Title: Group Field Theory and Tensor Models - 2

Date: Jul 25, 2013 04:40 PM

URL: http://pirsa.org/13070076

Abstract:

Pirsa: 13070076

Dine Ousmane Samary [arXiv: 1303.7256]

International Chair in Mathematical Physics and Applications ICMPA-UNESCO Chair, Cotonou, Benin

Perimeter Loop 13 July 25, 2013

Dine Ousmane Samary [arXiv: 1303.7256

Quantum Cravity Pl 201

Pirsa: 13070076 Page 2/67

Abelian TGFT with gauge invariance

This part addresses a summary of the results obtained in ours previous work [arXiv:1211.2618]. We mainly present the model and its renormalization. TGFTs over a group G are defined by a complex field φ over d copies of group G, i.e.

$$\varphi: \qquad G^d \qquad \longrightarrow \quad \mathbb{C} \\ (g_1, \cdots, g_d) \qquad \longmapsto \quad \varphi(g_1, \cdots, g_d) \,. \tag{1}$$

The gauge invariance condition is achieved by imposing that the fields obey the relation

$$\varphi(hg_1,\ldots,hg_d)=\varphi(g_1,\ldots,g_d),\quad\forall h\in G.$$
 (2)

For Abelian TGFTs, one fixes the group G = U(1). In the momentum representation, the field writes

$$\varphi(g_1,\cdots,g_d)=\sum_{p}\varphi_{[p]}e^{ip_1\theta_1}e^{ip_2\theta_2}\cdots e^{ip_d\theta_d},\quad \theta_k\in[0,2\pi),$$

where we denote $\varphi_{[p]} = \varphi_{12\cdots d} := \varphi(p_1, p_2, \cdots, p_d)$, with $p_k \in \mathbb{Z}$ and $g_k = e^{i\theta_k} \in U(1)$.

Dine Ousmane Samary [arXiv: 1303.7256] Quantum Gravity, PL 2013

Pirsa: 13070076 Page 3/67

Locality principle: Interactions

The generalized locality principle of the TGFTs requires to define the interactions as the sum of tensor invariants. From now, we will focus on d = 6, 5, and define two models described by

$$\mathfrak{S}_{4}[\bar{\varphi},\varphi] = \sum_{p_{1},\cdots,p_{6}} \bar{\varphi}_{654321} \,\delta(\sum_{i}^{6} p_{i})(p^{2}+m^{2}) \,\varphi_{123456} + \frac{1}{2} \lambda_{4,1}^{(4)} \,V_{4,1}^{6}, \quad (4)$$

$$\mathfrak{S}_{6}[\bar{\varphi},\varphi] = \sum_{p_{1},\cdots,p_{5}} \bar{\varphi}_{54321} \,\delta(\sum_{i}^{5} p_{i})(p^{2} + m^{2}) \,\varphi_{12345} + \frac{1}{2} \lambda_{4,1}^{(6)} \,V_{4,1}^{5} + \frac{1}{2} \lambda_{4,2} V_{4,2} + \frac{1}{3} \lambda_{6,1} V_{6,1} + \lambda_{6,2} V_{6,2},$$
 (5)

where $\delta(\sum_{i}^{d} p_{i})$ should be understood as a Kronecker symbol $\delta_{\sum_{i}^{d} p_{i},0}$ and $p^{2} = \sum_{i}^{d} p_{i}^{2}$, d = 6, 5.

Dine Ousmane Samary [arXiv: 1303.7256]

Quantum Gravity, Pl. 2013

Pirsa: 13070076

Pirsa: 13070076 Page 5/67

Multiscale analysis

Let \mathcal{L} and \mathcal{F} be the sets of internal lines and faces of the graph \mathcal{G} . The divergence degree of the amplitude of a graph associated with both models can be written

$$\omega_d(\mathcal{G}) = 2L - F + R \tag{11}$$

where $L = |\mathcal{L}|$, $F = |\mathcal{F}|$ and R is the rank of matrix $(\epsilon_{lf}, l \in \mathcal{L}, f \in \mathcal{F})$, defined by

$$\epsilon_{lf}(\mathcal{G}) = \begin{cases} 1 & \text{if } l \in f \text{ and their orientation match,} \\ -1 & \text{if } l \in f \text{ and their orientation do not match,} \\ 0 & \text{otherwise.} \end{cases}$$
 (12)

Let
$$\rho(\mathcal{G})$$
 be defined as $\rho(\mathcal{G}) = F(\mathcal{G}) - R(\mathcal{G}) - (d-2)(L(\mathcal{G}) - V(\mathcal{G}) + 1)$.

$$\omega_{d} = -\frac{2}{(d-1)!} (\widetilde{\omega}(\mathcal{G}) - \omega(\partial \mathcal{G})) - (C_{\partial \mathcal{G}} - 1) - \frac{d-3}{2} N + (d-1) + \frac{d-3}{2} n \cdot V - (d-1)V - R$$

$$= \frac{1}{2} \left[-(d-4)N + (d-4)n \cdot V - 2(d-2)V + 2(d-2) + \rho(\mathcal{G}) \right]$$
(13)

e Ousmane Samary [arXiv: 1303.7256] Quantum Gravity, PL 2013

Renormalization: Divergent graphs

Theorem: Vignes-Tourneret and Samary

The models φ_6^4 defined by \mathfrak{S}_4 and φ_5^6 defined by \mathfrak{S}_6 are perturbatively renormalizable at all orders.

