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[ Bianchi, Rovelli, Vidotto, Borja, Garay,..., 2010-2013]

ﬂ INNOVATIVEECONOMY e www.fuw.edu.pl/~mpd

Pirsa: 13070079 Page 4/176



Introduction Scheme of calculations Results and possible applications Summary and further direction
000000 000000000000 00000000000000

~

Click on Sign to add text
' and place signature on a
PDF File.

Motivation: Dipole cosmology
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[ Riello, 2013)
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Motivation: " Melonic" radiative correction

[ Riello, 2013)

Let A be the maximum spin
of the internal faces of the
bubble.

Then the self-energy
correction to the spin-foam
edge is:
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Motivation: " Melonic" radiative correction

[ Riello, 2013)

Let A be the maximum spin
of the internal faces of the
bubble.

Then the self-energy
correction to the spin-foam
edge is:

. 1
Wwh o~ A8 / dgidga > T (mal YV |na) (na] Y g2V 1)
JSL(2,0)2
{

B n,;}i=l1

(5] -1 2 2
= AW~ = InA T

forp=1

T L B www.fuw.edu. pl/~mpd

Pirsa: 13070079 Page 11/176



Introduction Scheme of calculations
[o]e] [elele]e] Q00000000000

Results and possible applications Summary and further direction
00000000000000

~

and place signature on a

' Click on Sign to add text
PDF File.

Motivation: " Melonic" radiative correction

[ Riello, 2013)

Let A be the maximum spin
of the internal faces of the
bubble.

Then the self-energy
correction to the spin-foam
edge is:

. 1
Wwh o~ A8 / dgidga > T (mal YV |na) (na] Y g2V 1)
JSL(2,0)2
{

B n,;}i=l1

(5] -1 2 2
= AW~ = InA T

forp=1

T L B www.fuw.edu. pl/~mpd

Pirsa: 13070079 Page 12/176



Introduction Scheme of calculations Results and possible applications Summary and further direction
0008000 000000000000 00000000000000

A
Click on Sign to add text

Definir ' and place signature on a

Definition

Def: Lorenzian polyheadra propagator

Given a set of spins j1,..., 7~ we define an opertor
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Def: Lorenzian polyheadra propagator

Given a set of spins ji,...,jn we define an opertor

: 4 ] 01@@iN)
T .= dg [3 ;,s]
JSL(2,C)

acting on ‘Hj;, ® - -
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Motivation: " Melonic" radiative correction
[ Riello, 2013]

Let A be the maximum spin
of the internal faces of the

bubble.

j Then the self-energy

AEPRL correction to the spin-foam
edge is:
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In the intertweiner basis, the matrix elements of T are
; 1- , I
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J SL(2:€C)
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A little technical introduction

In the intertweiner basis, the matrix elements of T are
Ty == / dg (fl).T.f[}.’!!>
J SL(2:€C)

= / dg ®./(9) = / dg Y Tmta®h (9)
JSL(2,0) JSL(2,C)

17,1/

= (mi

/ = r ) s g
I )> and 7, (g) := H:}:” l)(‘?.i.-.h](”)j;lrm

1 m;

Assuming, that @}, (g) satisfy the assumptions of the SPA theorem, and
anticipating, that the maximum of the integrand is at the unity, the T operator
will be given by the formula
|
|()2()(1)|

T = ./_‘1/2/1(1)‘]’:,-(1)

with J = max;=1,... n{Ji}, d - the dimention of manyfold we integrate on,
¢ = limjooo —', In [®(g, J)], }H'"’_/' - the determinant of the Hessian matrix of

function f, and ju(g) - the integral measure.
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Let us investigate some properties of the integrand @'/ (g,.J) := («| Y TgY |i/).
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Let us investigate some properties of the integrand &}/ (g, .J) := (¢|Y fgY "),

f

There is a six-dimentional basis of vector fields on SL(2,C) glven by the

)
generators of rotations .J; and generators of boosts K; (i = 1,2,3).
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Let us investigate some properties of the integrand &}/ (g, .J) := (¢|Y fgY "),

f

There is a six-dimentional basis of vector fields on SL(2,C) g ven by the

)
generators of rotations .J; and generators of boosts K; (i = 1,2,3).

It's straightforward to see, that J;®,,(g) =0
Indeed: .Ji; are SU(2) generators, thus they commute with the Y map, and
J; |1> =0, s

WYY |0 = (| Yigy Ji |y =0
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Let us investigate some properties of the integrand &}/ (g, .J) := (¢|Y fgY "),

f

There is a six-dimentional basis of vector fields on SL(2,C) g ven by the

)
generators of rotations .J; and generators of boosts K; (i = 1,2,3).

It's straightforward to see, that J;®,,(g) =0

Indeed: .Ji; are SU(2) generators, thus they commute with the Y map, and
.l,‘ |!> - “,

(Y TgiY |y = (| YTgY Ji |/) = 0

So the integral over SU(2) € SL(2,C) is trivial (gives a constant factor). We
need to integrate over the boosts g = ¢T .
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Consider now a boost in arbitrary direction 7i.

Since -
ni- K u=ly Kau oy I nKy
: = = (

( — —

tl

for some w € SU(2), the value of ®*, (¢" ) is given by

‘I’::(f nﬂ'-R) <’| )-'I'”fl( ul\':;”)- ’!’> _ <’| ”fl)-‘ff nl\';;}-” "f>
<’| )-‘I'( ”""—:H" "!> _ ‘H'(‘ r;f\';;]

Thus the behaviour of ®}, (e "3y is crucial in further calculation.
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Consider now a boost in arbitrary direction 7i.

