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Abelian TGFT with gauge invariance: Work with Fabien Vignes- Tourneret [ar

| Abelian TGFT with gauge invariance

This part addresses a summary of the results obtained in ours previous work
[arXiv:1211.2618 ]. We mainly present the model and its renormalization. |

TGFTs over a group G are defined by a complex field ¢ over d copies of group |

G, i.e.
G4 — C

(81, ,8) — (&1, ,84).

The gauge invariance condition is achieved by imposing that the fields obey the |

relation

For Abelian TGFTs, one fixes the group G = U(1). In the momentum
representation, the field writes

o(gr, - ,&4) = o eP101e20%2 ... g% g [0, 27),
8 8 [P]

p

where we denote ¢, = ¢12...d 1= @(p1, P2, -+ , pd), With px € Z and
gk = &'k € U(1).
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Abelian TGFT with gauge invariance: Work with Fabien Vignes- Tourneret [ar

Locality principle: Interactions

The generalized locality principle of the TGFTs requires to define the
interactions as the sum of tensor invariants. From now, we will focus on
d = 6,5, and define two models described by

6
Salp, ¥l Z 654321 f‘(z P.‘)(Pz + -'7?2) 123456 + %,\f:i Vi, (4)

P1:"*" +P6 i
>

Se[7. #] Y Fsad()_p)(p° + m’) prams

Pl: " +PS i

6
A Ver + 3 02Va2 + 361 Vo1 + D62 Vo2,

whnere o) . i) snouia be understood as a ronecker symbno ) d anc
here 5(3¢ hould | Jerstood K k bol d5~4 ,, o and
e | (R

pt=59p? d=6,5.

|
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Abelian TGFT with gauge invariance: Work with Fabien Vignes- Tourneret [ar

Figure:
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Abelian TGFT with gauge invariance: Work with Fabien Vignes- Tourneret [ar

| Multiscale analysis

Let £ and F be the sets of internal lines and faces of the graph G. The
divergence degree of the amplitude of a graph associated with both models can
be written

wd(G)=2L—-F + R (11)

where L = |L|, F = | F| and R is the rank of matrix (¢y, | € L, f € F),
defined by

1 if | € f and their orientation match,
ef(G) = —1 if | € f and their orientation do not match, (12)
0 otherwise.

Let p(G) be defined as p(G) = F(G) — R(G) — (d — 2)(L(G) — V(G) + 1).

2 o R d—3
a7y (@(9) —w(9G)) — (Cog —1) = ——N +(d - 1)

—n-V—(d-1)V-R (13)

—(d =N +(d—8n-V —2(d —2)V +2(d — 2) + p(G)
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Abelian TGFT with gauge invariance: Work with Fabien Vignes- Tourneret [ar

| Renormalization: Divergent graphs

Theorem: Vignes-Tourneret and Samary

The models ¢¢ defined by G4 and 2 defined by Se are perturbatively
renormalizable at all orders.

The proof of this statement rests on a power counting theorem which can be
summarized by the following table giving the list of primitively divergent graphs

=
ih
Q

Cog —1 || wd

L
e
p—

NN RO A&
OO OO0 O
=N O = O Ol—

o

Table: Divergent graphs of both models
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Beta function of wg-tm model
Beta functions of the models: [arXiv: 1303.7256) Beta functions of ¢ tensor model

Beta functions of y¢-model

The wave function renormalization is
2 )

12x°
5v/5

The sum of all amputated 1Pl four-point functions computated at one-loop
and at low external momenta is

Z=1 Xe 4 GX5) (15)

2

—_——
in

rs(0) = -M-V@Aiz+cxxﬂ. (16)

At one-loop, the renormalized coupling constant associated with \4 is given by

1972
5v/5

such that the 3-function of the model with single wave-function

/\26‘11 = /\4 T

M+ 0(N\), with I:/ o
Jo Ch

renormalization and single coupling constant is given by
model is then assymptotically free.
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Beta function of q-tensor model
Beta functions of the models: [arXiv: 1303.7256) Beta functions of ¢ tensor model

