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Outlook: ds of spin foams

Challenges

@ P(7) doesn't factorize into ultralocal parts — results on expectations values

[Livine, Ryan 2000]

/dB BQfIGfTI'BG — </2n> dj\j(G)

can't be used for

(P(7))sr = /‘[dB,-][dge] P(By)e' = TréiGrg.)
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Outlook: ds of spin foams

Challenges

@ P(7) doesn't factorize into ultralocal parts — results on expectations values

[Livine, Ryan 2009]

/dB BQfIGfTI'BG — </2n> dj\j(G)

can't be used for

(P()sr = [ 18B1dge] P(Br)e! = Tror6ie)

@ degenerate configurations — imaginary contribution to P(7)
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Outlook: ds of spin foams

Challenges

@ P(7) doesn't factorize into ultralocal parts — results on expectations values

[Livine, Ryan 20090]

/dB BQfIGfTI'BG — </2n> dj\j(G)

can't be used for

(P()sr = [ 18B1dge] P(Br)e! = Tror6He)

@ degenerate configurations — imaginary contribution to P(7)

@ divergences and regularization: gauge fixing on maximal tree not applicable
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Thank you for your attention!
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