Since -
ni- K u=ly Kau oy I nKy
: = = (

( — —

tl

for some w € SU(2), the value of ®*, (¢" ) is given by

‘I’::(f nﬂ'-R) <’| )-'I'”fl( ul\':;”)- ’!’> _ <’| ”fl)-‘ff nl\';;}-” "f>
<’| )-‘I'( ”""—:H" "!> _ ‘H'(‘ r;f\';;]

Thus the behaviour of ®}, (e "3y is crucial in further calculation.
Let us now deffine the function [\’ (1)

<”"‘ YT."Y |”J’>,}' = (Sm.m'.r;(r}” (1)
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for some w € SU(2), the value of ®*, (¢" ) is given by

‘I’::(f nﬂ'-R) <’| )-'I'”fl( ul\':;”)- ’!’> _ <’| ”fl)-‘ff nl\';;}-” "f>
<’| )-‘I'( ”""—:H" "!> _ ‘H'(‘ r;f\';;]

Thus the behaviour of ®}, (e "3y is crucial in further calculation.

Let us now deffine the function £\’ (1)

<”"‘ YT."Y |”J’>,}' = (Sm.m'.r;(r}” (1)

Obviously
N

t nk: z :— / (J)
‘I)r’ (' ;) = Ly by H.,l“ (!f)
m

=1
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Assymptotics

To use the SPA method in integrating ¢}, (¢), we have be sure, that our
integrand decay sufficiently fast for ¢ far from the critical point.
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Assymptotics

To use the SPA method in integrating ¢}, (¢), we have be sure, that our
integrand decay sufficiently fast for ¢ far from the critical point.

One can proove, that

) 9 o
(J+|J'——rn"

‘/'(J) (”) < ((1—'.3!]—( _3") A2 +F3)
Jm o~
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Assymptotics

To use the SPA method in integrating ¢}, (¢), we have be sure, that our
integrand decay sufficiently fast for ¢ far from the critical point.

One can proove, that

) 9 o
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Assymptotics

To use the SPA method in integrating ¢}, (¢), we have be sure, that our
integrand decay sufficiently fast for ¢ far from the critical point.

One can proove, that

) 9 o
(J+|J'——rn"

‘/'(J) (”) < ((1—'.3!]—( _3") A2 +F3)
Jm o~

and thus
1;1 xi+ 5

| i ()] < (' 1_2”_(._;”) ; &l forJ>1andnp

where x; := .
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Derivatives in g

To use the SPA method, we need to know first and second derivative of &(¢g) -
the exponent part of the integrand, calculated at the critical point.
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Derivatives in g

To use the SPA method, we need to know first and second derivative of &(¢g) -
the exponent part of the integrand, calculated at the critical point.

The first derivative

L —_—
dey, Lt M

L ; Zil ' -1
T . 1= () ’I
I loo = 2Ty |7 O

n

T

n=0
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Derivatives in g

To use the SPA method, we need to know first and second derivative of &(¢g) -
the exponent part of the integrand, calculated at the critical point.

The first derivative

dgy | Z L Ly ; Z;N—l U, -1
o = —iy == + O (J
(1” |a):[} (fl I"’> f ] ( )

m

The Hessian matrix's determinant

' s N . ) ~13
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SU(2)-gauge invariance lemma

Thanks to SU(2) gauge invariant of tensors ¢, . we have Z,\=1 m¢ = 0.
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To use the SPA method, we need to know first and second derivative of ¢(g) -
the exponent part of the integrand, calculated at the critical point.

The first derivative

=2 (] ]e')

m

The Hessian matrix's determinant

N 2
)

_ Z Tmtm |1+ ";2 Z (7¢ +1)° — m?
(|| J 27i + 3

n=0 ) i=1

i INNOVATIVE ECONOMY

www.fuw.edu.pl/~mpd

Page 46/176



Introduction Scheme of calculations Results and possible applications Summary and further direction
0000000 000000800000 00000000000000 Click on Sign to add text

Use of S ) uge invariance ' and place signature on a

v . . PDF File.
SU(2)-gauge invariance lemma

~

h : . N
Thanks to SU(2) gauge invariant of tensors ¢, .’ we have Y ,_, mi = 0.
It also simplifies expressions dependent on m.
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Thanks to SU(2) gauge invariant of tensors ¢, .’ we have Y ,_, mi = 0.
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Thanks to SU(2) gauge invariant of tensors ¢, :" we have > " m; = 0.
. . e . 9 . .
It also simplifies expressions dependent on m;. Consider an expression:
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SU(2)-gauge invariance lemma
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Thanks to SU(2) gauge invariant of tensors ¢, :" we have > " m; = 0.
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It also simplifies expressions dependent on m;. Consider an expression:
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Derivatives in g

To use the SPA method, we need to know first and second derivative of ¢(g) -
the exponent part of the integrand, calculated at the critical point.

The first derivative
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Lorentzian Polyheadra Propagator

The leading order of the LPP operator is
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e l ~3/2
T = =2 ”E ,.:/).) 7372 1;  with o = 0,518.. and a(rq) = (Z.i‘,)
P o & L i

Note, that the factor «(ax;) depends only on the shape of the polyheadron, it does not
depend on its size.
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The leading order of the LPP operator is
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e l ~3/2
T = =2 ”E ,.:/).) 7372 1;  with o = 0,518.. and a(rq) = (Z.i‘,)
P o & L i

Note, that the factor «(ax;) depends only on the shape of the polyheadron, it does not
depend on its size.

Moreover o(x;) < —4= and a(x;) > N7%/2,
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Note, that the factor «(ax;) depends only on the shape of the polyheadron, it does not

depend on its size.
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Lorentzian Polyheadra Propagator

The leading order of the LPP operator is

- (%)
i

e l ~3/2
T = =2 ”E ,.:/).) 7372 1;  with o = 0,518.. and a(rq) = (Z.i‘,)
P o & L i

Note, that the factor «(ax;) depends only on the shape of the polyheadron, it does not

depend on its size.

