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Projective State Spaces for LQG / LQC

Why?

» LQG treatment of holonomies / flux is very unbalanced
— serious issue when looking for well-behaved coherent states

working with a stack of small theories is technically
comfortable until we try to go beyond fixed graph

— ‘cylindrical consistency’ is hard to get, going to the dual
space has its own drawbacks

physical interpretation as specializing into specific d.o.f.'s of
the continuous theory: why @7 it should be ®!
[see also: Thiemann & Winkler 01]
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Projective State Spaces for LQG / LQC

How?

usual construction relies on writing the configuration space
as a projective limit — let's write the phase space as a
projective limit... [see also: Thiemann 01]

transcription at the quantum level — projective families of
density matrices, the projections are given by appropriate
partial traces [Kijowski 76, Okotéw 09 & 13]

physical insight — a given experiment only measures a finite
number of observables
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Projective State Spaces for LQG / LQC

Lp rojective Structures

Contents

Projective Systems of State Spaces
Projective Systems of Phase Spaces
Projective Systems of Quantum State Spaces
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Projective State Spaces for LQG / LQC
| Projective Structures

| Classical

Projective Systems of Phase Spaces

Collection of partial theories:

X My~ » label set £, <
/ \ » 1) € L = a selection of d.o.f.'s

W-r}”%

T
» ‘small’ symplectic
M,y Tint' —n :
l manifolds M,

Ensuring consistency:
Tyl =1 M > projections 7, _,, for n < 7'

» compatible with symplectic
structures
n=<nxnecL 3-spaces-consistency
— projective system
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Projective State Spaces for LQG / LQC
| Projective Structures

| Quantum

Projective Systems of Quantum State Spaces

v My 5 Modeled on special case:
» classical factorizations
My~ Moy X My,
» 3-spaces consistency
= R My X My
v ) » quantum equivalent
Moir X Myt X My Moy x My — ®-factorizations

Ny M Projective families (py)

neL :
» py density matrix on ‘H,,

> TI”H p

'l,f —FJ’}

Py = Py
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Projective State Spaces for LQG / LQC
| Quantum Gravity
L 1LQG

Holonomy-Flux Algebra

The label set

The label set:

» a graph = a choice of
configuration variables

a set of flux for this graph
= a choice of conjugate
momentum variables

the label set must be
directed (any two labels
1,7’ have a common finer
label n" = n,1)

[Holonomy-flux algebra: Ashtekar, Isham, Rovelli, Smolin, Lewandowski, Pullin, Gambini,...]
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Projective State Spaces for LQG / LQC
| Quantum Gravity
L1Lqa

Holonomy-Flux Algebra

The factorizations

state spaces:

/ /
Lo (Gn, d/’-Haar)
one group variable per edge
>

factorizations:
G!? ~ Gn? x Gn—m

selecting specific edges —
prescribes the factor G"

selecting specific flux
— prescribes the
complementary factor

G n—m

[Holonomy-flux algebra: Ashtekar, Isham, Rovelli, Smolin, Lewandowski, Pullin, Gambini,...]
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Projective State Spaces for LQG / LQC
| Quantum Gravity
L 1LQG

Holonomy-Flux Algebra

Relation to the usual LQG Hilbert space

There is an injective map
embedding the space of density
matrices on H, o into the
projective state space.

This map is not surjective.

We have states with narrow
distribution for infinitely many
holonomies:

» first step toward
satisfactory coherent states

» but there remain deeper
problems...

[LQG Hilbert space: Isham, Ashtekar, Lewandowski,.. ]
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Projective State Spaces for LQG / LQC
| Quantum Gravity
LLqQc

Loop Quantum Cosmology

Ly (Uy) Label set {n € IN}:

» with order n|m

] » |ess observables than
on HLQC

~

o ik
(”//’-) Lo (Uy) @ C The projective structure:
= » Hilbert spaces Ly (U;)

0= m/k > Ly (Uy) ~ Ly (Uy) @ CK

m. n, ke NN

[LQC: Bojowald, Ashtekar, Pawlowski, Singh, Lewandowski,...]
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Projective State Spaces for LQG / LQC
| Quantum Gravity
L Lqc

Loop Quantum Cosmology

Ly (Uy) Label set {n € IN}:

» with order n|m

] » less observables than
on HLQC

™

o ik
(”//’-) Lo (Uy) @ C The projective structure:
= » Hilbert spaces Ly (Uy)

0= m/k > Ly (Uy) ~ Ly (Uy) @ CK

m, n, k€ IN

[LQC: Bojowald, Ashtekar, Pawlowski, Singh, Lewandowski,...]
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Projective State Spaces for LQG / LQC
| Constraints

| The Easy Case

Nice Constraints

Restrictive requirements:

» orbits are projected on
orbits — 7" between
reduced phase spaces

» compatible with
symplect. structures

Dynamical projective
system & transport maps:

» states to projective
families of orbits

» observables
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Projective State Spaces for LQG / LQC
| Constraints

| Regularizing

Unfitting Constraints

LU {oo},

Successive approximations:
» labeled by ¢ € €

» nice on smaller and
smaller cofinal parts of £
dynamical projective
system on a subset of
EXL

convergence for a subset
of the dynamical
projective state space
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Projective State Spaces for LQG / LQC

Summary

we can construct projective state spaces for LQG and LQC
results obtained in fixed graph can be directly imported

assembling is done with a different interpretation — 7 selects
observables, not states

immediate payoff — states that were not constructible on
H, qc can be designed

needed input for dealing with constraints — regularizing
scheme + projections between the approximated theories
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Projective State Spaces for LQG / LQC

What next?

good coherent states: there are deeper problems (related to
the structure of the algebra itself) — drastically cut down the
label set?

link between LQG and LQC — partly depends on progress in
the previous point

solving Gauss and diffeo constraints, ultimately even
Hamiltonian constraint

application to QFT — relation between regularization
schemes and renormalization techniques?
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Projective State Spaces for LQG / LQC

Thank you!
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Introduction
[ ]

General Setting: Symmetries

Principal fibre bundle (P.7. M.,S) with S compact

@ A - smooth connections on P m&.

@ P - some smooth curves in M — '

(4]
e Cyl(’P) - cylindrical functions on A w.r.t. P 2

— unital C*-subalgebra generated by pj; o hY

Quantum Configuration Space
A = Spec(A) for A = Cyl(P)
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Symmetry Reduction in LQG
. (

General Concept

Quantization of Reduced Classical Configuration Space

’Symmetry(G.dD)on P’

Choose P R N Compute G-invariant

. " connections
d “

AG——{ e A | (b *w = w for a g €6 }
o A— A ’ = W mvarlant iff Sml) w) =

w = [f = f(w)]

A = Spec(Cyl(P))

/
/
/

Compute ((A¢) /
= «(Ag) = Spec(Cyl(P)|a,)
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Symmetry Reduction in LQG
(o] le)

Loop Quantum Cosmology

Two osmological uantum onfiguration paces

Cyl(P)|la, — Ac = Spec(*B)
i: Ag — A inclusion map

ABL [2003] Fleischhack [2010]
linear curves embedded analytic curves
C..\}'(R) Co([R) P C,\p(R)

RHHHI‘ R LI ]R[gnlll'
[ Bohr i extends to embedding
it RURpop — Aw

no canonical extension of / , no Haar measure j )
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Symmetry Reduction in LQG
(ole] ]

Loop Quantum Cosmology

Cylindrical measures on R := R LI Rp,p,

However, topology on R is such that each
1t on B(R) is of form

WA) =t -1 (ANR) + (1 —t) - u2(AN Rpopy) VA€ B(R)

for some 0 < t < 1 with (11 on B(R), p2 on B(Rponr).
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Symmetry Reduction in LQG
(ole] )

Isotropic and (semi-)homogeneous Connections

Motivation to look for alternative reduction concept
Non-transitive situations for P = R3 x SU(2)

(Semi-)homogeneous case:
V C R? linear subspace and (v, (x,s)) = (v + x, s)

Isotropic case:
SU(2) linear subspace and ®(a, (x,s)) = (o(x),05)

Symmetry Ag Methods A

homogeneous >~ R Spec(*B) (hard)
semi-homogeneous | par. by functions other 7
Isotropic par. by functions other 7
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Reduction on Quantum Level
[ ]

General Concept . MH math-ph
(P,m,M,S) with S compact arXiv:1307.5303v1

’Symmetry(G.Cb)on P‘

o GxA— A
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Reduction on Quantum Level

General Concept . MH math-ph
(P,m,M,S) with S compact arXiv:1307.5303v1

Choose P~ ’SYmmetry (G,®)on P‘

‘ A = Sl"“'((-‘_\'|(73)) ™ 1o Gx A— A’
| - |

:GxA—- A |- Ac = {w € A| Staby(w)

‘ compact spaces ‘

(@ € A | Staby(@) = G} A = (Ag) A |
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Reduction on Quantum Level
L ]

Loop Quantum Cosmology
P = R3 x SU(2)

b isotropic (semi-)homogeneous | homogeneous isotropic
&y, | rotations translations euclidean group