Beta functions of ¢¢-model

The wave function renormalization is
o |

12x€
5v/5

The sum of all amputated 1Pl four-point functions computated at one-loop
and at low external momenta is

Z=1 X Z4 QUG) (15)

=D
rs(0) = -M-;@Aiz+cxxb. (16)

At one-loop, the renormalized coupling constant associated with \4 is given by

1972 e~

5v/5

such that the 3-function of the model with single wave-function

/\2(‘11 = /\4 T

2
am”
k

NI+ 0(03), with I=/
JO

(¢

renormalization and single coupling constant is given by
model is then assymptotically free.
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Beta function of cpa-tm model
Beta functions of the models: [arXiv: 1303.7256) Beta functions of ¢ ,'; tensor model

| Beta functions of ¢¢-model

The wave function renormalization is
|

125
5v/5

The sum of all amputated 1Pl four-point functions computated at one-loop
and at low external momenta is

Z=1 XeZ -+ G0G) (15)

2

_—
n

rs(0) = -ﬁuﬁ-vgxiz+<xxﬂ. (16)

At one-loop, the renormalized coupling constant associated with \s is given by

1972 e~

5v/5

such that the 3-function of the model with single wave-function

/\2*‘11 = /\4 T

(

da (17)
A

NI+ 0(03), with I=/
JO

renormalization and single coupling constant is given by
model is then assymptotically free.
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A possible derivation of EFT for Cosmology

Dynamics:
Field equations
(encode the sum over
triangulations)

GFT:
MICroscopic
theory for spacetime

Effective (quantum?)

cosmology/
Friedmann equation

Identify special
class of states
(LQG data)

Y

Esta
corres
with mini
sector (F
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GFT in 2nd quantization

SU(2),SL2,C),S0(4),...

gi = (9G.1)y-- - 9(i1))

[;(_fﬂ----fll)-rj(/'l-'”/’l)] — 11

1=1

—-—
— .

(h) + V(3. 92-93. 91. 95 ) £(92) £ (G3)

UG, G2. 3. G1.G5)9 "' (G2)2" (G3)

Perturbative expansion of the partition function

1

Perturbative expansion of the state (Wick theorem applied to ladder operators)
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Geometric content/ll

S
.(/”,’ _ -(/",J'{N(h

Metric tensor: need the triad

Embedding procedure: take the tetrahedron, embed it
into a 3D group manifold (that will be determined by
selfconsistency) such that the edges are aligned with a
set of left invariant vector fields.

e(Obtain a state associated
Continuum limit ~ take a lot of them

| to homogeneous

Furthermore, take them in such a way (anisotropic) cosmologies!
that the metric (in the left inv. frame)

) e|t has a hydrodynamic
Is constant.

interpretation
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Geometric content/ll

SR
.(/”h _ -(/",J'{N(h

Metric tensor: need the triad

Embedding procedure: take the tetrahedron, embed it
into a 3D group manifold (that will be determined by
selfconsistency) such that the edges are aligned with a
set of left invariant vector fields.

e(Obtain a state associated
Continuum limit ~ take a lot of them

| to homogeneous

Furthermore, take them in such a way (anisotropic) cosmologies!
that the metric (in the left inv. frame)

, e|t has a hydrodynamic
Is constant.

interpretation

Pirsa: 13070076 Page 17/67



Pirsa: 13070076

Towards EFT

® |Impose the EOM of GFT: ask that the state are physical

® The equations for the mean field: Wheeler-deWitt equation?

among ot ln:l‘ things

(0|O[p.P|Clo) =0 ——

/

Depends on the GFT model Nonlinear!!

® To get an effective cosmological dynamics, we need to translate the
equations for the mean field into equations relating these expectation
values (~ Ehrenfest theorem)

N\~ k
0= Fl <(I>,_.. (H), cee ) A = + corrections

(=
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Towards EFT

® |Impose the EOM of GFT: ask that the state are physical

® The equations for the mean field: Wheeler-deWitt equation?