!
2v2
Moreover note, that the LPP operator is diagonal in the |17:) basis, i.e.

A 1\? G
e (L) ([,
| 4 J(1+~2)> T

Moreover ov(x;) < and a(z;) > N %/ Thus for tetraheadron (.
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In Dipole Cosmology model the main result (i.e. recovery of the
classical trajectory) does not change. Only the factor in front of
the transition amplitude becomes shape-sensitive:
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In Dipole Cosmology model the main result (i.e. recovery of the
classical trajectory) does not change. Only the factor in front of
the transition amplitude becomes shape-sensitive:

4 3

’ \ (L . —2th o =fe —_ y —:.T_
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Let's now go back to the
transition amplitude of the
“melonic” bubble:
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transition amplitude of the
“melonic” bubble:
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Let's now go back to the
AT' transition amplitude of the
“melonic” bubble:

WA~InA - T?=a(J A)-1
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Application in bubble divergences

Let's now go back to the
AT' transition amplitude of the

X “melonic” bubble:

WA ~InA - T =a(JA) 1= —

For A = 102" we have a(.J,A) < 144 . <928
= [+ Tai]
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(New) Application in renormalisation?

Recall, that T = 221 1 +---.

J3/2 ;
Note, that the « is always smaller than 1. One can thus consider a series:
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(New) Application in renormalisation?

Recall, that T = 221 1 +---.

J3/2 ;
Note, that the « is always smaller than 1. One can thus consider a series:
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e
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(New) Application in renormalisation?

Recall, that T = 221 1 +---.

J3/2 ;
Note, that the « is always smaller than 1. One can thus consider a series:

=1

-+

+ + o
e

It sum to:

_\.'!/'.3
7= mp_gly fora<0isl

- ‘,1:5_," 2
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(New) Application in renormalisation?

Recall, that T = 221 1 +---.

J3/2 ;
Note, that the « is always smaller than 1. One can thus consider a series:

+ +ooo

It sum to:

R 17 | _ A3?% ,

A3/2

and the sum allways converges.
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(New) Application in renormalisation?

The same can be done for a series of “mellonic” bubbles on an edge:

Hwnovmwucouow e s WWquwedup|/~mpd

Pirsa: 13070079 Page 82/176



Introduction Scheme of calculations Results and possible applications Summary and further direction
0000000 000000000000 0000000000000 e
; T

~

Click on Sign to add text
' and place signature on a
PDF File.

(New) Application in renormalisation?

The same can be done for a series of “mellonic” bubbles on an edge:
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(New) Application in renormalisation?

The same can be done for a series of “mellonic” bubbles on an edge:

Jubble ,
1, -T2

imnovmwucouow et s WWquwedup|/~mpd

Pirsa: 13070079 Page 84/176



Introduction Scheme of calculations Results and possible applications Summary and further direction
0000000 000000000000 0000000000000 e
; T

~

Click on Sign to add text
' and place signature on a
PDF File.

(New) Application in renormalisation?

The same can be done for a series of “mellonic” bubbles on an edge:

Jubble |

— - — 1-.'
1,—T2 A T—a(JA)
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(New) Application in renormalisation?

The same can be done for a series of “mellonic” bubbles on an edge:

rH‘H.huhhh' — J'T — l 1-
1, -T2 A T—a(),A)

Assume now, that A - the maximum spin - is the inverse cosmological
constant,
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(New) Application in renormalisation?

The same can be done for a series of “mellonic” bubbles on an edge:

rH‘H.huhhh' — J'T — l 1-
1, -T2 A T—a(),A)

Assume now, that A - the maximum spin - is the inverse cosmological

constant, thus in Planck units A = 10", Then the factor a(.J, ) - et
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(New) Application in renormalisation?

The same can be done for a series of “mellonic” bubbles on an edge:

rH‘H.huhhh' — J'T — l 1-
1, -T2 A T—a(),A)

Assume now, that A - the maximum spin - is the inverse cosmological

constant, thus in Planck units A = 10", Then the factor a(.J, ) - et
so a(.J, \) |, and the sum converges!
for J>2
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@ The operator T}, := [ s dg (o] YT Y |./) has been studied

SL(2,C
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o The operator T}, := [, 2.c) 49 (¢ YT Y |./) has been studied

o The integrand was prooven to satisfy the SPA methods assumptions
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o The operator T}, := [, 2.c) 49 (¢ YT Y |./) has been studied

o The integrand was prooven to satisfy the SPA methods assumptions

o It decomposes into direct sum of 'II‘\“‘,_.:__,,,}‘\,
J1& I N

o On each space Inv (®’HJ-!.) the leading order of the T operator is

proportional to the identity with a factor dependent on total area of
polyheadron.

g o conom i www.fuw.edu. pl/~mpd
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o The operator T}, := [, 2.c) 49 (¢ YT Y |./) has been studied

o The integrand was prooven to satisfy the SPA methods assumptions

o It decomposes into direct sum of ’II‘\”‘,_.:“_,,,}\,
J1¥ “J N

o On each space Inv (®’HJ-!.) the leading order of the T operator is

proportional to the identity with a factor dependent on total area of
polyheadron.

@ Some simple applications of the T operator has been investigated
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o The operator T}, := [, 2.c) 49 (¢ YT Y |./) has been studied

o The integrand was prooven to satisfy the SPA methods assumptions

o It decomposes into direct sum of ’II‘\”‘,_.:“_,,,}\,
J1¥ “J N

o On each space Inv (®’HJ-!.) the leading order of the T operator is

proportional to the identity with a factor dependent on total area of
polyheadron.

