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€ Discretizing continuum theories

© Broken symmetries

9 Canonical dynamics of discrete systems

o Canonical Regge Calculus

9 Quantization
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@ Broadly:

@ discretize continuum eoms/constraints in gravity = get 2nd class
constraints [Piran, Williams '86; Friedman, Jack '86; Loll '08] which are not preserved by
evolution (e.g. numerical relativity)

Q discretize continuum action = obtain eoms from discrete action

@ 2nd option also used in regularizing the
path integral in QM

g . N
/ Dx e = Nlim / H dx ol 2ok Sk(Xk:Xk-1)
. — 00 k=1

@ we shall follow 2nd option
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Discretizing spacetimes. AICUIUS [Regge '61; Hartle, Sorkin '81]

@ Regge Calculus: replace smooth D-dim. spacetime (M. g, ) by
piecewise-linear flat metric living on triangulation 7, comprised of
D-simplices o

(T, 1%

h: ‘hinge' ((D — 2)-subsimplex)

9. interior dihedral angle at h in o

. volume of h

=27 - ,\.rr::h

0f : deficit angle discretize

™ = 5—p 0 exterior angle

@ configuration variables: edge lengths {/€}ec7, encode complete
geometry

o (Euclidean) action Sgy = — [, /&Rd*x — [\, VaKd’x — Sg

discretize

SR({IF) == Y Vhen— Y Vit . Sp additive

hf ]—\r)J— H ~T
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rice to pay: ries [Marsden, West '01; Dittrich, Bahr '09]

example: (broken) reparametrization invariance in discrete mechanics

enlarge system, take t as variable, evolution w.r.t. parameter s

G = / dt L (x(t). X(t)) — S. = / ds L <x( ).

dynamics equivalent (eom for x solved = eom for t solved)
system invariant under reparametrizations of s

discretize sj, < ... < sk < ... < Sfin, Xk = X(Sk), tk = t(sk)
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rice to pay: ries [Marsden, West '01; Dittrich, Bahr '09]

@ example: (broken) reparametrization invariance in discrete mechanics

@ enlarge system, take t as variable, evolution w.r.t. parameter s

S = / dt L (x(t). X(t)) — So = / ds L (x( ). );((j))) t'(s)

@ dynamics equivalent (eom for x solved = eom for t solved)

@ system invariant under reparametrizations of s
@ discretize sj, < ... < sk < ... < Sfin, Xk = X(Sk), tk = t(sk)

t

Figure: V =0, sym. preserv.
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@ analogous situation in discrete gravity = vertex displacement
symmetry in flat sector of Regge Calculus

\
\ /
\
\
\
[N -
/

@ symmetry broken in presence of curvature (Rocek, Williams '81; Dittrich '08; Bahr,

Dittrich '09]

00010

FigLIrEI Bahr, Dittrich, CQG 26 225011 (2009)

@ gauge modes of the continuum become propagating in the discrete
@ coarse graining/perfect actions (Bahr, Dittrich '09; Bahr, Dittrich, Steinhaus '11]
@ here: review of systematic canonical tools for extracting dynamics

P. Hohn (Perimeter) Review: discrete approaches session

Pirsa: 13070075 Page 13/148



rice to pay: ries [Marsden, West '01; Dittrich, Bahr '09]

@ example: (broken) reparametrization invariance in discrete mechanics

@ enlarge system, take t as variable, evolution w.r.t. parameter s

S = / dt L (x(t). X(t)) — So = / ds L (x( ). );((j))) t'(s)

@ dynamics equivalent (eom for x solved = eom for t solved)

@ system invariant under reparametrizations of s
@ discretize sj, < ... < sk < ... < Sfin, Xk = X(Sk), tk = t(sk)

Figure: V =0, sym. preserv. Figure: V # 0, sym.

P. Hohn (Perimeter) Review: discrete approaches session

Pirsa: 13070075 Page 14/148



@ analogous situation in discrete gravity = vertex displacement
symmetry in flat sector of Regge Calculus

\
\ /
\
\
\
[N -
/

@ symmetry broken in presence of curvature (Rocek, Williams '81; Dittrich '08; Bahr,

Dittrich '09]

00010

FigLIrEI Bahr, Dittrich, CQG 26 225011 (2009)

@ gauge modes of the continuum become propagating in the discrete
@ coarse graining/perfect actions (Bahr, Dittrich '09; Bahr, Dittrich, Steinhaus '11]
@ here: review of systematic canonical tools for extracting dynamics