= P), P, ®-invariant
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Reduction on Quantum Level
L ]

Loop Quantum Cosmology
P =R3 x SU(2)

isotropic (semi-)homogeneous | homogeneous isotropic
rotations translations euclidean group

= P|, P. ®-invariant

e Bijection n: A, — Hom(P,SU(2)) for a = 1.w
o Homg(P,SU(2)) := r(Ag) (G-inv. homomorphisms)
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Reduction on Quantum Level
[ ]

Loop Quantum Cosmology
P = R3 x SU(2)

isotropic (semi-)homogeneous | homogeneous isotropic
rotations translations euclidean group

= P|, P. ®-invariant

e Bijection n: A, — Hom(P,SU(2)) for a = 1.w
e Homg(P,SU(2)) := r(Ag) (G-inv. homomorphisms)
e Characterized by Slmple algebralc relations: ¢ € Ilnm(,(P SU( )) iff

] ue ]llll a1l ( ( )
Rotations: ( ((T)( ) — (Vg O r)( Yoe SU( ) f c P,
vV C R (\7+ = ¢(v) vveV,yeP.

T Vi
)

Consequences:

e (Homogeneous) isotropic case: ;fAL(,,L,-) < par(Ag) =0 for o =L w
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Reduction on Quantum Level
L ]

Loop Quantum Cosmology
P = R3 x SU(2)

b isotropic (semi-)homogeneous | homogeneous isotropic
&y, | rotations translations euclidean group

= P), P. $-invariant

e Bijection n: A, — Hom(P,SU(2)) for a = 1.w
e Homg(P,SU(2)) := r(Ag) (G-inv. homomorphisms)
e Characterized by S[mple algebralc relations: ¢ € Ilnm(,(P SU( )) iff

" Euclidean: (7 +6(0)(7)) = asod(y)  V(7,0)€E,veP
Rotations: ( ((T)( )) = (g O rj;(*;.) Yoe SU( ) ~ € P,
vV C R (\7+ ) = () vveV,yeP.

Consequences:
@ (Homogeneous) isotropic case: ;fAL(,i;,-) < piaL(Ag) =

P | G = cuclidean group ‘ .| New elements e.g.:

linear [Hanhr = A = Ag (II)(A"‘ ) = €xp ( TFT[!(ﬁ))
O(v) = eif v not circular

embedded analytic | RURpon = Ag © Ag
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Reduction on Quantum Level
00

Conclusions

Conclusion

G-invariant P allows for symmetry reduction on quantum level:
@ Reduced space embedded in full theory since subset
o Det. by algebraic relations = a1 (Cj quan) = 0 for G =E. R (7 V)

7 2]
o ('({Il:|l||.|('c| S (’I'('(l_tlll:llll

o A, = Hnln(’P‘L,, SU(2)) — C~ <o

quant.red == Yrod,quant

Al = Hom(P), SU(2)) — C! el

quant,red red,quant

?forG=R.V
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On the Koslowski-Sahlmann representation of

LQG

Miguel Campiglia

Raman Rescarch Institute

Pirsa: 13070078 Page 36/87



(based on work in collaboration with M. Varadarajan)

e How to describe nomn-compact, ilﬁ\'lll])luli('él||'\' Hat

ccometries in LQGY

@ Not clear how to impose condition

1l

E* == E

in terms of spin networks
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(based on work in collaboration with M. Varadarajan)

e How to describe nomn-compact, ilﬁ\'lll])luli('él||'\' Hat

ceometries in LQG?

@ Not clear how to impose condition

11

E* == E

in terms of spin networks

o ldea: Use representation introduced by Koslowski and
Sahlmann (IKS)
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KS representation

[Koslowski (2007), Sahlmann (2010): Diffeo-covariant rep of
holonomy-flux algebra that supports smooth geometries:

e Hilbert space basis
|s, By = |s) @ |E)  with (s’. /'f".\'. L) = <.‘<l\.~<>f\‘!;,/._‘.

s = spin network: E® = su(2)-valued densitized vector field

o Action of holonomies. fluxes

hoylA] = Pels A | Fs lE] /,/wm.f‘/-:*i
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KS representation

Koslowski (2007), Sahlmann (2010): Diffeo-covariant rep of
holonomy-flux algebra that supports smooth geometries:

e Hilbert space basis
|s, By = |s) @ |E)  with (s’. /'f"s. L) = <.‘<l\.~<>f\‘!,‘~,/._‘.

s = spin network: EC = su(2)-valued densitized vector field

o Action of holonomies, fluxes and background exponentials

ol A] = Pl M| | FaglB] = [ ST E)| | 3pld] = o/ M

Varadarajan (2013)

hols, E)