@ Some simple applications of the T operator has been investigated
o The Dipole Cosmology transition amplitude changes by a factor dependent
on the shape of the thetraheadron

I he tactor in the "mellonic™ divergency amplitude was found
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o The operator T}, := [, 2.c) 49 (¢ YT Y |./) has been studied

o The integrand was prooven to satisfy the SPA methods assumptions

o It decomposes into direct sum of ’II‘\”‘,_.:“_,,,}\,
J1¥ “J N

o On each space Inv (®’HJ-!.) the leading order of the T operator is

proportional to the identity with a factor dependent on total area of
polyheadron.

@ Some simple applications of the T operator has been investigated

o The Dipole Cosmology transition amplitude changes by a factor dependent
on the shape of the thetraheadron

o The factor in the "mellonic” divergency amplitude was found
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o The operator T}, := [, 2.c) 49 (¢ YT Y |./) has been studied

o The integrand was prooven to satisfy the SPA methods assumptions

o It decomposes into direct sum of ’II‘\”‘,_.:“_,,,}\,
J1¥ “J N

o On each space Inv (®’HJ-!.) the leading order of the T operator is

proportional to the identity with a factor dependent on total area of
polyheadron.

@ Some simple applications of the T operator has been investigated

o The Dipole Cosmology transition amplitude changes by a factor dependent
on the shape of the thetraheadron

o The factor in the "mellonic” divergency amplitude was found
o For A = 10'2" the factor is < 1 and the infinite series of bubbles converge.
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o The operator T}, := [, @.c) 99 (¢| YT Y |./) has been studied

o The integrand was prooven to satisfy the SPA methods assumptions

o It decomposes into direct sum of ’II‘\”‘,_.:_,,,,,J .
1®-®JN

On each space Inv (® H;,) the leading order of the T operator is

proportional to the identity with a factor dependent on total area of
polyheadron.

@ Some simple applications of the T operator has been investigated

o The Dipole Cosmology transition amplitude changes by a factor dependent
on the shape of the thetraheadron

o The factor in the "mellonic” divergency amplitude was found
o For A = 10'2" the factor is < 1 and the infinite series of bubbles converge.

Further directions
o Subleading order

@ Further study of applications in renormalisation

ﬂ INNOVATIVE ECONOMY B www.fuw.edu.pl/~mpd
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o The operator T}, := [, @.c) 99 (¢| YT Y |./) has been studied

o The integrand was prooven to satisfy the SPA methods assumptions

It decomposes into direct sum of ’II‘\”‘,_.:_,,,,,J .
1®-®JN

o On each space Inv (®’Hj!.) the leading order of the T operator is
proportional to the identity with a factor dependent on total area of
polyheadron.

@ Some simple applications of the T operator has been investigated

o The Dipole Cosmology transition amplitude changes by a factor dependent
on the shape of the thetraheadron

o The factor in the "mellonic” divergency amplitude was found

o For A = 10'2" the factor is < 1 and the infinite series of bubbles converge.

Further directions

o Subleading order
@ Further study of applications in renormalisation

@ Understanding of the factor \—‘,‘/-T

i INNOVATIVE ECONOMY FNP ,,....-‘.- WWW.fUW. edu. pl/""’mpd
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Many thanks to Pl for inviting me here.

And thank you all for your attention!

International PhD Projects Programme (MPD) - Grants for Innovations

i INNOVATIVE ECONOMY FNP .‘,‘.i’!.‘?.fi‘..'."‘.’?fl‘?\'?'-
NATIONA OMESION STRATEGY DEVELOPMENT FUND
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How to solve your theory:
cylindrically consistent dynamics

(Perimeter Institute)

[BD, 1205. 6127, New . Phys. 12]
[Bahr, BD et al 09-11]

LOQPS "13
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Somebody gives you a theory of quantum gravity.

Typical: Comes as a description of amplitudes for ‘fundamental building blocks'.

What to do with this?
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How to describe a background independent
theory !
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Define dynamic of thEOI‘y via: [Oeckl: generalized boundary formalism
Perez, Rovelli: transition amplitudes as observables]

Amplitude map:

boundary with (geom) data/
boundary wave function = complex number

*test states describing boundary states
carry finite amount of information: might have discrete features
(projective / inductive limit construction [LQG:Isham, Ashtekar, Lewandowski, ...] )
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How do we get this amplitude map?

regularized path integral:
glue (fundamental) regions

~

Click on Sign to add text
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refinement limit to loose dependence on
auxiliary discretization
(hope that details of limit do not matter)

question: refinement of boundary?
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How do we get this amplitude map?
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sum over bulk discretizations

(group field theory)

[Rovelli, Smerlak: should be the same as (a)]

canonical:
coefficient of expansion of physical
solution over graphs

[Halliwell, Hartle, Rovelli (a) should give (¢)]
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well defined amplitude map

~ /\.\
Q e
k\

Is that sufficient?
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two states describing equivalent boundary data
[LQG: Isham, Ashtekar, Lewandowski, ...]

Lpy' - Hy — Hy embedding of coarser into finer boundary Hilbert space
Ap: Hp — C amplitude map
(ton )" Ay (1) = Ap((¥p)) demand cylindrical consistency for amplitude map

Amplitude does not depend on which graph/discrete structure we represent boundary data.
It is defined in the continuum (limit).
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two states describing equivalent boundary data
[LQG: Isham, Ashtekar, Lewandowski, ...]

Lpy' - Hy — Hy embedding of coarser into finer boundary Hilbert space
Ap: Hp — C amplitude map
(ton )" Ay (1) = Ap((¥p)) demand cylindrical consistency for amplitude map

Amplitude does not depend on which graph/discrete structure we represent boundary data.
It is defined in the continuum (limit).
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amplitude map is cylindrical consistent.

How might we get such a map?

by using the idea of cylindrical consistency in the construction of the refinement limit.