The proof of this statement rests on a power counting theorem which can be summarized by the following table giving the list of primitively divergent graphs

	Ν	$\omega(\mathcal{G})$	$\omega(\partial \mathcal{G})$	$C_{\partial \mathcal{G}}-1$	$\omega_d(\mathcal{G})$
φ_6^4	4	0	0	0	0
	2	0	0	0	2
φ_5^6	6	0	0	0	0
	4	0	0	0	1
	4	0	0	1	0
	2	0	0	0	2
	2	0	0	0	1

Table: Divergent graphs of both models

Dine Ousmane Samary [arXiv: 1303.7256]

Quantum Gravity, Pl. 2013

(14)

Pirsa: 13070076 Page 7/67

Beta functions of φ_6^4 -model

Theorem

The wave function renormalization is

$$Z = 1 - \frac{12\pi^2}{5\sqrt{5}}\lambda_4 \, \mathcal{I} + O(\lambda_4^2). \tag{15}$$

The sum of all amputated 1PI four-point functions computated at one-loop and at low external momenta is

$$\Gamma_4(0) = -\lambda_4 + \frac{\pi^2}{\sqrt{5}} \lambda_4^2 \mathcal{I} + O(\lambda_4^2).$$
 (16)

At one-loop, the renormalized coupling constant associated with λ_4 is given by

$$\lambda_4^{
m ren} = \lambda_4 + rac{19\pi^2}{5\sqrt{5}}\lambda_4^2\mathcal{I} + O(\lambda_4^2), \quad \textit{with} \quad \mathcal{I} = \int_0^\infty rac{e^{-\alpha m^2}}{\alpha} dx$$

such that the β -function of the model with single wave-function renormalization and single coupling constant is given by $\beta = -\frac{19\pi}{5\sqrt{100}}$ model is then assymptotically free.

Dine Ousmane Samary [arXiv: 1303.7256]

Quantum Cravity Pl 2012

Beta functions of φ_6^4 -model

Theorem

The wave function renormalization is

$$Z = 1 - \frac{12\pi^2}{5\sqrt{5}}\lambda_4 \, \mathcal{I} + O(\lambda_4^2). \tag{15}$$

The sum of all amputated 1PI four-point functions computated at one-loop and at low external momenta is

$$\Gamma_4(0) = -\lambda_4 + \frac{\pi^2}{\sqrt{5}} \lambda_4^2 \mathcal{I} + O(\lambda_4^2).$$
 (16)

At one-loop, the renormalized coupling constant associated with λ_4 is given by

$$\lambda_4^{\mathrm{ren}} = \lambda_4 + \frac{19\pi^2}{5\sqrt{5}}\lambda_4^2\mathcal{I} + O(\lambda_4^2), \quad \textit{with} \quad \mathcal{I} = \int_0^\infty \frac{e^{-\alpha m^2}}{\alpha} dx$$

such that the β -function of the model with single wave-function renormalization and single coupling constant is given by $\beta = -\frac{19\pi}{5\sqrt{5}}$ model is then assymptotically free.

Dine Ousmane Samary [arXiv: 1303.7256]

Quantum Gravity Pl 2013

Beta functions of φ_6^4 -model

Theorem

The wave function renormalization is

$$Z = 1 - \frac{12\pi^2}{5\sqrt{5}}\lambda_4 \, \mathcal{I} + O(\lambda_4^2). \tag{15}$$

The sum of all amputated 1PI four-point functions computated at one-loop and at low external momenta is

$$\Gamma_4(0) = -\lambda_4 + \frac{\pi^2}{\sqrt{5}} \lambda_4^2 \mathcal{I} + O(\lambda_4^2).$$
 (16)

At one-loop, the renormalized coupling constant associated with λ_4 is given by

$$\lambda_4^{\text{ren}} = \lambda_4 + \frac{19\pi^2}{5\sqrt{5}}\lambda_4^2 \mathcal{I} + O(\lambda_4^2), \quad \text{with} \quad \mathcal{I} = \int_0^\infty \frac{e^{-\alpha m^2}}{\alpha} d\alpha \tag{17}$$

such that the β -function of the model with single wave-function renormalization and single coupling constant is given by $\beta = -\frac{19\pi^2}{5\sqrt{5}}$. The model is then assymptotically free.

Dine Ousmane Samary [arXiv: 1303 7256]

Quantum Gravity, Pl. 2013

Pirsa: 13070076 Page 11/67

Pirsa: 13070076 Page 12/67

Pirsa: 13070076 Page 13/67

Pirsa: 13070076 Page 14/67

GFT in 2nd quantization

SU(2),SL(2,C),SO(4),...

$$\vec{g}_{i} = (g_{(i,1)}, \dots, g_{(i,4)})
[\hat{\varphi}(g_{1}, \dots g_{4}), \hat{\varphi}^{\dagger}(h_{1}, \dots h_{4})] = \prod_{i=1}^{4} \delta(g_{i}h_{i}^{-1})
(\mathcal{K}(\vec{g}; \vec{h})\hat{\varphi}(\vec{h}) + \mathcal{V}(\vec{g}, \vec{g}_{2}, \vec{g}_{3}, \vec{g}_{4}, \vec{g}_{5})\hat{\varphi}(\vec{g}_{2})\hat{\varphi}(\vec{g}_{3})\hat{\varphi}(\vec{g}_{4})\hat{\varphi}(\vec{g}_{5}) +
\mathcal{U}(\vec{g}, \vec{g}_{2}, \vec{g}_{3}, \vec{g}_{4}, \vec{g}_{5})\hat{\varphi}^{\dagger}(\vec{g}_{2})\hat{\varphi}^{\dagger}(\vec{g}_{3})\hat{\varphi}^{\dagger}(\vec{g}_{4})\hat{\varphi}^{\dagger}(\vec{g}_{5}) + \dots) |\psi\rangle = \mathbf{0}$$

Perturbative expansion of the partition function

Perturbative expansion of the state (Wick theorem applied to ladder operators)

3

Pirsa: 13070076

Geometric content/II

$$g_{ab} = g_{ij} v_a^i v_b^j$$

Metric tensor: need the triad

Embedding procedure: take the tetrahedron, embed it into a 3D group manifold (that will be determined by selfconsistency) such that the edges are aligned with a set of left invariant vector fields.

Continuum limit ~ take a lot of them

Furthermore, take them in such a way that the metric (in the left inv. frame) is constant.

 Obtain a state associated to homogeneous (anisotropic) cosmologies!

•It has a hydrodynamic interpretation

5

Pirsa: 13070076 Page 16/67

Geometric content/II

$$g_{ab} = g_{ij} v_a^i v_b^j$$

Metric tensor: need the triad

Embedding procedure: take the tetrahedron, embed it into a 3D group manifold (that will be determined by selfconsistency) such that the edges are aligned with a set of left invariant vector fields.

Continuum limit ~ take a lot of them

Furthermore, take them in such a way that the metric (in the left inv. frame) is constant.

 Obtain a state associated to homogeneous (anisotropic) cosmologies!