—
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KS representation

[Koslowski (2007), Sahlmann (2010): Diffeo-covariant rep of
holonomy-flux algebra that supports smooth geometries:

e Hilbert space basis
|s, By = |s) @ |E£)  with (s’. /'f".\'. L) = <.‘\‘I‘."~‘>(\‘!,‘~;f._‘.

s = spin network: E = su(2)-valued densitized vector field

o Action of holonomies, fluxes and background exponentials

N~ [l] = P Jy A F' f“/-," / S, T ‘f /.I“’I jjl”"” o fy TR A,

Varadarajan (2013)

hol|s, E)

—
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Phases in gauge transformations

e Under gauge transformations ¢ € G. backeround
exponentials transform as:

g III')’:H',':; I l\l
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Example: U(1) gauge averaging in Abelian theory

Abelian U (1) theory:

o ["=densitized vector field.

g= (I."U[‘.r‘]- {((,’)|I,I> — I.I\: (), I |IZ|>

4 Y ¥ . H ‘e
@ U gcroup averaging:

n(EY) = > Ug)lE)

[g]€G/Sym gy
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Example: U(1) gauge averaging in Abelian theory

Abelian U (1) theory:

o ["=densitized vector field.

g= (I."U[‘.r']- {((,’)|I,I> — I.I\: (), I |l2|>

4 Ty ¥ . H ‘e
@ U gcroup averaging:

n(|1£)) = Z Ulg)|E)

[9]€G/Sym
o [f (‘),,[LW = (), Q/H.\'m“,» = |
o If 0, E"#0.  G/Symyp ~U(1)

e () lll-defined: Infinite sum of phases

e Dut s takes the form: g "

well (1)
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e In SU(2) theory: Group averaging sum potentially
il-defined if 3 ¢ such that

Ulg)|E) = ("'"[”'I"‘]Htw) # |E)
)

E*=X%% and g¢g= e
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e In SU(2) theory: Group averaging sum potentially
il-defined if 3 ¢ such that

(’(_r;)‘['f) = ("'"(-”'I"')\lﬁ + Uf)
i

£ = X% and ¢= "

a(e” X ) = — [\, 00, X"

Situation analogous to Abelian case:

DX#0 = Y u= (X 0)) =0

uel/(1)

All potentially ill-defined cases are taken care of and one
obtains a well-defined G group averaging map

We have also implemented G = Diff group averaging and included
spin networks. But due to time constraints I will now move on to

Part 11
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PART II

KS states |s. E) have two type of labels

Can there be a unified description of s and £ 7
Evidence (for the case of a Wilson loop) that at gauge
invariant level: “s = distributional £"

The following argument is in connection representation so

Bp[A] = (A|E)”
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Wilson loops and distributional E¢

o /(1) Abelian case: E(x):= [dt5*(t)o(x, (1))

= Bpld] = e B = (1A = (4]
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Wilson loops and distributional E*

o Idea: write W, [A] = Tr[h-[A]] as composition of N
holonomies and insert resolution of identity 1 = Is- 172) (1|

in coherent state bhasis:

W, = Trlhyyhoae -]

- / \-<””|h‘=“’l”'><“1|/'-,.t'_n)~-\”n>
J(S52)!
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Wilson loops and distributional £
o Idea: write W, [A] = Tr[h-[A]] as composition of N
holonomies and insert resolution of identity 1 = Is- n)(n|

in coherent state bhasis:

W, = Telhy o -]

- / \-<””|h‘=“’l”'><“1|/'-,.t'_n)~-\”n>
,(_t-,'.'):‘

e In the limit N — oo one obtains (Diakonov and Petrov 1989):

W, [A] = /’Du(f)w'[’lﬂﬁ(".I.,'l‘r.-\”l (%)
‘|)[HJ = area enclosed by n(t) € G2
.."‘[’:Hl(‘f'_l.‘r‘I'I'[A\HI — (,,«],\,“,” I|(".I.‘,'l"‘|-“’f”ﬂ )