Back up:

What are convenient (for the dynamics) families of embedding maps?
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What are convenient (for the dynamics) families of embedding maps?
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What are convenient (for the dynamics) families of embedding maps?
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What are convenient (for the dynamics) families of embedding maps?

Convenient embedding
maps allow us to replace
gluing along very fine
boundaries by gluing along
coarser boundaries:

define good
truncations!

Pirsa: 13070079 Page 112/176



~

Click on Sign to add text
' and place signature on a
PDF File.

Embedding maps defined by
dynamics!

LQG:

embedding map corresponding to kinematical vacuum describing completely degenerate
geometry with vanishing volume, areas, ....
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Such embedding maps allow an effective way to find the
refinement limit.

]
]
-
I
|
L
I
I B
. o | Can now iterate.
effective : .
. A/ Fixed point:
(coarse grained) 1 “ F
. refinement/
amplitude 1 ‘ -
continuum limit.

This procedure does refinement limit in bulk and boundary.
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Such embedding maps allow an effective way to find the
refinement limit.

]
]
-
I
|
L
I
I B
. o | Can now iterate.
effective : .
. A/ Fixed point:
(coarse grained) 1 “ F
. refinement/
amplitude 1 ‘ -
continuum limit.

This procedure does refinement limit in bulk and boundary.
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How to get these embedding maps?
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Youpheeabaccbkanabka — [ By

) (Y| A=TN

Transition amplitude between . -5
two states (1 |.A insert id = )

i"r}:f' £4ONB

I‘:,\'l)l'[" good approximation if P, o

are in span of these eigenvectors.

But: explicit diagonalization of T difficult.

[runcate by restricting 2 onp
to the eigenvectors of T with the
v largest (in mod) eigenvalues.
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Youpheeabaccbkanabka — [ By

) (Y| A=TN

Transition amplitude between . -5
two states (1 |.A insert id = )

i"r}:f' £4ONB

I‘:,\'l)l'[" good approximation if P, o

are in span of these eigenvectors.

But: explicit diagonalization of T difficult.

[runcate by restricting 2 onp
to the eigenvectors of T with the
v largest (in mod) eigenvalues.
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Input:  DVI- 1820x1080p@60Hz

Dynamically determined embedding maps s ‘. s

Truncate by restricting > onp Localize truncations,
to the eigenvectors of T with the diagonalize only subparts
y largest (in mod) eigenvalues, of transfer operator

blocking

iteration ])l‘uc't'tlllt‘l‘

H . .
' H Determined by (generalized
—> ﬁ} — nn H} |‘j\'—|11-('u]|||nv,-a“llinn.

embedding

cmbedding map after 3 iterations

=
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Example: Ising model -

[t

ration 3

[teration 2

[t

ration |

low temperature:

o Vw(D | =0.3,04,...,09
high temperature
: r B

8 ﬁ‘ " .
number ol iterations

04

0
0

c

|
| 0 l 0
|
0s( ) sin(a)
Vw(l)i i = 05915, /. /,0.5018

0

P T TN TN TN SN TN T TN TN T T T TN T T T T T T T T T T T e A S S T T

15 20 FT] 30

number of iterations

Plateau (scale free dynamics) of almost constant embedding maps around phase transition

Background scale free!
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| B -l--_-__-_-__'
Y e O e RO
| %
coarse grained E ' vacuum adl
boundary data {1+ fluctuations of I
(homogeneous v| 1+ finer degrees of .
geometry) | freedom =ik
1L SO

1
I
1
I
I
I
1
I
I
1
I
™
I
1
1
I
I
1
I
I
I
1

Embeddings determined by the dynamics of the system. Represent the physical vacuum for
H]]t‘l' (1(‘:_'.]‘1‘('5 nli [‘]'I‘('(l(J]]],
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Y e O e RO
| %
coarse grained E ' vacuum adl
boundary data {1+ fluctuations of I
(homogeneous v| 1+ finer degrees of .
geometry) | freedom =ik
1L SO

1
I
1
I
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Embeddings determined by the dynamics of the system. Represent the physical vacuum for
H]]t‘l' (1(‘:_'.]‘1‘('5 nli [‘]'I‘('(l(J]]],
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Other examples: |

PDF File.

stensor network renormalization methods: condensed matter
[Vidal, Levin, Nave, Gu,Wen, ....]

*spin nets: analogue spin foams
[BD, Eckert, Martin-Benito '| I][BD, Martin-Benito, Schnetter’ | 3][BD, Martin-Benito, Steinhaus: to appear]
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Coarse graining methods provide

eefficient way to ‘solve’ the theory as a CONTINUUM theory
*way to understand physical vacuum and your theory at different ‘scales’

*renormalization:
effective way to organize / connect dynamics at different scales
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Coarse graining methods provide

eefficient way to ‘solve’ the theory as a CONTINUUM theory
*way to understand physical vacuum and your theory at different ‘scales’

*renormalization:
effective way to organize / connect dynamics at different scales
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Causal Set Dynamics: Results in 2D quantum gravity

Sumati Surya

Raman Research Institute

M
J\

GR20, Warsaw
July 2013

July 2013 1/ 21
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@ The Causal Set Hypothesis
@ A Continuum Inspired Dynamics.

@ Results in 2D Causal Set Quantum Gravity: The Emergence of the Continuum.

S. Surya, Class.Quant.Grav. 29 (2012)

@ Open Questions
with Lisa Glaser

with J. Henson, D, Rideout and R, Sorkin

July 2013 2/21
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The Causal set Hypothesis and plcesignaure o

This is based on two fundamental building blocks:

@ The Causal Structure Poset (M, <)

e M is the set of events.