P. Hohn (Perimeter) Review: discrete approaches session

Pirsa: 13070075 Page 15/148



Ime evolution In simpiicCia

@ dynamics generated by evolution moves, not constraints /Hamiltonian

@ glue pieces of triangulation to triangulated hypersurface 2>, at each
step k € Z = add action contributions

step k

Future

P. Hohn (Perimeter) Review: discrete approaches session

Pirsa: 13070075 Page 16/148



Ime evolution In simpiicCia

@ dynamics generated by evolution moves, not constraints/Hamiltonian

@ glue pieces of triangulation to triangulated hypersurface 2, at each
step k € Z = add action contributions

step kK + 3 2 k43

Future

P. Hohn (Perimeter) Review: discrete approaches session

Pirsa: 13070075 Page 17/148



Ime evolution In simpiicCia

@ dynamics generated by evolution moves, not constraints/Hamiltonian

@ glue pieces of triangulation to triangulated hypersurface 2, at each
step k € Z = add action contributions

step k + 4 2 jid

Future

P. Hohn (Perimeter) Review: discrete approaches session

Pirsa: 13070075 Page 18/148



Ime evolution In simpiicCia

@ dynamics generated by evolution moves, not constraints/Hamiltonian

@ glue pieces of triangulation to triangulated hypersurface 2, at each
step k € Z = add action contributions

step kK + 5 2 k45

Future

P. Hohn (Perimeter) Review: discrete approaches session

Pirsa: 13070075 Page 19/148



Ime evolution In simpiicCia

@ dynamics generated by evolution moves, not constraints/Hamiltonian

@ glue pieces of triangulation to triangulated hypersurface 2, at each
step k € Z = add action contributions

step k + 6 2 k46

Future
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anonical momenta [Marsden, West '01; Gambini, Pullin '03; Dittrich, PH '11,'13]

@ discrete action S = ZkN—l Sk(Xk—1.Xx) = Sk as generating fct.

_()Sk(kal-xk) _ “Sk(Xk l-Xf\')

(l)kal - . (')X;\,
~p. pre-momenta, " p: post-momenta
@ defines time evolution map

Hi: (k1. P 1) — (x. T p5)

@ similarly, use Si1(xk, xk11) as gen. fct.

— k _ Sk 41
P =5
()Xk

f‘)SA

Sk _ _
o, T Skl — 0 o +pk = ~pk momentum matching

@ eom Dxs

canon. and covar. formulation equivalent
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ONSTralnNts [pittrich, PH '11, '13]
@ incont. p= ')L(()%’I(’) = impl. fct. thm.: if det (‘.);;,-::l;(.}j) = 0 get
primary constraints Cp,(q.p) =0

@ in discrete, Hy for evolution (k — 1) — k defined by

_ k-1 OSK(Xk—1. Xk ) c ok OSk(Xk—1.xk)
P = — ; : P ,
OXk—1 X

. ‘ " o2
— obtain two types of constraints if det [ —2=2k ) =0
t)XL_lt)X';(

o TCK(xk. TPF) =0 = post—constraints

o "CFYx_1.7pf"1)=0 = pre—constraints

@ time evol. map Hy no longer unique:

k—l)

e.g., *Ck*l(xkfl. p =0 = x¢ = Xk (Xk—1 7Pk71- ’\f<”)'

Ak: a priori free parameter
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voliving phase spaces. €.g. dCNNEr MOVE [ittrich, PH '11; '13]
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voliving phase spaces. €.g. dCNNEr MOVE [ittrich, PH '11; '13]

@ 3 new edges, but no eoms for k — k + 1
= their lengths /[ | are a priori free Ay 4
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volving phase spaces: e.g.

@ 3 new edges, but no eoms for k — k + 1
= their lengths [/, | are a priori free Ay

@ extend phase space at step k, add (/. pf‘,)

@ use Sy(/].4....) as type 1 gen. fct. (trivial dep. on /)

—_ — p— O
Pn Ol

@ 3 pre—constraints at k
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@ 3 new edges, but no eoms for k — k + 1
= their lengths [/, | are a priori free Ay

@ extend phase space at step k, add (/. pf‘,)

@ use Sy(/].4....) as type 1 gen. fct. (trivial dep. on /)

pn - SIn ’ pn T an =1 n
‘)l )|
k k+1

@ 3 pre—constraints at k
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volving phase spaces: e.g.

@ 3 new edges, but no eoms for k — k + 1
= their lengths /|’ | are a priori free Ay

@ extend phase space at step k, add (//. pf‘,)

@ use S-(//,q....) as type 1 gen. fct. (trivial dep. on /]!

pr=0 prt] NHUA M)

@ 3 pre—constraints at k

@ **1 only depends on lengths from ¥, ; = obtain 3 post—constraints
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volving phase spaces: e.g.