Al . —1/4 . .‘nnnngnlln:l‘ things ) B
<(T (*)‘r'r_(‘ r‘T>_(] — H'L‘)Dn’—“

/ T

Depends on the GFT model Nonlinear!!

® To get an effective cosmological dynamics, we need to translate the
equations for the mean field into equations relating these expectation
values (~ Ehrenfest theorem)

AN
0= Fl <H>,_.. (H), cee ) A = + corrections

(=
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A special case

/((//I) ll\t(_q,r./;,; )L(/f_;/.';l ) = ()

Consider a Riemannian model: SO(4) gets reduced to SU(2) once the
simplicity constraints have been imposed.

¢:SU(2) x SU(2) x SU(2) x SU(2) =» C

|
K(gr,hr) = 0(grhy") (Asu(zys +n) = 6(grh7 ") (Z Asu(2) +if)

I=1

WKB-like approximation:

]
§(91.92.93,94) = A(91.92. 93, 94) eXp (f-‘*(_ffl-ffz-_r::<-ff| })

h

Restrict to the leading order in the WKB expansion
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A special case

/((//I) 1/\‘.(_(11./1,; )L(/f_//.';l ) = ()

Consider a Riemannian model: SO(4) gets reduced to SU(2) once the
simplicity constraints have been imposed.

¢:SU(2) x SU(2) x SU(2) x SU(2) =» C

i
K(gr hr) = 6(grhi") (Dsuys + 1) = 8(grhs ) (Z Asy(2) +/f)

I=1

WKB-like approximation:

h

;
§(91.92.93.94) = A(91.92.93. 94) eXp (f-"(_ffl-ffz-_f::a-ffn })

Restrict to the leading order in the WKB expansion
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A special case/2

—

e Parametrization for SU(2) g=V1-72ls —ir'o;,

| <1

i

)

)

At Jdml

Asy(z) = (07 —7'7?)

Remember the geometrical content of the model

a8 , : 2 :
5T = Bj ~ a* Br = aiTy, 71 = piVi
( rl!
¢ Final equation: 4
¢ K—U
Z (B; - By — (71 - Br)?) "=° 0

=1

® Reduce to the isotropic sector: ajp = vya. pr = 5brp
[ at(p? — 2) "=2° (J] . Corresponds to k=1
FRW, G=SU(2)

2=0 i spurious (Selfconsistency)

(add matter) ?
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A special case/2

Remember the geometrical content of the model

) y 9 ,
i = B} ~ 1~ Br = ri'jT;. Ty = p;'t;
( fl!
¢ Final equation: 4
‘ K—U
Z ([),[ . [)’; — (.-.; . [J’I)-}) = {

=1

¢ Reduce to the isotropic sector: ajp = va. Pr = 2ip
s a 1(;;2 — %) %30 [)] _ Corresponds to k=1
FRW, G=SU(2)

2=0 i spurious (Selfconsistency)

(add matter) ?
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A possible derivation of EFT for Cosmology

Dynamics:
Field equations
(encode the sum over
triangulations)

GFT:
MICroscopic
theory for spacetime

Identify special
class of states
(LQG data)

Y
Establish a
Effective (quantum?) correspondence
cosmology/ with minisuperspace
Friedmann equation sector (FRW, Bianchi)
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GFT & correlation functions

First: we need for consistency of the interpretation “small tetrahedra™:
the local curvature radius is much larger than the size of the tetrahedron

How physical are the states? Check for all the equations for the
correlation functions.

<G|O{;_ :}C’n‘) — () Physical states

Approximate states

(0]0]. 7IClo) # 0 :

estimate of the theoretical error
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GFT & correlation functions

First: we need for consistency of the interpretation “small tetrahedra”:
the local curvature radius is much larger than the size of the tetrahedron

How physical are the states? Check for all the equations for the
correlation functions.