@ < is:

@ Acyclic:x < yandy < x = x=y
@ Reflexive: x < x

@ Transitive: x < y, ¥y < 2= x < 2

July 2013 3/ 21

Pirsa: 13070079 Page 128/176



~

' Click on Sign to add text

The Causal set Hypothesis and plcesignaure o

This is based on two fundamental building blocks:

@ The Causal Structure Poset (M, <)

@ Fundamental Spacetime Discreteness:

V has n ~ V/V, fundamental spacetime atoms.

Be Wise, Discretise! Mark Kac

July 2013 3/ 21
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The Causal set Hypothesis and plcesignaure o

This is based on two fundamental building blocks:

@ The Causal Structure Poset (M, <)

@ Fundamental Spacetime Discreteness:
V has n ~ V/V, fundamental spacetime atoms.

[

The underlying structure of spacetime is a locally finite poset (C, <) or a causal set

July 2013 3/ 21
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Spacetime from Causal Sets and place signaturean

Causal Structure + Spacetime Volume = Spacetime Geometry

~Malament, Hawking, King, McCarthy, etc.

Causal Structure — Partially Ordered Set

Spacetime Volume — Numbel

Order + Number ~ Spacetime Geometry

July 2013 4/ 21
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Spacetime from Causal Sets

@ Regular lattice does not preserve Number-Volume correspondence

@ Random lattice generated via a Poisson process:

Py(n) = J1g- "V(/JV) < N >=pV

n!
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A Continuum Inspired Dynamics for Causal sets

@ From first principles:

Quantum Sequential Growth Dynamics using a histories based “quantum measure”
formulation.

F. Dowker, S, Johnston, & 36 (2005)

Surya, J.Phys. A43 (2010), R. D. Sorkin, arXiv:1104.0997, J. Henson, Stud.Hist.Philos.Mod.Phys

@ Continuum Inspired Dynamics:

- S(¢)
Z=) exp'h

ceS2

e Sample space Q2 is a collection of causal sets. Example, the set of all countable past-finite causal
sets.

e S(C) is a causal set action. An example of this is the Benincasa-Dowker action S(C).

July 2013 5/ 21
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The Sample Space of Causal Sets and placesgnature on

@ Unimodular gravity: Fix N and then take N — oc.

@ Inthe large N limit, a generic causal set looks nothing like spacetime:

N/4 _—

N/4
log Py = N?/4 + 3n/2 + O(log N).

Kleitman and Rothschild, Trans AMS, (1975)

@ Microcanonical ensemble: infinite sequence of first order phase transitions
Important comparisons to lattice gas models with long range interactions.

D. Dhar, JM.P (1978).

July 2013 6/ 21
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@ Benincasa-Dowker-Glaser Action for Causal Sets:

D. Benincasa and F.Dowker PRL, (2010), F. Dowker and L. Glaser, arXiv:1305.2588.
sy Bd o~ A(d)
= =gy ( N+ 223 N
h ( g ; ! :

@ N;: # of i-element order intervals
X

N |

July 2013 7/ 21
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Analytic Continuation: Quantum Dynamics — Thermodynamics PoFFie, o

@ Introduce a new parameter /3 (inverse temperature)

i38(C) — —p35(C)

@ Space of Configurations 2 is unchanged: There is no need for “Euclideanising” Q.

~ 2 o(C)
Z 2 e "
Ce

July 2013 8/ 21
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Analytic Continuation: Quantum Dynamics — Thermodynamics PoFFie, o

@ Introduce a new parameter /3 (inverse temperature)

i38(C) — —p35(C)

@ Space of Configurations 2 is unchanged: There is no need for “Euclideanising” Q.

~ 2 o(C)
Z 2 e "
Ce

July 2013 8/ 21
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2D Causal Set Quantum Gravity and placesgnature on

Construct a 2D theory of causal sets

Z[N] \._:_1“ orders exp h

2 = { 2D orders }

S24(C) : Benincasa-Dowker Action.

All topologically trivial conformally flat spacetimes — 2D orders

July 2013 9/ 21
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A 2D orders

U={u.up,..., uyt and V ={vy.va,..., v}
: )
U & o
uiz) X viy)
Il|_\?. . ' v(z)
uix) vix)
uix)<uly)<ulz) VIX) < viz)<viy)
X < < u(x) < u(y) and v(x) < v(y)

$(C)=Un Visa2D ORDER

July 2013

\ ¢

10/ 21
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The Sample Space of 2D orders

J V. L=(13245) N
l ] M= (2,4,1,3,5) |

L=(1234) A

M= (4,3,2,1) «

J l L=(12.34)
N M= (2,1,4,3)

2D random orders (~ 2M) dominate the uniform distribution

M.H. El-Zahar and N.W. Sauer, Order, (1988), P. Winkler, Order, (1991), G. Brightwell, J. Henson, S. Surya, CQG (2008)

July 2013 11/ 21
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The 2d Benincasa-Dowker Action for a Causal Set poFFie. "

S(c)/h = 4 (N —2¢ N2 N, f(n.r))

2
@ Mesoscale lx >> Ip : || ¢ (i) e 0, 1]

@ f(n.e)=(1-)"=2en(1—e)"" + Te2n(n—1)(1 - )"2

1.4
8

0 84

July 2013 12/ 21
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Markov Chain Monte Carlo

The Move:
@ U= (uy,Up, ... Uj....Uj,...UN), V= (V1,V2,...Vi,...Vj, ... WN)

@ Pick a pair (v, v;) and (y;, v;) at random and exchange: u; < y;

o U = (uy, U, ...U

iUy uy), V= (v, VY V)

e EXAMPLE:

Up > Uug: U=(1,2,3,4),V=(1,2,83,4) — U =(1.3.2.4), V' = (1,2.3.4)

July 2013 13/ 21
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Covariant Observables

’ Covariance ~ Label invariance ‘

Ordering Fraction: xy = 2r/N(N — 1)

~
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r: actual number of relations in the causal set, N(N — 1)/2 : maximum number of possible

relations

Dimension: Spacetime dimension v/s poset dimension
In 2d Myrheim-Meyer dimension dyy = \ !