•It has a hydrodynamic interpretation

5

Pirsa: 13070076 Page 17/67

Towards EFT

- Impose the EOM of GFT: ask that the state are physical
- The equations for the mean field: Wheeler-deWitt equation?

 To get an effective cosmological dynamics, we need to translate the equations for the mean field into equations relating these expectation values (~ Ehrenfest theorem)

$$0 = \mathcal{F}(\langle a \rangle_{\psi}, \langle H \rangle_{\psi}, \cdots) \sim \left(\frac{\dot{a}}{a}\right)^2 + \frac{k}{a^2} + \text{corrections}$$

7

Towards EFT

- Impose the EOM of GFT: ask that the state are physical
- The equations for the mean field: Wheeler-deWitt equation?

 To get an effective cosmological dynamics, we need to translate the equations for the mean field into equations relating these expectation values (~ Ehrenfest theorem)

$$0 = \mathcal{F}(\langle a \rangle_{\psi}, \langle H \rangle_{\psi}, \cdots) \sim \left(\frac{\dot{a}}{a}\right)^2 + \frac{k}{a^2} + \text{corrections}$$

Pirsa: 13070076 Page 20/67

A special case

$$\int (dh)^4 \mathcal{K}(g_I, h_J) \xi(h_J k_J^{-1}) = 0$$

 Consider a Riemannian model: SO(4) gets reduced to SU(2) once the simplicity constraints have been imposed.

$$\xi : \mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2) \times \mathrm{SU}(2) \to \mathbb{C}$$

$$K(g_I, h_I) = \delta(g_I h_I^{-1}) \left(\triangle_{SU(2)^4} + \mu \right) = \delta(g_I h_I^{-1}) \left(\sum_{I=1}^4 \triangle_{SU(2)} + \mu \right)$$

WKB-like approximation:

$$\xi(g_1, g_2, g_3, g_4) = A(g_1, g_2, g_3, g_4) \exp\left(\frac{i}{\kappa} S(g_1, g_2, g_3, g_4)\right)$$

Restrict to the leading order in the WKB expansion

A special case

$$\int (dh)^4 \mathcal{K}(g_I, h_J) \xi(h_J k_J^{-1}) = 0$$

 Consider a Riemannian model: SO(4) gets reduced to SU(2) once the simplicity constraints have been imposed.

$$\xi : SU(2) \times SU(2) \times SU(2) \times SU(2) \to \mathbb{C}$$

$$K(g_I, h_I) = \delta(g_I h_I^{-1}) \left(\triangle_{SU(2)^4} + \mu \right) = \delta(g_I h_I^{-1}) \left(\sum_{I=1}^4 \triangle_{SU(2)} + \mu \right)$$

WKB-like approximation:

$$\xi(g_1, g_2, g_3, g_4) = A(g_1, g_2, g_3, g_4) \exp\left(\frac{i}{\kappa} S(g_1, g_2, g_3, g_4)\right)$$

Restrict to the leading order in the WKB expansion

8

Pirsa: 13070076

A special case/2

$$\bullet \quad \text{Parametrization for SU(2)} \qquad g = \sqrt{1-\pi^2} \mathbb{I}_2 - i \pi^i \sigma_i, \qquad ||\vec{\pi}|| \leq 1$$

$$\triangle_{SU(2)} = \left(\delta^{ij} - \pi^i \pi^j\right) \frac{\partial}{\partial \pi^i} \frac{\partial}{\partial \pi^j}$$

Remember the geometrical content of the model

$$\frac{\partial S}{\partial \pi_I^i} = B_I^i \sim a^2 \qquad B_I = a_I^2 T_I, \qquad \pi_I = p_I V_I$$

• Final equation: 4

$$\sum_{I=1}^{4} \left(B_I \cdot B_I - (\pi_I \cdot B_I)^2 \right) \stackrel{\kappa \to 0}{=} 0$$

• Reduce to the isotropic sector:

$$a_I = \gamma_I a, \qquad p_I = \beta_I p$$

$$a^4(p^2-c^2)\stackrel{\kappa \to 0}{=} 0$$
 Corresponds to k=1

Corresponds to k=1 FRW, G=SU(2) (Selfconsistency)

a=0 is spurious (add matter)

9

A special case/2

$$\bullet \quad \text{Parametrization for SU(2)} \qquad g = \sqrt{1-\pi^2} \mathbb{I}_2 - i \pi^i \sigma_i, \qquad ||\vec{\pi}|| \leq 1$$

$$\triangle_{\mathrm{SU}(2)} = \left(\delta^{ij} - \pi^i \pi^j\right) \frac{\partial}{\partial \pi^i} \frac{\partial}{\partial \pi^j}$$

Remember the geometrical content of the model

$$\frac{\partial S}{\partial \pi_I^i} = B_I^i \sim a^2 \qquad B_I = a_I^2 T_I, \qquad \pi_I = p_I V_I$$

• Final equation: $\sum_{I=1}^{4} \left(B_I \cdot B_I - (\pi_I \cdot B_I)^2 \right) \stackrel{\kappa \to 0}{=} 0$

• Reduce to the isotropic sector:
$$a_I = \gamma_I a, \qquad p_I = \beta_I p$$

$$a^{4}(p^{2}-c^{2}) \stackrel{\kappa \to 0}{=} 0$$
Corresponds to k=1
FRW, G=SU(2)
(Selfconsistency)

a=0 is spurious (add matter)

A possible derivation of EFT for Cosmology

Pirsa: 13070076 Page 25/67

10

GFT & correlation functions

- First: we need for consistency of the interpretation "small tetrahedra": the local curvature radius is much larger than the size of the tetrahedron
- How physical are the states? Check for all the equations for the correlation functions.

$$\langle \sigma | \hat{\mathcal{O}}[\varphi, \overline{\varphi}] \hat{\mathcal{C}} | \sigma \rangle = 0$$

$$\langle \sigma | \hat{\mathcal{O}}[\varphi, \overline{\varphi}] \hat{\mathcal{C}} | \sigma \rangle \neq 0$$

Physical states

Approximate states
+
estimate of the theoretical error

GFT & correlation functions

- First: we need for consistency of the interpretation "small tetrahedra": the local curvature radius is much larger than the size of the tetrahedron
- How physical are the states? Check for all the equations for the correlation functions.