<G|O{~r‘- f}C|n‘) — () Physical states

Approximate states

(0]0]. 7Clo) # 0 :

estimate of the theoretical error
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Comments

General procedure: design your spinfoam/GFT model and apply the
routine

Shows that we might need LQG data in GFT to give physical meaning
Allows comparison with other approaches (LQC, spinfoams, WDW)
Keeps alive part of the sum over geometries (bulk and boundary)

No background lattice (only the embedding procedure)

Cosmology as a simple form of GFT hydrodynamics (see
geometrogenesis/emergent gravity)

Can keep under control approximations and decide how good/bad is

our result.
Gielen, Oriti, LS 1308.----
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A double scaling limit for
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Introduction

Tensor models and tensor invariants.
T4 model.

Loop Vertex Expansion graphs.
What is double scaling limit 7

Pruning, Reduction.

Leading graphs of this scaling.

Resumming cherry trees.

Conclusion.
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Introduction.

Recall known results

Large N limit of matrix model, also called here single scaling:

_ =1-36A+(1+24))3/2
¢ G2.planar('\) = 216)\2

All spheres but only spheres survive this limit.
For string theory one looks at double scaling limit i.e. N — oo and
/\ — /\C' H_l — N54(/\ = ’\C)'
G , _ .2h
@ G2 double scaling = Zh aph™ .
Unfortunately not (Borel) summable !

For colored tensor models there also exists a single scaling:

® G2 melons(A) = \QT
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Introduction.

Recall known results

Large N limit of matrix model, also called here single scaling:

_ =1-36A+(1+24X)3/2
¢ G2.p|amar('\) — 216 )\2

All spheres but only spheres survive this limit.
For string theory one looks at double scaling limit i.e. N — oo and
/\ — /\C' H_l — N54(/\ o ’\(‘)'
G , _ 2h
@ G2 double scaling = Zh aph™ .
Unfortunately not (Borel) summable !

For colored tensor models there also exists a single scaling:

® G2 melons(A) = VL;T
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Introducing the model.

Tensor models and tensor invariant.

Actions of tensor models are polynomial of tensor U(N) invariants.

e Matrix: one invariant: trace operator. Action = trace of

polynomials of the matrix. Invariants are represented by cycles.

@ Tensor: plenty of invariants < plenty of different contraction
patterns. Invariants represented as colored graphs.
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Introducing the model.

T# tensor model.

The double scaling is studied for a melonic TT T T interaction, i.e.

this tensor invariant :

Figure . The interaction term and its intermediate field representation.

One writes the interaction term as:
f\ o —
exp(_z Z ---kj---k,, Trnl---kj“-m,, Tml---n'.lj---n'.l,, Tkl---.'nj---k,,)
js{ko}{mq)

) / d,;(ﬁ)e_%: Tr((eW))? )= /A 2:‘{@}‘{,,,]} Tiy ..k

Integrating out the T, T fields leads to intermediate field theory.
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Introducing the model.

The Loop Vertex Expansion for tensor models.

The model can be constructed by looking at intermediate field

representation and corresponding Feynman graphs.
Graphs of LVE:

@ edges are made of sigma field.
@ vertices are made of propagator of the original theory. Can be
of any degree.
Constructive because this is the Borel sum of the pertubation series
for any observable O:

0= Z Z w(G.T)A(G).
T GIGDOT
Convergent ! Very convenient: melons become trees in

intermediate field representation. Can track 1/N factors by
tracking the number of loops in the LVE graphs
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Double scaling limit.

What is double scaling 7

@ A scaling selecting graphs with optimal combinatorial ratio
between powers of 1/N and powers of \.

Looking at the 2-point function:

1 1
GQ = GQ_melon T Z Nh((;) (/\ . \C)e(é)

= G+ 2 S ()

e- lGe
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Double scaling limit.

Pruning, Reduction : Computing LVE graphs.

To understand the new graphs, we introduce two procedures:

@ Pruning:

L1
'
-
\ "
y &
-

A%

.-.,
.
ves

o

@ Reduction:
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Double scaling limit.