@ (¢

@ (%) Represents an SU(2) gauge group averaging
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Summary/Outlook

o lmproved KS treatment

o Unnoticed subtlety in group averaging due to presence of
phases

o ldentified potentially *problematic’ configurations (those
admitting svimmetries with non-trivial phases)

o Well defined g x Diff eroup averaginge with the corrected
action (Here only discussed G group averaging of “pure

backerounds™ in Abelian case)

o lmportance of phases
e 'To recover correct answer in Abelian theory
o Relation with Wilson loop in non-Abelian theory

o In progress:
o Use KS to address asvmptotically flat spaces
(analogue problem in PF'T addressed by Sengupta)
o Characterization of KS quantum configuration space A
o Gange invariant spin networks from gauge averaging of

distributional backerounds
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Summary /Outlook

e lmproved KS treatment

o Unnoticed subtlety in group averaging due to presence of
phases

o Identified potentially *problematic™ confiegurations (those
admitting svimmetries with non-trivial phases)

o Well defined g x Diff eroup averaginge with the correctod
action (Here only discussed G group averaging of “pure

backerounds™ in Abelian case)

o lmportance of phases
e 'To recover correct answer in Abelian theory
o Relation with Wilson loop in non-Abelian theory

o In progress:
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(analogue problem in PF'T addressed by Sengupta)
o Characterization of KS quantum configuration space A
o Gange invariant spin networks from gauge averaging of
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Outline

Motivation and Introduction

Connection Dynamics of Scalar-Tensor Theories
Loop Quantum Scalar-Tensor Theories of Gravity
Loop Quantum Brans-Dicke Cosmology

Summary and Outlook

Yongge Ma (BNU) Loop Quantum STG and Cosmology 25.07.2013
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Motivation and Introduction

Success of LQG and Its Scope

« |t is remarkable that, as a non-renormalizable theory, GR can be
non-perturbatively quantized by the loop quantization procedure,
What is the applicable scope of loop quantum gravity?

o LQG can be extended to f(R) theories of gravity [Zhang, YM, 2011].
o LQG is applicable to GR in arbitrary dimensions [Bodendorfer,
Thiemann, Thurn, 2011].

Yongge Ma (BNU) Loop Quantum STG and Cosmology 25.07.2013 3/21
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Motivation and Introduction

Success of LQG and Its Scope

« |t is remarkable that, as a non-renormalizable theory, GR can be
non-perturbatively quantized by the loop quantization procedure.
What is the applicable scope of loop quantum gravity?

o LQG can be extended to f(R) theories of gravity [Zhang, YM, 2011].
o LQG is applicable to GR in arbitrary dimensions [Bodendorfer,
Thiemann, Thurn, 2011].

To explain the accelerated expansion of the universe, as well as dark
matter, from fundamental physics is now a great challenge.

A large variety of models of f(R) modified gravity have been
proposed to account for the dark energy and the dark matter
problems. [Sotiriou and Faraoni 2010]

Yongge Ma (BNU) Loop Quantum STG and Cosmology 25.07.2013 3 /21
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Motivation and Introduction

Gravity as Geometry

e f(R) modified gravity is also implied by some other approaches to
quantum gravity [e.g. Asymptotically safe gravity: talk by Saueressig].

e |f some modified gravity theory becomes fundamental rather than GR,
one has to consider its quantization as well.

Yongge Ma (BNU) Loop Quantum STG and Cosmology 25.07.2013 4 /21
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Motivation and Introduction

Gravity as Geometry

f(R) modified gravity is also implied by some other approaches to
quantum gravity [e.g. Asymptotically safe gravity: talk by Saueressig].
If some modified gravity theory becomes fundamental rather than GR,
one has to consider its quantization as well.

Besides GR, scalar-tensor theories belong to metric theories of gravity.
For metric theories, gravity is still geometry with diffeomorphism
invariance as in GR.

The differences between them are just reflected in dynamical
equations and additional variables.

Hence, a background-independent and non-perturbative quantization
for metric theories of gravity is preferable.

Since scalar-tensor theories (STT) include f(R) theories as special
case and have received increased attention due to motivations coming
form cosmology and astrophysics, we will take them as examples to
carry out the extension of LQG to metric theories.
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Connection Dynamics of Scalar-Tensor Theories

Action Principle of STT

e [he most general action of STT reads

b}

Sle.o] = [ d'xv=alyor - “ D0 —) )

where we set 871G = 1, R denotes the scalar curvature of spacetime
metric g,,,,, the coupling parameter w(¢) and potential {(») can be
arbitrary functions of scalar field ¢.
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Connection Dynamics of Scalar-Tensor Theories

First-order Action for STT

e A first-order action for STT, which is equivalent to action (1) but can

lead to a Hamiltonian connection formalism, reads [Zhou, Guo, Han,
YM, 2013]

0e; ejQ - 2@;8};..&, O + e} eJ] ). (e, 'J(_)Cm)

e
2

+20)(5,0)5% — 2V(0) + efeb 1+, “)d4 (2)

where e = der( Y is the determinant of the right-handed cotetrad e/,
Q.M = r)[ ,wi] + W{K ,]KJ is the curvature of the SL(2.C) spin

connection ub . * denotes the Hodge dual of a differential form, and ~
is an arbltrary real number.
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Connection Dynamics of Scalar-Tensor Theories