$$\langle \sigma | \hat{\mathcal{O}}[\varphi, \overline{\varphi}] \hat{\mathcal{C}} | \sigma \rangle = 0$$

$$\langle \sigma | \hat{\mathcal{O}}[\varphi, \overline{\varphi}] \hat{\mathcal{C}} | \sigma \rangle \neq 0$$

Physical states

Approximate states
+
estimate of the theoretical error

Comments

- General procedure: design your spinfoam/GFT model and apply the routine
- Shows that we might need LQG data in GFT to give physical meaning
- Allows comparison with other approaches (LQC, spinfoams, WDW)
- Keeps alive part of the sum over geometries (bulk and boundary)
- No background lattice (only the embedding procedure)
- Cosmology as a simple form of GFT hydrodynamics (see geometrogenesis/emergent gravity)
- Can keep under control approximations and decide how good/bad is our result.

Gielen, Oriti, LS 1308.----

13

Pirsa: 13070076 Page 28/67

Pirsa: 13070076

Pirsa: 13070076 Page 30/67

Pirsa: 13070076 Page 31/67

Pirsa: 13070076 Page 32/67

Pirsa: 13070076 Page 33/67

Outline. Introduction. Introducing the model. Double scaling limit. Conclusion.

- Introduction
- Tensor models and tensor invariants.
- T^4 model.
- Loop Vertex Expansion graphs.
- What is double scaling limit?
- Pruning, Reduction.
- Leading graphs of this scaling.
- Resumming cherry trees.
- Conclusion.

téphane Dartois, LPT Orsay & LIPN Villetaneusewith Ra. A double scaling limit for tenso

Pirsa: 13070076 Page 34/67

Outline. Introduction. Introducing the model. Double scaling limit. Conclusion.

- Introduction
- Tensor models and tensor invariants.
- T^4 model.
- Loop Vertex Expansion graphs.
- What is double scaling limit?
- Pruning, Reduction.
- Leading graphs of this scaling.
- Resumming cherry trees.
- Conclusion.

Stephane Dartois LPT Orsay & LIPN Villetaneusewith Ra. A double scaling limit for tens

Pirsa: 13070076 Page 35/67

Outline. Introduction. Introducing the model. Double scaling limit. Conclusion.

- Introduction
- Tensor models and tensor invariants.
- T^4 model.
- Loop Vertex Expansion graphs.
- What is double scaling limit?
- Pruning, Reduction.
- Leading graphs of this scaling.
- Resumming cherry trees.
- Conclusion.

téphane Dartois, LPT Orsay & LIPN Villetaneusewith Ra. A double scaling limit for tenso

Pirsa: 13070076 Page 36/67

Recall known results

Large N limit of matrix model, also called here single scaling:

•
$$G_{2,planar}(\lambda) = \frac{-1 - 36\lambda + (1 + 24\lambda)^{3/2}}{216\lambda^2}$$

All spheres but only spheres survive this limit.

For string theory one looks at double scaling limit i.e. $N \to \infty$ and $\lambda \to \lambda_c$, $\kappa^{-1} = N^{5/4}(\lambda - \lambda_c)$.

• $G_{2,\text{double scaling}} = \sum_{h} a_h \kappa^{2h}$.

Unfortunately not (Borel) summable !

For colored tensor models there also exists a single scaling:

•
$$G_{2,\text{melons}}(\lambda) = \frac{1 - \sqrt{1 - 8D\lambda}}{4D\lambda}$$
.

Stephane Dartois LPT Orsay & LIPN Villetaneusewith Ra A double scaling limit for tensor model with quartic interact

Pirsa: 13070076 Page 37/67

Recall known results

Large N limit of matrix model, also called here single scaling:

•
$$G_{2,planar}(\lambda) = \frac{-1 - 36\lambda + (1 + 24\lambda)^{3/2}}{216\lambda^2}$$

All spheres but only spheres survive this limit.

For string theory one looks at double scaling limit i.e. $N \to \infty$ and $\lambda \to \lambda_c$, $\kappa^{-1} = N^{5/4}(\lambda - \lambda_c)$.

• $G_{2,\text{double scaling}} = \sum_{h} a_h \kappa^{2h}$.

Unfortunately not (Borel) summable !

For colored tensor models there also exists a single scaling:

•
$$G_{2,\text{melons}}(\lambda) = \frac{1 - \sqrt{1 - 8D\lambda}}{4D\lambda}$$
.

Stéphane Dartois LPT Orsav & LIPN Villetaneusewith Ra A double scaling limit for tensor model with quartic interactions and a state of the scaling limit for tensor model with quartic interactions.

Pirsa: 13070076 Page 38/67

Tensor models and tensor invariant.

Actions of tensor models are polynomial of tensor U(N) invariants.

 Matrix: one invariant: trace operator. Action = trace of polynomials of the matrix. Invariants are represented by cycles.

• **Tensor**: plenty of invariants \Leftrightarrow plenty of different contraction patterns. Invariants represented as colored graphs.

Stéphane Dartois, LPT Orsay & LIPN Villetaneusewith Ra. A double scaling limit for tenso

Pirsa: 13070076 Page 39/67

Tensor models and tensor invariant.

Actions of tensor models are polynomial of tensor U(N) invariants.

• Matrix: one invariant: trace operator. Action = trace of polynomials of the matrix. Invariants are represented by cycles.

Tensor: plenty of invariants
 ⇔ plenty of different contraction patterns. Invariants represented as colored graphs.

Stéphane Dartois, LPT Orsay & LIPN Villetaneusewith Ra. A double scaling limit for tensor model with quartic interactions of the control of t

Pirsa: 13070076 Page 40/67

T^4 tensor model.

The double scaling is studied for a melonic $T\bar{T}T\bar{T}$ interaction, i.e. this tensor invariant :

Figure: The interaction term and its intermediate field representation.