Pruning, Reduction : Computing LVE graphs.

To understand the new graphs, we introduce two procedures:

@ Pruning:

L1
'
.

*

.-.,
.
ces

oS

@ Reduction:

— Reduced graphs amplitude are the sum of the amplitudes of all
the LVE graphs reducing to it.
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ldentifying leading graphs.

Using reduced graphs we can identify the family of graphs having

the minimal h(G)/e(G) ratio:

(h(G)/e(G))min = 1.
Set x = 2N(A — A¢) finite, N — oo enhances the contribution of
the identified family. In dimension D<6 this family maximizes, at
fixed number of loops in the reduced graph, the number of 1 PR
bars with monocolored loops. We call them cherry trees.

Moreover: We can bound the contribution of the amplitude of the
non-cherry graphs:

- f_ »""_ — ,":_ —
Gy (N)| < NY2=P2K x

A priori, non trivial statement, in fact reduced graph amplitudes are
sum of amplitudes of a whole family of tensor graphs.
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|dentifying leading graphs.

Using reduced graphs we can identify the family of graphs having
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-1, /2—D/2 -
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Double scaling limit.

A graphical example of a cherry tree:

We can resum graphs of this form and obtain for the 2-point
function:

ﬂ.’?.cherr‘v(N) =2 — 4N~/ \/D(X — Xc).

With a critical point at x. = 4(01_1) Melonic critical point:

— 1
1\(‘ — 8—
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Conclusion.

Conclusion & Outlook.

Double scaling limit allows to compute sum over more
triangulations. Sum still runs over spheres.

As already noticed by Gurau in the analysis of toy model for
tensor double scaling, the physical interpretation of the new
scaling variable is not clear with respect to GR.

Critical exponent of G cherry is still v = 1/2 of branched
polymer. Investigate the Hausdorff and spectral dimensions of
these Cherry trees to confirm (7) they are branched polymer.

Multiple scaling limit 7 A way to sum over more and more
graphs (topology 7).

Details in arXiv:1307.5281. One could also be interested in
arXiv:1307.5279 by Razvan Gurau and Gilles Schaeffer.
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Introduction: Renormalizability in Tensorial Group Field Theory

| Tensorial Group Field Theories

Matrix Models 80's [Rev. Di Francesco, 9506153]

e Matrix models : a statistical description for gravity in 2D realized using
random triangulations of a manifold;

M,.
= 4\~
: \/ BT ) o
1. 2 L . Z = &
— QG T
Zmarrf\ = / e e N .

(1)

Important tool: 1/N expansion ['t Hooft, Nucl. Phys. B. 72 (74)] ~» Selection
of genus = 0 sector (planar graphs) of the model.

Tensor models generalizes matrix models ~ randomizing triangulation in
dimension higher than 2.

Figure: 3D simplex: A triangle ~a field; the interaction ~ tetra
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Introduction: Renormalizability in Tensorial Group Field Theory

Tensorial Group Field Theories

Matrix Models 80's [Rev. Di Francesco, 9506153]

e Matrix models : a statistical description for gravity in 2D realized using
random triangulations of a manifold;

M

".'"" 1- 44
et ¥ (
< / 4 Il (M~ 3)
1 . 2 g 3 o~ =~
—=zTrM*+SE=TrM _ Zoc \ T
- v S e - \\

- / dM e (1)

Important tool: 1/N expansion ['t Hooft, Nucl. Phys. B. 72 (74)] ~» Selection
of genus = 0 sector (planar graphs) of the model.
Tensor Models [Ambjorn, Gross, Boulatov, 90’s]

Tensor models generalizes matrix models ~ randomizing triangulation in
dimension higher than 2.