First-order Action for STT

e A first-order action for STT, which is equivalent to action (1) but can

lead to a Hamiltonian connection formalism, reads [Zhou, Guo, Han,
YM, 2013]

2 bA 2 b=1J5 a b3 -1 5
5 pefehQ M — 2efebo 0o + e}'ej].«)‘.;(e,’)e”()cr;)

—i—w("") (('_)H('J)f_)‘?() —_ 2\/((.')) + ej’e_’j} *QJ!)U) d*x. (2)

[

where e = det(e!) is the determinant of the right-handed cotetrad e/,

Q.M = r'_)[‘,;‘{f]' + L{fl‘bm" is the curvature of the SL(2.C) spin
connection ';';’;J' * denotes the Hodge dual of a differential form, and ~

is an arbitrary real number.

Another first-order action was proposed by [Cianfrani, Montani,
2009], which can give the Hamiltonian connection formalism of STT
in Einstein frame.
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Connection Dynamics of Scalar-Tensor Theories

Connection Dynamics of STT

e The detailed Hamiltonian analysis of action (2) leads to the
connection dynamics of STT in two sectors marked respectively by
w(0) # —2 and w(o) = —3, coinciding with the results of canonical
transformation from geometrical dynamics [Zhang, YM, 2011].

e The basic conjugate pairs consist of a SU(2) connection A’ and the
densitized triad Ej“, together with the scalar ¢ and its momentum 7.
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Connection Dynamics of Scalar-Tensor Theories

Connection Dynamics of STT

e The detailed Hamiltonian analysis of action (2) leads to the
connection dynamics of STT in two sectors marked respectively by
w(p) # —3 and w(o®) = —32, coinciding with the results of canonical
transformation from geometrical dynamics [Zhang, YM, 2011].

e The basic conjugate pairs consist of a SU(2) connection A’ and the
densitized triad Ej“, together with the scalar ©» and its momentum 7.
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Loop Quantum Scalar-Tensor Theories

Polymer-like Representation

@ The quantum kinematics of LQG can be straightforwardly extended
to STT.

e For the geometry sector, we have the unique diffeomorphism and
internal gauge invariant representation for the quantum
holonomy-flux algebra [LOST 2005] .

@ [here is also a unique diffeomorphism invariant measure d;: on the

space U of polymer scalar fields [Ashtekar, Lewandowski, Sahlmann,
2002; Kaminski, Lewandowski, Bobienski, 2006].
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Loop Quantum Scalar-Tensor Theories

Quantum Dynamics

@ In the sector of w(¢) = —3/2, we promote the conformal constraint

S(A) as a well-defined operator by acting on a given basis vector
Tu.X € (Hl\'in as

; MY e ¢ .
S(\) - Tux = ( Z —7 !h)[HE(l). Vol = 3" A)A()E(x)) - Tax.

XEX

%
Ve V(f: (
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Loop Quantum Scalar-Tensor Theories

Quantum Dynamics

@ In the sector of w(¢) = —3/2, we promote the conformal constraint
S(A) as a well-defined operator by acting on a given basis vector
Tu.X € rHlx'in as

S0 Tux = (Y -

%4
V€ \/(u ‘.7 (

)

. %)~ 3 AW3030) - T

XEX

By the regularization techniques developed for the Hamiltonian
constraint operators of LQG [Thiemann, 1996], Polymer scalar field
[Han, YM, 2006] and loop quantum f(R) gravity [Zhang, YM, 2011],
the Hamiltonian constraints in both sectors can be quantized as
operators acting on cylindrical functions in Hj, in state-dependent
ways.
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Loop Quantum Scalar-Tensor Theories

Quantum Dynamics

@ In the sector of w(¢) = —3/2, we promote the conformal constraint
S(A) as a well-defined operator by acting on a given basis vector
Tu.X S (Hl\'in as

500 Tux = (Y 3

%
Ve V(f: 73 (

)

). %)~ 3 AW030) - T

XEX

By the regularization techniques developed for the Hamiltonian
constraint operators of LQG [Thiemann, 1996], Polymer scalar field
[Han, YM, 2006] and loop quantum f(R) gravity [Zhang, YM, 2011],
the Hamiltonian constraints in both sectors can be quantized as
operators acting on cylindrical functions in H;, in state-dependent
ways.
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Loop Quantum Brans-Dicke Cosmology

Symmetric Reduction

e Example: Spatially flat FRW universe

@ [he connections and the density weighted triads is reduced to
[Ashtekar BOJowald Lewandowski, 2003]