One writes the interaction term as:

$$\begin{split} &\exp(-\frac{\lambda}{4}\sum_{j,\{k_p\},\{m_q\}}T_{k_1\cdots k_j\cdots k_n}\bar{T}_{m_1\cdots k_j\cdots m_n}T_{m_1\cdots m_j\cdots m_n}\bar{T}_{k_1\cdots m_j\cdots k_n})\\ &=\int d\mu(\sigma)e^{-\frac{1}{2}\sum_j Tr\left((\sigma^{(j)})^2\right)-\sqrt{\lambda/2}\sum_{j,\{k_p\},\{m_j\}}T_{k_1\cdots k_j\cdots k_n}\bar{T}_{k_1\cdots m_j\cdots k_n}\sigma^{(j)}_{k_jm_j}}\,. \end{split}$$

Integrating out the T, \bar{T} fields leads to intermediate field theory.

Stéphane Dartois LPT Orsay & LIPN Villetaneusewith Ra A double scaling limit for tensor model with quartic intera

Pirsa: 13070076 Page 41/67

The Loop Vertex Expansion for tensor models.

The model can be constructed by looking at intermediate field representation and corresponding Feynman graphs.

Graphs of LVE:

- edges are made of sigma field.
- vertices are made of propagator of the original theory. Can be of any degree.

Constructive because this is the Borel sum of the pertubation series for any observable O:

$$O = \sum_{\mathcal{T}} \sum_{\mathcal{G}|\mathcal{G}\supset\mathcal{T}} w(\mathcal{G},\mathcal{T}) \mathcal{A}(\mathcal{G}).$$

Convergent! Very convenient: melons become trees in intermediate field representation. Can track 1/N factors by tracking the number of loops in the LVE graphs!

Stéphane Dartois, LPT Orsay & LIPN Villetaneusewith Ra. A double scaling limit for tensor model with quartic interaction

Pirsa: 13070076 Page 42/67

What is double scaling?

• A scaling selecting graphs with optimal combinatorial ratio between powers of 1/N and powers of λ .

Looking at the 2-point function:

$$G_{2} = G_{2,\text{melon}} + \sum_{\bar{G}} \frac{1}{N^{h(\bar{G})}} \frac{1}{(\lambda - \lambda_{c})^{e(\bar{G})}}$$

$$= G_{2,\text{melon}} + \sum_{e \geq 1} \sum_{\bar{G},e(\bar{G})=e} \left(\frac{1}{N^{h(\bar{G})/e(\bar{G})}(\lambda - \lambda_{c})}\right)^{e}.$$

Stéphane Dartois LPT Orsay & LIPN Villetaneusewith Ra A double scaling limit for tensor model with quartic interac

Pirsa: 13070076 Page 43/67

Pruning, Reduction: Computing LVE graphs.

To understand the new graphs, we introduce two procedures:

• Pruning:

Reduction:

ightarrow Reduced graphs amplitude are the sum of the amplitude LVE graphs reducing to it.

Stéphane Dartois LPT Orsay & LIPN Villetaneusewith Ra A double scaling limit for tens

Pirsa: 13070076 Page 44/67

Pruning, Reduction: Computing LVE graphs.

To understand the new graphs, we introduce two procedures:

• Pruning:

• Reduction:

→ Reduced graphs amplitude are the sum of the amplitudes of all the LVE graphs reducing to it.

Stephane Dartois LPT Orsay & LIPN Villetaneusewith Ra A double scaling limit for tensor model with quartic interact

Pirsa: 13070076 Page 45/67

Identifying leading graphs.

Using reduced graphs we can identify the family of graphs having the minimal $h(\bar{G})/e(\bar{G})$ ratio:

$$(h(\bar{G})/e(\bar{G}))_{\mathsf{min}} = 1.$$

Set $x=2N(\lambda-\lambda_c)$ finite, $N\to\infty$ enhances the contribution of the identified family. In dimension D<6 this family maximizes, at fixed number of loops in the reduced graph, the number of 1 PR bars with monocolored loops. We call them *cherry trees*.

Moreover: We can bound the contribution of the amplitude of the non-cherry graphs:

$$|\mathcal{G}_{2,rest}^{L,x}(N)| \leq N^{1/2-D/2} K_L x^{-\frac{3}{2}L+\frac{1}{2}}.$$

A priori, non trivial statement, in fact reduced graph amplitudes are sum of amplitudes of a whole family of tensor graphs.

Stéphane Dartois LPT Orsay & LIPN Villetaneusewith Ra. A double scaling limit for tensor model with quartic interaction

Pirsa: 13070076 Page 46/67

Identifying leading graphs.

Using reduced graphs we can identify the family of graphs having the minimal $h(\bar{G})/e(\bar{G})$ ratio:

$$(h(\bar{G})/e(\bar{G}))_{\mathsf{min}} = 1.$$

Set $x=2N(\lambda-\lambda_c)$ finite, $N\to\infty$ enhances the contribution of the identified family. In dimension D<6 this family maximizes, at fixed number of loops in the reduced graph, the number of 1 PR bars with monocolored loops. We call them *cherry trees*.

Moreover: We can bound the contribution of the amplitude of the non-cherry graphs:

$$|\mathcal{G}_{2,rest}^{L,x}(N)| \leq N^{1/2-D/2} K_L x^{-\frac{3}{2}L+\frac{1}{2}}.$$

A priori, non trivial statement, in fact reduced graph amplitudes are sum of amplitudes of a whole family of tensor graphs.

Stephane Dartois LPT Orsay & LIPN Villetaneusewith Ra A double scaling limit for tensor model with quartic interest

Pirsa: 13070076 Page 47/67

Identifying leading graphs.

Using reduced graphs we can identify the family of graphs having the minimal $h(\bar{G})/e(\bar{G})$ ratio:

$$(h(\bar{G})/e(\bar{G}))_{\mathsf{min}} = 1.$$

Set $x=2N(\lambda-\lambda_c)$ finite, $N\to\infty$ enhances the contribution of the identified family. In dimension D<6 this family maximizes, at fixed number of loops in the reduced graph, the number of 1 PR bars with monocolored loops. We call them *cherry trees*.

Moreover: We can bound the contribution of the amplitude of the non-cherry graphs:

$$|\mathcal{G}_{2,rest}^{L,x}(N)| \leq N^{1/2-D/2} K_L x^{-\frac{3}{2}L+\frac{1}{2}}.$$

A priori, non trivial statement, in fact reduced graph amplitudes are sum of amplitudes of a whole family of tensor graphs.