@ 3 new edges, but no eoms for k — k + 1
= their lengths I/, , are a priori free Ay 4

@ extend phase space at step k, add (/. pk)

@ use S-(/f,....) as type 1 gen. fct. (trivial dep. on /)

k k+1 <+ 1 n
Pn = 0 ’ Pn Y n (/l\ '/l\- } l)

@ 3 pre—constraints at k

o ¢'**1 only depends on lengths from ¥.; = obtain 3 post—constraints

@ all Pachner moves in 3D /4D analogously = ‘pre-symplectic
transformations’
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SYMMETLrIES [pittrich, PH '13)

@ evolution (k — 1) — k — (k 4+ 1): generally, *Ck £ —C*
@ momentum matching: impose both ©*C* and ~CK at k
@ pre— and post—constraints each form 1st class sub-algebra

{TCF,~Cfy =0~ {FTC} T CF}

@ generally mixture 2nd class

{~cr. C;‘k} # 0

= fixes free parameters
@ however, if CK = ~CK = *C¥, then

@ first class
Q associated to gauge mode

@ generate gauge symmetry

@ possible: constraint first class, but does not generate symmetry
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ropagating reedom (picich, PH '13]

@ need two time steps for propagation, Hy, : €, — C,

@ data propagating k; — ks commutes with pre—constraints at k; and
post—constraints at k¢

@ in evolution k; — kg number of constraints at k; depends on k¢ (and
vice versa)

> number of propagating degrees of freedom, in general,
Nij—ke 7 Nit —k;
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ropagating reedom (picich, PH '13]

need two time steps for propagation, Hy; : C,; — Cp.
data propagating k; — kf commutes with pre—constraints at k; and
post—constraints at kf

in evolution k; — k¢ number of constraints at k; depends on k¢ (and
vice versa)

> number of propagating degrees of freedom, in general,
Ni,— ke 7 Nk}’—k;

e.g. 'discrete no boundary scenario’:

‘Nothing'——— //
\ /
Y4

0 1

P. Hohn (Perimeter) Review: discrete approaches session

Pirsa: 13070075 Page 34/148



ropagating reedom (picich, PH '13]

need two time steps for propagation, Hy; : C,; — Cp.
data propagating k; — kf commutes with pre—constraints at k; and
post—constraints at kf

in evolution k; — k¢ number of constraints at k; depends on k¢ (and
vice versa)

> number of propagating degrees of freedom, in general,
Ni,— ke 7 Nk}’—k;
e.g. 'discrete no boundary scenario’:

.
A
J\\
\

\ /

e ~ L

/ Y

/, |
|
4
|

/]

Y,

iy

\
A\

.
A |
- il
. Y
VA [
vV L *d \
N
[~}
\ v
\ g ~f
/ v
SN
_—
/

0 1
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PplCation: CanoniCa €gge LalCUlUS [pittrich, PH '09; '11]

@ using formalism can implement general time evolution moves in
canonical language on evolving phase spaces

@ Regge Calculus as discrete dynamics of triangulated hypersurfaces

3D 4D

solutions flat, preserve symmetry solutions with curvature possible

each vertex equipped with three vertices generally not equipped
constraints Ck = *Ck = —Ck with constraints

preserved by evolution symmetries broken

generate vertex displacement generically no hypersurface
symmetry deformation algebra

‘hyperbolic’ ‘non—hyperbolic’
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egge alculus [Dittrich, PH '09; PH to appear]

expand /¢ = (0)/¢ 4 =§/¢ + O(=?) around flat solution

inherits vertex displacement gauge symmetry from flat background

4 constraints per vertex ij, = lef, = *C\f,, | =1....4: preserved by

dynamics, 1st class {C\f‘,. C\f‘,J} ~ 0 and generate symmetry

‘gravitons': linearized deficit angles de; (complete set) and
{0er. Cl} ~ 0 = formalism describes their dynamics

symmetries broken to first non—linear order:
background gauge modes become propagating
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conriguration space [PH to appear]

@ Impose constraints in quantum theory via group averaging
- L g ' ot Gk
i!.‘L'll'\' — Hh(icll{)‘-'km _ H / ds; e C 1.‘12“'
/ [

@ physical inner product
hys hys i st B 1 ki
(=P 0B s = (05| TT, 6= Y™ e

@ For evolution move 0 — 1 define propagator
Ko—1(x0,x1) = Mo_1 e/>1(x0.:x1) Mp_.1 : measure