Al —e v 13 W' and E*'_p\/O \/"q e?
@ In the cosmological model of scalar-tensor theory, the fundamental
Poisson brackets are given by:

(¢, p} =~/3, {o. 7} =1
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Loop Quantum Brans-Dicke Cosmology

Symmetric Reduction

e Example: Spatially flat FRW universe

@ [he connections and the density weighted triads is reduced to
[Ashtekar BOJowald Lewandowski, 2003]

Al — v A O‘ade*'_pVo \/"qe
@ In the cosmological model of scalar-tensor theory, the fundamental
Poisson brackets are given by:

(¢, p} =~/3, {o. 7} =1
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Loop Quantum Brans-Dicke Cosmology

Symmetric Reduction

o Example: Spatially flat FRW universe

@ [he connections and the density weighted triads is reduced to
[Ashtekar BOJowald Lewandowski, 2003]

Al —ev; 13 w! and 1:_*'_;7\/O \/"q e?
@ In the cosmological model of scalar-tensor theory, the fundamental
Poisson brackets are given by:

{¢. p} =~/3. {o. 7} =1
@ For w # —3/2 sector of Brans-Dicke theory, the gravitational
Hamiltonian reads

3c \/p 1 3cp
2 5 (
@ (3 + 2w)o|p|2

2

H = -+ T‘Tr'))".
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Loop Quantum Brans-Dicke Cosmology

Symmetric Reduction

Example: Spatially flat FRW universe

The connections and the density weighted triads is reduced to
[Ashtekar BOJowald Lewandowski, 2003]

Al =¢ e v 1/3) o !and E7 = p v \/"q e?
In the cosmolog|ca| model of scalar-tensor theory, the fundamental
Poisson brackets are given by:

{¢. p} =~/3. {o. 7} =1
For w # —3/2 sector of Brans-Dicke theory, the gravitational
Hamiltonian reads

32 1 3¢
VP (3¢P

H=— wy 3 -
/<O (3 + 2@);,3|p > )

+ ﬂ'f'ﬁ)z. (3)

By employing (3) one can show that ¢ is monotonous wrt the cosmic
time and hence can be viewed as an internal time.
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Loop Quantum Brans-Dicke Cosmology

Quantization Scheme

@ To quantize the model, in the geometrical sector, we employ the
polymer-like representation of connection ¢ in
- f A
Hh' e L_(Rl’mhr- (lffl’;uhr)-

kin
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Loop Quantum Brans-Dicke Cosmology

Quantization Scheme

@ To quantize the model, in the geometrical sector, we employ the

polymer-like representation of connection ¢ in

Ht:::\ - LE(R““],,-.(l[!p,“h]-).

For a neat formulation of quantum dynamics, it is convenient to
introduce new conjugate variables in the geometrical sector by a

canonical transformation:

b:= VA ¢ Vo 4 ’

3
- = sgn(p)lpl2.
2 VIl 3v/A

where A (~ 4v/37 I!;)) is the smallest non-zero eigenvalue of area
operator in full LQG.

In the kinematical Hilbert space H; ", eigenstates of 7, which are
labeled by real numbers v, constitute an orthonormal basis as:
<V1|V2> = d\ﬂ.\/j'
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Loop Quantum Brans-Dicke Cosmology

Polymer-like representations

For the quantization of the scalar field, we have two schemes:
(i) Polymer-like representation; (ii) Schrodinger representation.

Polymer-like representation:

For the convenience of constructing a Hamiltonian constraint
operator, we employ the polymer-like representation of the
momentum 7 of o,

One parameter ambiguity: Some small number Ay has to be

introduced in order to define the operator 7 = E"”(,\’\OOH}.

In the kinematical Hilbert space 'HE‘{;:]‘”', eigenstates of o, which are

labeled by real numbers A, constitute an orthonormal basis.

1

The operator corresponding to ¢~ * can be defined as

4spn (o)

(/\0)2/).
D(\) |\).

) - |2
A+ X2 =AM N
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Loop Quantum Brans-Dicke Cosmology

The Dynamical Setting

@ [he Hamiltonian constraint for the w # —3/2 sector in the full theory
of Brans-Dicke gravity reduces to 5 terms H = Zf’ , H; for the
spatially flat cosmology.

They all can be quantized as following well-defined operators.
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Loop Quantum Brans-Dicke Cosmology

The Dynamical Setting

@ [he Hamiltonian constraint for the w # —3/2 sector in the full theory
of Brans-Dicke gravity reduces to 5 terms H = Zf’ , Hi for the
spatially flat cosmology.