Stéphane Dartois LPT Orsay & LIPN Villetaneusewith Ra. A double scaling limit for tensor model with quartic interaction

Pirsa: 13070076 Page 48/67

A graphical example of a cherry tree:

We can resum graphs of this form and obtain for the 2-point function:

$$\mathcal{G}_{2,cherry}^{x}(N) = 2 - 4N^{1-D/2}\sqrt{D(x-x_c)}.$$

With a critical point at $x_c = \frac{1}{4(D-1)}$. Melonic critical point:

$$\lambda_c = \frac{1}{8D}.$$

A double scaling limit for tensor model with quartic intera

Conclusion & Outlook.

- Double scaling limit allows to compute sum over more triangulations. Sum still runs over spheres.
- As already noticed by Gurau in the analysis of toy model for tensor double scaling, the physical interpretation of the new scaling variable is not clear with respect to GR.
- Critical exponent of $\mathcal{G}_{2,\text{cherry}}$ is still $\gamma=1/2$ of branched polymer. Investigate the Hausdorff and spectral dimensions of these Cherry trees to confirm (?) they are branched polymer.
- Multiple scaling limit? A way to sum over more and more graphs (topology?).
- Details in arXiv:1307.5281. One could also be interested in arXiv:1307.5279 by Razvan Gurau and Gilles Schaeffer.

Stephane Dartois LPT Orsay & LIPN Villetaneusewith Ra. A double scaling limit for tensor model with quartic interac

Pirsa: 13070076 Page 50/67

Pirsa: 13070076 Page 51/67

Tensorial Group Field Theories

Matrix Models 80's [Rev. Di Francesco, 9506153]

• Matrix models : a statistical description for gravity in 2D realized using random triangulations of a manifold;

$$Z_{\text{matrix}} = \int dM \, e^{-\frac{1}{2} \text{Tr} M^2 + \frac{g}{\sqrt{N}} \text{Tr} M^3} = e^{Z_{\text{QG}}} \tag{1}$$

Important tool: 1/N expansion ['t Hooft, Nucl. Phys. B. **72** (74)] \sim Selection of *genus* = 0 sector (planar graphs) of the model.

Tensor Models [Ambjorn, Gross, Boulatov, 90's]

Tensor models generalizes matrix models \sim randomizing triangulation in dimension higher than 2.

Figure: 3D simplex: A triangle \sim a field; the interaction \sim tetra

Joseph Ron Colours Loops' 12 July 201

Pirsa: 13070076 Page 52/67

Tensorial Group Field Theories

Matrix Models 80's [Rev. Di Francesco, 9506153]

• Matrix models : a statistical description for gravity in 2D realized using random triangulations of a manifold;

$$Z_{\text{matrix}} = \int dM \, e^{-\frac{1}{2} \text{Tr} M^2 + \frac{g}{\sqrt{N}} \text{Tr} M^3} = e^{Z_{\text{QG}}} \tag{1}$$

Important tool: 1/N expansion ['t Hooft, Nucl. Phys. B. **72** (74)] \sim Selection of genus = 0 sector (planar graphs) of the model.

Tensor Models [Ambjorn, Gross, Boulatov, 90's]

Tensor models generalizes matrix models \sim randomizing triangulation in dimension higher than 2.

Figure: 3D simplex: A triangle \sim a field; the interaction \sim tetrahedron.

Joseph Ren Geloun Loops' 13, July 201

Pirsa: 13070076 Page 53/67

Pirsa: 13070076 Page 54/67

- Colored tensor models improves a lot the topology associated with simplicial complexes: $T_{n_1...n_d}^{\rm a}$ (© Comment by J.Gaumis (PI) "AhAh!? You don't have enough indices?")
- Allows to understand a 1/N limit: Most dominant amplitudes (called Melons) are associated with the sphere topology $(\forall d)$.
- Trace invariants of the melonic kind and Trace invariants in matrix theory

Joseph Ben Geloun

Loops' 13. July 201

Pirsa: 13070076 Page 55/67

- Colored tensor models improves a lot the topology associated with simplicial complexes: $T_{n_1...n_d}^{a}$ (© Comment by J.Gaumis (PI) "AhAh!? You don't have enough indices?")
- Allows to understand a 1/N limit: Most dominant amplitudes (called Melons) are associated with the sphere topology $(\forall d)$.
- Trace invariants of the melonic kind and Trace invariants in matrix theory

Joseph Ben Geloun

Loops' 13. July, 20

Pirsa: 13070076 Page 56/67

Pirsa: 13070076 Page 57/67

Pirsa: 13070076 Page 58/67

Space of models

3 initial constraints

- (i) Field are defined on a background which is a compact group manifold $G = U(1)^D$ or $SU(2)^D$.
- (ii) The propagator = a "stranded" sum momenta of the form p^{2a} with 0 < a ≤ 1; Might be essential in order to achieve Osterwalder-Schraeder positivity axiom [Rivasseau, 1209.5284]? At a = 1, Laplacian dynamics. (We II see that a is however severely constrained by Renorm.)
- (iii) The interactions involved are unitary tensor invariants.

Rank $d \geq 2$ complex tensor field: $\varphi: G^d \to \mathbb{C}$. Fourier mode decomp.:

$$\varphi(h_1, h_2, \dots, h_d) = \sum_{P_{l_1}} \tilde{\varphi}_{P_{l_1}, P_{l_2}, \dots, P_{l_d}} D^{P_{l_1}}(h_1) D^{P_{l_2}}(h_2) \dots D^{P_{l_d}}(h_d), \qquad (2)$$

$$S^{\text{kin}} = \sum_{P_{[I]}} \bar{\varphi}_{P_{[I]}} \left(\sum_{s=1}^{d} |P_{I_s}|^s + \mu^2 \right) \varphi_{P_{[I]}}, \qquad (3)$$

- (a)
$$G = U(1)^D$$
: $|P_{I_s}|^a := \sum_{l=1}^D |p_{s,l}|^{2a}$, momentum values $p_{s,l} \in \mathbb{Z}$;
- (b) $G = SU(2)^D$: $|P_{I_s}|^a := \sum_{l=1}^D [j_{s,l}(j_{s,l}+1)]^a$, momentum triple $(j_{s,l},m_{s,l},n_{s,l}) \in \frac{1}{2}N \times \{-j,\ldots,j\}^2$.