I

Figure: 3D simplex: A triangle ~a field; the interaction ~ tetrahedron.
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Introduction: Renormalizability in Tensorial Group Field Theory
Renormalizability of Tensor Model

Gurau's 1/N limit and the > — & 14> world

e Colored tensor models improves a lot the topology associated with simplicial
complexes: T,',llm,,d (© Comment by J.Gaumis (Pl) “AhAh!? You don’t have enough indices?")
e Allows to understand a 1/N limit: Most dominant amplitudes (called Melons)
are associated with the sphere topology (Vd).

e Trace invariants of the melonic kind and Trace invariants in matrix theory
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Inveduction: Renotmallzability in Temorlal Group Field Theory
[ bty of T ¢ Mo

Gurau's 1/N limit and the 1 1 world

» Colored tensor modlels improves a lot the topology associated with simplicial
complexes: T; . (o Comment by J.Gaumis (PI) "AhAI? You don't have enough indices7")

® Allows to understand a 1/N limit: Most dominant amplitudes (called Melons)
are associated with the sphere topology (¥d).

e Trace invariants of the melonic kind and Trace invariants in matrix theory
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Renormalizability of Tensor Models

| Space of models

3 initial constraints

(i) Field are defined on a background which is a compact group manifold
G = U(1)P or SU(2)P.

(ii) The propagator = a “stranded” sum momenta of the form p*® with
0 < a < 1; Might be essential in order to achieve Osterwalder-Schraeder
positivity axiom [Rivasseau, 1209.5284]7? At a = 1, Laplacian dynamics.
(We |l see that a is however severely constrained by Renorm.)

(iii) The interactions involved are unitary tensor invariants.

- - ~d ~ :
Rank d > 2 complex tensor field: »: G° — C. Fourier mode decomp.:

o(hy. h ha) = > 3p, p,....p, D71 (m)D"2 (h2) ... D" (hq).
Py,

SH" = Z :P:f:(

Pu)

2a

-(a) G = U(l)o: P.|? = S}DI ps.|? , momentum values p; | € Z;
- (b) G = SU(2)°: |P.|? := __f) Us.1Us. + 1)]7, momentum triple
(Js.1. Msj. Ns ) € %N X {—j j}e.
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Renormalizability of Tensor Models

| Space of models

3 initial constraints

(i) Field are defined on a background which is a compact group manifold
G = U(1)P or SU(2)P.

(ii) The propagator = a “stranded” sum momenta of the form p*® with
0 < a < 1; Might be essential in order to achieve Osterwalder-Schraeder
positivity axiom [Rivasseau, 1209.5284]7? At a = 1, Laplacian dynamics.
(We Il see that a is however severely constrained by Renorm.)

(iii) The interactions involved are unitary tensor invariants.

. , ~d ~ :
Rank d > 2 complex tensor field: »: G° — C. Fourier mode decomp.:

o(hy. ho ha) = > 3p, p,....p, D71 (m)D"2 (h2) ... D" (hq). (2)
Py,

Skin:v:p:: Ak s PPy - (3)

P

Puy

-(a) G = U(l)o: P.|? = S}DI Ps.| 22 momentum values ps.| € Z;
- (b) G = SU(2)°: |P.|? := __fj Us.1Us.t + 1)]7, momentum triple
(Js.1. Mg . ns ) € %N X {—j j}e.
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Renormalizability of Tensor Models
Updated list of models

Renormalizability UV behavior
Just- AF
Just- AF
Just- AF
Just- AF
Just- AF
Just- AF

Super- -
Just- AF
Just- AF
Just- Al

Super- -

TGFT (type)

Super- -
Just -

d 3
4 1
3 i
3 3
¢
5 1
4 1
3 1
6 1
5 1
3 1
4 1
5 1

3 1
4 1

Just -

Just- (k = 2, AS\=°)); (k 3, LG)
Just- (k = 2, AS'1)y; ( 3, LG)
Just- LG

Just- AS(1)

Just- AS'“
Super- -

Matrix

Matrix

Matrix U(1)? or SU(2)

Matrix U(1)? or SU(2)

Matrix Uua)*

Matrix U(1) P2k
Matrix U(l}: P2k

N RO RN DR

bt POt i P |

Super- -

lable: Updated list of renormalizable models and their features (AF = asymptotically
free; LG = existence of a Landau ghost; AS(Y) asymptotically safe at ¢-loops).
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Renormalizability of Tensor Models