They all can be quantized as following well-defined operators.

@ [he actions of the corresponding terms of the Hamiltonian operator
on a basis vector |\, v) = |\) @ |v) read respectively as

(Fy + A\ v)
D(\)

(Ffo(V)A v+ 4) + fo(v) A v) + f-(v)|A. v —4)).

H}; A, V>

_$”9“)Umwuy+@»—%ww\w+?(WM”—8U'

h?
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Loop Quantum Brans-Dicke Cosmology

Quantum Dynamics

/:/4|,\. V>
LB+ 4) + B(v)) x

(£ (V)X = Do, v+ 4) + £ (VA + Do, v + 4))

— (B(v) + B(v — ) (£ (V)IA — Ao.v — 4) — £ (V)]A + Ao.v — ).

Hs|\. v)

31
- ;Eigv) ((A = A0)|A =20, v) = 2A[A, V) + (A + Ao)[A + 2X0. V) .
0

where 3 = 3 + 2w.
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Loop Quantum Brans-Dicke Cosmology

Polymer-like plus Schrodinger representations

o If we employ the Schrodinger representation of the scalar field, the
Hamiltonian operator for Brans-Dicke cosmology can also be well
defined on the coupled Hilbert space.

In this scheme, we can obtain the effective Hamiltonian constraint as

\/3A 2\/3“ 3/?
272K 0 3032)v|o \ 4

where p is the energy density of minimally coupled matter field.

This effective Hamiltonian constraint of loop quantum Brans-Dicke
cosmology gives the modified evolution equation:

-

A2y
sin(b)v+ma> —~ v

Hr = ),

v|sin® b +

2V/3 /

LN 2 : 2
@) 1 K Pe @ Pe
2”) ( Jorea =2+ 2 1L )) (@

13ch? '
where Pe = an + Op and Pe = _‘32,,.
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Loop Quantum Brans-Dicke Cosmology

Quantum Bounce of Loop Quantum Brans-Dicke
Cosmology

[Zhang, Artymowski, YM, 2013|
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Loop Quantum Brans-Dicke Cosmology

Quantum Bounce of Loop Quantum Brans-Dicke
Cosmology

[Zhang, Artymowski, YM, 2013]
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FI1G, 1. Left and rght panels present the evolution of the Hubble parameter in the Planck units as a function of the Brans-[hcke
field (left panel, vacuum solution) or the massless scalar field (right panel, massless scalar field domanation) for realistic values
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Summary and Outlook

Conclusions

@ [he Hamiltonian connection formulation of STT of gravity has been
derived from their Lagrangian formulation.
Two sectors of STT are marked off by the coupling parameter w(o).

@ In the sector of w(¢) = —3/2, the feasible theories are restricted and
a new primary constraint generating conformal transformations of
spacetime is obtained.

Yongge Ma (BNU) Loop Quantum STG and Cosmology 25.07.2013 17 / 21

Page 82/87



Pirsa: 13070078

Summary and Outlook

Conclusions

@ Scheme (i): polymer-like representations

o [he polymer representation of the momentum 7 of the scalar field is
more convenient for the purpose of constructing manageable
Hamiltonian constraint operator.

o An one-parameter ambiguity appears in this construction for the scalar
sector, which is also the feature of the full theory.

o The Hamiltonian constraint operator gives rise to a difference equation
representing a discrete evolution of the universe.

e In contrast to the old treatment of LQC, both space and (internal)
time are "discrete” in this treatment of loop quantum BD cosmology.
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Summary and Outlook

Qutlook

@ The method proposed by [Bodendorfer, Thiemann, Thurn, 2011] for
the loop quantization of higher dimensional GR can also be extended

to higher(> 4) dimensional scalar-tensor theories.
[Han, YM, Zhang, 2013|

Yongge Ma (BNU) Loop Quantum STG and Cosmology 25.07.2013 19 / 21

Pirsa: 13070078 Page 84/87



Pirsa: 13070078

Summary and Outlook

Qutlook

@ The method proposed by [Bodendorfer, Thiemann, Thurn, 2011] for
the loop quantization of higher dimensional GR can also be extended

to higher(> 4) dimensional scalar-tensor theories.
[Han, YM, Zhang, 2013]

@ Applications to black holes are desirable
[Guo, Zhang, YM...; related work see e.g. talk by Bodendorfer].

@ Inflation of loop quantum Brans-Dicke cosmology:
[Zhang, Artymowski, YM.. ]

@ It is also desirable to quantize metric theories of gravity by the
covariant spin foam approach [Zhou, Zhang, YM...].
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Summary and Outlook
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