Joseph Ren Geloun Loops' 13 July 2013

Pirsa: 13070076 Page 59/67

Space of models

3 initial constraints

- (i) Field are defined on a background which is a compact group manifold $G = U(1)^D$ or $SU(2)^D$.
- (ii) The propagator = a "stranded" sum momenta of the form p^{2a} with $0 < a \le 1$; Might be essential in order to achieve Osterwalder-Schraeder positivity axiom [Rivasseau, 1209.5284]? At a = 1, Laplacian dynamics. (We II see that a is however severely constrained by Renorm.)
- (iii) The interactions involved are unitary tensor invariants.

Rank $d \geq 2$ complex tensor field: $\varphi: G^d \to \mathbb{C}$. Fourier mode decomp.:

$$\varphi(h_1, h_2, \dots, h_d) = \sum_{P_{l_1}} \tilde{\varphi}_{P_{l_1}, P_{l_2}, \dots, P_{l_d}} D^{P_{l_1}}(h_1) D^{P_{l_2}}(h_2) \dots D^{P_{l_d}}(h_d), \qquad (2)$$

$$S^{\text{kin}} = \sum_{P_{[I]}} \bar{\varphi}_{P_{[I]}} \left(\sum_{s=1}^{d} |P_{I_s}|^s + \mu^2 \right) \varphi_{P_{[I]}}, \qquad (3)$$

- (a)
$$G = U(1)^D$$
: $|P_{I_s}|^a := \sum_{l=1}^D |p_{s,l}|^{2a}$, momentum values $p_{s,l} \in \mathbb{Z}$;
- (b) $G = SU(2)^D$: $|P_{I_s}|^a := \sum_{l=1}^D [j_{s,l}(j_{s,l}+1)]^a$, momentum triple $(j_{s,l},m_{s,l},n_{s,l}) \in \frac{1}{2}N \times \{-j,\ldots,j\}^2$.

Joseph Ren Geloun Loops' 13 July 2013

Pirsa: 13070076 Page 60/67

Updated list of models

TGFT (type)	$G_{\mathcal{D}}$	Φ^{k} max	d	а	Renormalizability	UV behavior
	U(1)	Φ^6	4	1	Just-	AF
	U(1)	Φ^4	3	$\frac{1}{2}$	Just-	AF
	U(1)	Φ^6	3	2/3	Just-	AF
	U(1)	Φ^4	4	3/4	Just-	AF
	U(1)	Φ^4	5	ĩ	Just-	AF
	$U(1)^{2}$	Φ^4	4	1	Just-	AF
	U(1)	Φ^{2k}	3	1	Super-	-
gi-	<i>U</i> (1)	φ ⁴	6	1	Just-	AF
gi-	U(1)	Φ^6	5	1	Just-	AF
gi-	$SU(2)^{3}$	Φ^6	3	1	Just-	AF
gi-	U(1)	Φ^{2k}	4	1	Super-	-
gi-	U(1)	φ ⁴	5	1	Super-	-
gi-	$U(1)^{3}$	Φ ⁴	3	1	?Just-	-
gi-	$U(1)^2$	Φ ⁴	4	1	?Just-	-
Matrix	<i>U</i> (1)	Φ^{2k}	2	$\frac{1}{2}(1-\frac{1}{k})$	Just-	$(k = 2, AS^{(\infty)}); (k = 3, LG)$
Matrix	$U(1)^{2}$	Φ^{2k}	2	$1 - \frac{1}{k}$	Just-	$(k = 2, AS^{(1)}); (k = 3, LG)$
Matrix	$U(1)^3$ or $SU(2)$	Φ^6	2	1 ^	Just-	LG
Matrix	$U(1)^3$ or $SU(2)$	Φ^4	2	3	Just-	AS ⁽¹⁾
Matrix	$U(1)^4$	Φ ⁴	2	i	Just-	AS ⁽¹⁾
Matrix	U(1)	Φ^{2k}	2	1/2	Super-	-
Matrix	$U(1)^2$	Φ^{2k}	2	1	Super-	_

Table: Updated list of renormalizable models and their features (AF \equiv asymptotically free; LG \equiv existence of a Landau ghost; AS^(ℓ) asymptotically safe at ℓ -loops).

Joseph Ben Geloun Loops' 13 July 2013

Pirsa: 13070076 Page 61/67

Updated list of models

TGFT (type)	$G_{\mathcal{D}}$	ф ^k max	d	а	Renormalizability	UV behavior
	U(1)	Φ^6	4	1	Just-	AF
	U(1)	Φ^4	3	$\frac{1}{2}$	Just-	AF
	U(1)	Φ^6	3	2/3	Just-	AF
	U(1)	Φ^4	4	3/4	Just-	AF
	U(1)	Φ^4	5	i	Just-	AF
	$U(1)^{2}$	Φ^4	4	1	Just-	AF
	U(1)	Φ^{2k}	3	1	Super-	-
gi-	<i>U</i> (1)	Φ ⁴	6	1	Just-	AF
gi-	U(1)	Φ^6	5	1	Just-	AF
gi-	$SU(2)^{3}$	Φ^6	3	1	Just-	AF
gi-	U(1)	Φ^{2k}	4	1	Super-	-
gi-	U(1)	φ ⁴	5	1	Super-	-
gi-	$U(1)^{3}$	Φ ⁴	3	1	?Just-	-
gi-	$U(1)^2$	Φ ⁴	4	1	?Just-	-
Matrix	<i>U</i> (1)	Φ^{2k}	2	$\frac{1}{2}(1-\frac{1}{k})$	Just-	$(k = 2, AS^{(\infty)}); (k = 3, LG)$
Matrix	$U(1)^{2}$	Φ^{2k}	2	$1 - \frac{1}{k}$	Just-	$(k = 2, AS^{(1)}); (k = 3, LG)$
Matrix	$U(1)^3$ or $SU(2)$	Φ^6	2	1 ^	Just-	LG
Matrix	$U(1)^3$ or $SU(2)$	Φ^4	2	3	Just-	AS ⁽¹⁾
Matrix	$U(1)^4$	Φ ⁴	2	i	Just-	AS ⁽¹⁾
Matrix	U(1)	Φ^{2k}	2	1/2	Super-	_
Matrix	$U(1)^{2}$	Φ^{2k}	2	1	Super-	_

Table: Updated list of renormalizable models and their features (AF \equiv asymptotically free; LG \equiv existence of a Landau ghost; AS^(ℓ) asymptotically safe at ℓ -loops).