Action (~ energy):
S(f)/h:'ﬁ”\!f X (1 — 2% Z” 0 Nn H.c))

Npn: Abundance of n-order intervals
Height: Length of the longest chain ~ longest time-like distance

Time asymmetry: Difference in number of minimal and maximal elements

July 2013

14/ 21
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A Cross Over or Phase Transition?

@ Fix «

@ Plot (0)(53)

Action vs /3

'
()]
]
ass¥

Action

45 L T
0 05 1 15 2 25 3 35 4 45

3

July 2013 15/ 21
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A Cross Over or Phase Transition?

@ Fix «

o Plot (O)(3)
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A Cross Over or Phase Transition?

@ Fix ¢

e Plot (0)(5)
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Continuum Phase
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Continuum Phase

Fore¢ =0.12, 3 = 0.1:
@ Ordering Fraction: <
@ Height: < h >=10.217 + 1.401
@ Time Asymmetry: < TA >= —0.007 4 2.411
@ Action: < S > /h = 3.845 + 1.256
@ Abundance of Intervals:

=0.498 + 0.045. = < dyy >~ 2.

Comparison with Random Order: Interval Abundances
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Continuum Phase closely resembles the random 2D order aka the Minkowski interval

July 2013

(Height of V = 50 Minkowski interval is /100 = 10)

\ ¢

16/ 21

~

Click on Sign to add text
and place signature on a

PDF File.

Page 150/176



~

Click on Sign to add text
' and place signature on a
PDF File.

Crystalline Phase
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Caution: Continuum approximation exists without the continuum limit.

A — i3

Thermodynamics — Quantum Dynamics
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Suggests that the continuum phase may survive the analytic continuation
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Crystalline Phase

Fore¢ =0.12, 3 = 3.1
@ Ordering Fraction: < y >=0.589 £ 0.001. = < dyy >~ 1.7.
@ Height: < h >= 4.631 £ 0.860
@ Time Asymmetry: < TA >= —1.327 4+ 5.156
@ Action: < S > /h = —38.000 + 3.197
@ Abundance of Intervals:

Change in Interval Abundance with zeta
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What does this mean? and place signture on 3

Caution: Continuum approximation exists without the continuum limit.

A — i3

Thermodynamics — Quantum Dynamics
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Suggests that the continuum phase may survive the analytic continuation

July 2013 18/ 21

Pirsa: 13070079 Page 154/176



~

' Click on Sign to add text

Finite Size Effects ;Bcég:r:esiqnaturecna

@ How sensitive is the phase diagram to N?

Action for Varying N
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@ Monte Carlo RG techniques: Simulations under way with Lisa Glaser.

@ System is Non-Extensive with “long range interactions”: is there Finite size scaling?
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Conclusions and Open Questions and placesgnature on

@ MCMC methods can be successfully used to study the quantum dynamics of causal sets
using covariant observables.

@ Appearance of distinct phases separated by a phase transition/cross-over.

@ Flat spacetime is emergent in 2D causal set quantum gravity in a precise sense.

@ Order of the phase transition: strong hints that it is second order, but questions re. finite size
scaling need to be addressed.

@ Are there other options for the analytic continuation?
@ Does RG help us find a fixed point for the non-locality scale ¢?

@ Does this have implications for MCMC simulations for full 4D causal set quantum gravity with
unrestricted sample space Q27 Simulations under way with David Rideout, Joe Henson and Rafael
Sorkin.

Thanks to: Rafael Sorkin, David Rideout, Joe Henson, Fay Dowker, Aleksi Kurkela and Lisa Glaser
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Introduction

In a quantum theory of gravity, space-time symmetries, in
particular the Lorentz symmetry, are thought to be potentially
violated. The primary source for this conjecture is supposed to be
the natural occurrence of the Planck length /mass which is thought
to reflect a fundamental discreteness analogous to that of a lattice

structure.

LQG, does reveal discreteness of metrical properties of ‘space’,

quite different from the discreteness of a lattice.

Qn: Does the metrical discreteness suggest violation of

continuous symmetries?
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The structure responsible for the metrical discreteness is the

specific, non-separable Hilbert space of LQG. Hence the question

becomes:

Are certain quantizations in conflict with implementation of

continuous symmetries?

This is explored for rotational symmetry in the context of

polymer quantum mechanics and polymer quantized scalar field.

(With Nirmalya Kajuri, CQG. 30 (2013) 075010, arXiv:1211.0823)
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Realization of symmetries in Schrodinger Quantum Mechanics
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Realization of symmetries in Schrodinger Quantum Mechanics

Realization of symmetries in Polymer Quantum Mechanics
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Realization of symmetries in Schrodinger Quantum Mechanics

Realization of symmetries in Polymer Quantum Mechanics

The Dua

Option
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Realization of symmetries in Schrodinger Quantum Mechanics

Realization of symmetries in Polymer Quantum Mechanics

The Dual Option

Realization of symmetries in Polymer Quantized Scalar Field

Concluding Remarks
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Schrodinger Quantum Mechanics por e

Basic observables: q'. p;
Representation:

Rotations matrices:

g = U(N)g' UN)T = N ¢/

Infinitesimally, /\’,. ' ()"j_ + “’j .