Updated list of models

Renormalizability UV behavior
Just- AF
Just- AF
Just- AF
Just- AF
Just- AF
Just- AF

Super- -
Just- AF
Just- AF
Just- Af

Super- -

TGFT (type)

Super- -
! Just -

d 3
4 1
3 '
D]
4

5 1
4 1
3 1
6 1
5 1
3 1
4 1
5 1
3} 1
4 1

Just -

Just- (k = 2, ASI=®)); (k = 3, LG)
Just- (k = 2, ASIMy; ( 3, LG)
Just- LG

Just- AS(1)

Just- AS”‘I
Super- -

Matrix

Matrix

Matrix U(1)? or SU(2)

Matrix U(1)? or SU(2)

Matrix u@1)*

Matrix U(1) b2k
Matrix U(l}: P2k

N DN NN DN

bt PO i P |

Super- -

Table: Updated list of renormalizable models and their features (AF = asymptotically
free; LG = existence of a Landau ghost; AS(Y) asymptotically safe at £-loops).

Pirsa: 13070076 Page 62/67



Renormalizability of Tensor Models

Updated list of models

Renormalizability UV behavior
Just- AF
Just- AF
Just- AF
Just- AF
Just- AF
Just- AF

Super- -
Just- AF
Just- AF
Just- Al

Super- -

TGFT (type)

Super- -
! Just -

d 3
4 1
3 i
D
4

5 1
4 1
3 1
6 1
5 1
3 1
4 1
5 1
3 1
4 1

Just -

Just- (k = 2, AS'=°)); (k = 3, LG)
Just- (k = 2, AS'1)y; ( 3, LG)
Just- LG

Just- AS(t)

Just- AS”"
Super- -

Matrix

Matrix

Matrix U(1)? or SU(2)

Matrix U(1)? or SU(2)

Matrix ua)*

Matrix U(1) P2k
Matrix U@1)? P2k

N DN NN DN

Cdi®, Ll =i = P ] |

Super- -

lable: Updated list of renormalizable models and their features (AF = asymptotically
free; LG = existence of a Landau ghost; AS(Y) asymptotically safe at ¢-loops).
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Renormalizability of Tensor Models

| Future Prospects: Counting (and classifying 7) tensor invariants

(In collaboration with Sanjaye Rangoolam: 1307.6490)

1

e Determination of possible graph amounts to count triples
(01,02,03) € (Sh X Sp X Sp) (01,02,03) ~ (110172,710272,710372)
e Counting points in the double coset
S3(n) = Diag(S,)\(S, x S, x S,)/Diag(S,) .
e Using Burnside's (orbit) counting lemma: Conjugacy classes of S, are

determined by partitions p - n:

2 = X (TI)0) . p= . Y =n.
prn =1 :

e Relation with different counting: S,-TFT !l
Zs(n) = 2 N N d(yory ey Ne(vosy Tt )

nl &— "

1.4,11.43.161.901.5579,43206, 378360, 3742738, ...

cnh (] Clo)
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| Future Prospects: Counting (and classifying 7) tensor invariants

(In collaboration with Sanjaye Rangoolam: 1307.6490)

1

e Determination of possible graph amounts to count triples
(01,02,03) € (Sh X Sp X Sp) (01,02,03) ~ (110172,710272,710372)
e Counting points in the double coset
S3(n) = Diag(5,)\(S, x S, x 5,)/Diag(5,) .
e Using Burnside's (orbit) counting lemma: Conjugacy classes of S, are

determined by partitions p - n:

2 = ¥ (TT0) . p=(ud. Siw=n
pkn =] ;

e Relation with different counting: S,-TFT !l
Z;(n) = i T S r\(‘ ol 71fT-,71)¢5(‘ kD 71(T;1)

nl & =

1.4.11.43.161.901.5579,43206, 378360, 3742738, . ..

cnh o Clo)
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