Joseph Ren Geloun Loops' 13 July 2013

Pirsa: 13070076 Page 62/67

Updated list of models

TGFT (type)	$G_{\mathcal{D}}$	φ ^k max	d	а	Renormalizability	UV behavior
	U(1)	Φ^6	4	1	Just-	AF
	U(1)	Φ^4	3	$\frac{1}{2}$	Just-	AF
	U(1)	Φ^6	3	2 3	Just-	AF
	U(1)	Φ^4	4	3/4	Just-	AF
	U(1)	Φ^4	5	ĩ	Just-	AF
	$U(1)^{2}$	Φ^4	4	1	Just-	AF
	U(1)	Φ^{2k}	3	1	Super-	-
gi-	<i>U</i> (1)	φ ⁴	6	1	Just-	AF
gi-	U(1)	Φ^6	5	1	Just-	AF
gi-	$SU(2)^{3}$	Φ^6	3	1	Just-	AF
gi-	U(1)	Φ^{2k}	4	1	Super-	-
gi-	U(1)	φ ⁴	5	1	Super-	-
gi-	$U(1)^{3}$	φ4	3	1	?Just-	-
gi-	$U(1)^2$	Φ ⁴	4	1	?Just-	-
Matrix	<i>U</i> (1)	Φ^{2k}	2	$\frac{1}{2}(1-\frac{1}{k})$	Just-	$(k = 2, AS^{(\infty)}); (k = 3, LG)$
Matrix	$U(1)^{2}$	Φ^{2k}	2	$1 - \frac{1}{h}$	Just-	$(k = 2, AS^{(1)}); (k = 3, LG)$
Matrix	$U(1)^3 \text{ or } SU(2)$	Φ^6	2	1 ^	Just-	LG
Matrix	$U(1)^3$ or $SU(2)$	Φ^4	2	3	Just-	AS ⁽¹⁾
Matrix	$U(1)^4$	Φ ⁴	2	1	Just-	AS ⁽¹⁾
Matrix	U(1)	Φ^{2k}	2	1 2	Super-	_
Matrix	$U(1)^2$	Φ^{2k}	2	1	Super-	_

Table: Updated list of renormalizable models and their features (AF \equiv asymptotically free; LG \equiv existence of a Landau ghost; AS^(ℓ) asymptotically safe at ℓ -loops).

Joseph Ren Geloun Loops' 13, July 2013

Pirsa: 13070076 Page 63/67

Pirsa: 13070076 Page 64/67

Future Prospects: Counting (and classifying?) tensor invariants

(In collaboration with Sanjaye Rangoolam: 1307.6490)

• Determination of possible graph amounts to count triples

$$(\sigma_1, \sigma_2, \sigma_3) \in (S_n \times S_n \times S_n) \qquad (\sigma_1, \sigma_2, \sigma_3) \sim (\gamma_1 \sigma_1 \gamma_2, \gamma_1 \sigma_2 \gamma_2, \gamma_1 \sigma_3 \gamma_2) \qquad (5)$$

Counting points in the double coset

$$S_3(n) = \operatorname{Diag}(S_n) \setminus (S_n \times S_n \times S_n) / \operatorname{Diag}(S_n). \tag{6}$$

• Using Burnside's (orbit) counting lemma: Conjugacy classes of S_n are determined by partitions $p \vdash n$:

$$Z_3(n) = \sum_{p \vdash n} \left(\prod_{i=1}^n (i^{\mu_i})(\mu_i!) \right), \quad p = (\mu_i)_i, \quad \sum_i i\mu_i = n.$$

• Relation with different counting: S_n -TFT !!!

$$Z_3(n) = \frac{1}{n!} \sum_{\gamma \in S_n} \sum_{\sigma_2, \sigma_3 \in S_n} \delta(\gamma \sigma_2 \gamma^{-1} \sigma_2^{-1}) \delta(\gamma \sigma_3 \gamma^{-1} \sigma_3^{-1})$$
 (7)

$$1, 4, 11, 43, 161, 901, 5579, 43206, 378360, 3742738, \dots$$
 (8)

Joseph Ron Colours Loops' 12 July 2012

Pirsa: 13070076 Page 65/67

Future Prospects: Counting (and classifying ?) tensor invariants

(In collaboration with Sanjaye Rangoolam: 1307.6490)

• Determination of possible graph amounts to count triples

$$(\sigma_1, \sigma_2, \sigma_3) \in (S_n \times S_n \times S_n) \qquad (\sigma_1, \sigma_2, \sigma_3) \sim (\gamma_1 \sigma_1 \gamma_2, \gamma_1 \sigma_2 \gamma_2, \gamma_1 \sigma_3 \gamma_2) \qquad (5)$$

Counting points in the double coset

$$S_3(n) = \operatorname{Diag}(S_n) \setminus (S_n \times S_n \times S_n) / \operatorname{Diag}(S_n). \tag{6}$$

• Using Burnside's (orbit) counting lemma: Conjugacy classes of S_n are determined by partitions $p \vdash n$:

$$Z_3(n) = \sum_{p \vdash n} \left(\prod_{i=1}^n (i^{\mu_i})(\mu_i!) \right), \quad p = (\mu_i)_i, \quad \sum_i i\mu_i = n.$$

• Relation with different counting: S_n-TFT !!!

$$Z_3(n) = \frac{1}{n!} \sum_{\gamma \in S_n} \sum_{\sigma_2, \sigma_3 \in S_n} \delta(\gamma \sigma_2 \gamma^{-1} \sigma_2^{-1}) \delta(\gamma \sigma_3 \gamma^{-1} \sigma_3^{-1})$$
 (7)

$$1, 4, 11, 43, 161, 901, 5579, 43206, 378360, 3742738, \dots$$
 (8)

Joseph Ron Colours Loope' 12 July 2012

Pirsa: 13070076 Page 66/67

Pirsa: 13070076 Page 67/67