!
h

c. J qi] _ f‘quj

‘ i
and €

Jk =

pilk) = hkilk) . q'lk) = ih 1o,

— —

States: (k|k') = &3(k — k')

pl = U(N)p; UN) = N p;
Ul +€):=1—fe-J

implies,

i .
— zle-Jop] = €ipi.

f_’.
) k
€-J:=¢€J leads to,
¢ nk om
Cm 9 Pn
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Polymer Quantum Mechanics ot

Basic observables: e”“'(';.p,- ; States: (k| 7) = §;
Representation: pilk) = hki|k) . e"k}'alz) = |k + k')

Action of Rotations ( A’ N ,6m™" = §Y)

(e"‘?'ﬁ)/\ = U(N) (e’j“'a) U(N)T = (e’-k"/\ii(’j)
pl = UN)pi UN) =N p
SUMNRY = (Y k)

for every 0 > 0, the subspace spanned by {|k). k- -k = o},

provides an infinite dimensional, irreducible representation.
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Polymer Quantum Mechanics (Cont. ... ) MEGES

A non-trivial invariant Hamiltonian can be constructed from p-p

and e~ f(P)Pid" with the action of the latter being,

1 "Ek:) 2

o - ” » A dp*
e—n‘({) )D-q’k> — “(, — ik> . / d\ = = / %
Jo 2 Jiz  p*f(p®)

However, Eigenvalues of such an invariant Hamiltonian are

generically infinitely degenerate!

Either (a) rotations cease to be a symmetry (explicit breaking of

symmetry) or (b) the symmetry is spontaneously broken.
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The Dual Option: Cyl C H C Gyl

Elements of Cyl are suitable countable linear combinations of |k)

and elements of Cyl* can thus be specified by giving linear

functions of k. (k) := (W|k).

Every operator A : Cyl — Cyl, defines A : Cyl* — Cyl* by the
‘dual action’:  (AW|f) := (W]|Af).V |[f) € Cyl, V (V] € Cyl*.

Using the dual U(A), we can define infinitesimal generators on a
subspace of Cyl* as,

' , Ul 4+ €)= Ul —¢) -

I(.II\UI\) = lim (W] ( +F)‘_)_ ( F)||\'>

h c1—0 Z€]

= (e H|(UIR + k) — (K - k)| = &K

f.)l M
ki
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The Dual Option:

Likewise, for each orthonormal triad,

and a small parameter 0, we have, Um,f(q') = e'°%'9  and

singg, 1= (21) 71 (Use () — U—s¢,(q)) leading to,
: ‘ rx'ill,h-“i : . : A
((“'l - (] ""|~L> L= {!-”P[)(\ll‘ (_)_ J|\> = % (‘l’“i -1 ()(‘j> —_ (‘l’“\' —_ (5(‘j>
D*(k + 66;) — ¥ (k — 56 |
N ! ( ((.l) “f ( (.])_ “‘j.vl'{
210 ' R
It follows,

( ["In (., Cp l)] lll“\‘> ( {i/“‘lla "\H} ll!“‘"> :
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Polymer Quantized Scalar Field FoFe T
Orthonormal states are labelled, for each n > 0, by vertex sets,
V = (x1,.... X,).X; € R? and corresponding set of non-zero, real
numbers (A1...... \,) and are denoted as

s (ST \-,. X: d
Ny 5(0) = ' 2N oV XY,
The smeared momenta,

Py = [ d’xg(X)ms(x) ih [ d°xg(X)5 T

satisfy, [Pr. Pg] =0 . Plf = P¢ and act on the basis states as,

P, \\/ B ’L/ ) Z A8 (X )} \v \
J
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Polymer Quantized Scalar Field

Orthonormal states are labelled, for each n > 0, by vertex sets,

2

V = (x1,.... X,). X; € R and corresponding set of non-zero, real

numbers (A1...... \,) and are denoted as
\f ISiNGE) '
Ny (@) = e =7 « |V A).
The smeared momenta,

Py = [ d’xg(X)ms(x) ih [ d°xg(X)5 T

satisfy, [Pr. Pg] =0 . Plf = P¢ and act on the basis states as,

P, \\/ B ’L/ ) Z A8 (X )} \v \
J
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Polymer Quantized Scalar Field (Cont.

Elements of Cyl* are specified by giving, (W[V.\)

'./.- 8 7 . 7 . . 7 -/,/ /-\'l. . /’f -“ ..
V(X1 Xy AL ) L X E X Vi #E jand A #£ 0,V

Following similar steps as before, we can define the infinitesimal

generators on a subspace of ¢"*(V; A) which are

differentiable w.r.t. the X arguments.

To define smeared scalar field operators, we need

differentiability w.r.t. the \ arguments and in addition,
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Elements of Cyl* are specified by giving, (W[V.\)

'./.- 8 7 . 7 . . 7 -/,/ /-\'l. . /’f -“ ..
V(X1 Xy AL ) L X E X Vi #E jand A #£ 0,V

Following similar steps as before, we can define the infinitesimal

generators on a subspace of ¢"*(V; A) which are

differentiable w.r.t. the X arguments.

To define smeared scalar field operators, we need

differentiability w.r.t. the \ arguments and in addition,
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Polymer Quantized Scalar Field

These lead to the definitions:

(J5 WV,
TN
It is easy to verify,
([of, P V|V, )

([J5. of WV, )

A
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r ooki X "
|/l ¢ \]'I E .\":” ——
. ()x]

(S +ih [ > f(%)e(x)

j=1

il (0, V|V, N)
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Concluding Remarks o e

Continuous symmetries can be implemented in polymer
quantization but with a physically unacceptable price of infinitely

degenerate energies.
Therefore these must be broken explicitly or spontaneously.

Alternatively, the polymer quantization may be treated as an
intermediate step. By going to the dual Cyl*, it is possible to

re-gain infinitesimal symmetries.
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Concluding Remarks o e

Continuous symmetries can be implemented in polymer
quantization but with a physically unacceptable price of infinitely

degenerate energies.
Therefore these must be broken explicitly or spontaneously.

Alternatively, the polymer quantization may be treated as an
intermediate step. By going to the dual Cyl*, it is possible to

re-gain infinitesimal symmetries.

THANK YOU.
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