@ construct (improper) projectors from HY™ to H}""\'HI and Hy" to
H])ll_\'H—
0

Lo phys . Kin — phys _ l # o Kin
U1 = /dXO Koﬁlzlo ; (0 = /Xm (Koﬁl) U

@ Kp_.1 must satisfy constraints and other conditions
Lo phys| 4+  physy — . .phys|— ,phys

= unitarity: (T | T O ) phys = (T Dk )phys
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lHoert spaces anda CylindriCal CONSISTENCY [PH to appear]

@ regularized (e.g. Faddeev-Popov) composition yields path integral

N-1
Koy = / H Koy | ax
=1

if number of variables varies, extend configuration spaces

= auxiliary dimension subject to pX, ¢ e =0

hys : . . . .
= 4 """ are cylindrical functions on extended configuration spaces,

inner product invariant = naturally handles time varying discretization

N
/,:'/
//-'.‘, ]
IV L
/ 1= Ty
70N 5 Al

‘Nothing’ —— / / S —_— </ ( /\\%/
1 oo\

toy model for 'no boundary proposal’

0

for evolution ‘Nothing' — k always get unique physical state "Lm'\.h
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ummary

symmetries generically broken in the discrete = consequences for
dynamics

general constraint analysis for variational discrete systems available
= naturally handles time varying discretizations

—_—

= constraints and propagating dofs evolution move dependent

can construct general canonical formulation of Regge Calculus

formalism can be consistently quantized
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What is causal dynamical triangulations? g o

and place signature on a
PDF File.

e lattice regularization

o finite-size scaling

@ renormalization
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What is causal dynamical triangulations? g o

and place signature on a
PDF File.

e lattice regularization

o finite-size scaling

@ renormalization

Lorentzian y FEuclidean |
A = ’ /Dg(,;‘h‘[g] 7z = ’ Dg(‘_.n;(l;)[g]

causal
trianeulation
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~
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PDF File.

Lorentzian
A = ’ Dg Rt

causal
trianeulation

|
Acpr = D7 11(Te)e

J. Miller (CU Boulder)

iSR(Te

e lattice regularization
o finite-size scaling

@ renormalization

Wick

rotation

CDT Transition Amplitudes

FEuclidean
Z = ’ Dg (‘Q'L’.(i‘:)[g]

=2 u(Te)e™ R (Te)

July 2013 2/13
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e Do the nonminimal to nonminimal boundary transition
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Which analytic minisuperspace quantization corresponds to the

technique of causal dynamical triangulations?

Do the nonminimal to nonminimal boundary transition
amplitudes agree quantitatively with the analytic minisuperspace
quantization?

imposing nonspherically symmetric boundary geometries?

Is there gange redundancy in the number 1" of time slices of a
causal triangulation?
(c.f. this morning’s talk)
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Observational Evidence for Dark Energy

Multiple independent sets of empirical evidence say dark energy (DE) is
~ 70% of the matter-energy in our universe.

@ Cosmic microwave background (Hinshaw et al. 2012)
@ Apparent luminosity of supernovae (Kowalski et al. 2008)
e X-ray emissions from galaxy clusters (Allen et al. 2008)

@ Large scale distribution of galaxies (Tegmark et al. 2004)

Data are consistent with DE as a cosmological constant or equivalently a
uniform vacuum energy density of

A~ 107122

in Planck units. The data are also consistent with more exotic models, like
those where A varies with time.
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PDF File.

A theoretical explanation for the magnitude of A is difficult.
@ Naive quantum field theory (QFT) says A ~ 1.
@ Can construct natural theories (e.g. SUSY) where A = 0.

@ Very hard to find natural way to get A ~ 107122,
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A theoretical explanation for the magnitude of A is difficult.
@ Naive quantum field theory (QFT) says A ~ 1.
@ Can construct natural theories (e.g. SUSY) where A = 0.

@ Very hard to find natural way to get A ~ 107122,

Various explanations of DE, for example:

@ Holographic Dark Energy (HDE): Accelerating expansion driven by
entropy on cosmic horizon. (Cohen, et al. 1999)

e Quintessence: Accelerating expansion driven by exotic matter field(s).

(Caldwell, et al. 1998)

@ Quantum Non-Locality: A is a non-local quantum residue of
spacetime discreteness. (Sorkin 1988)

@ Anthropic Principle: Only universes with A < 1 support life.
(Weinberg 1987)
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Dark Energy from Discrete Spacetime

We present a new model for the origin of DE. The basic story:
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Dark Energy from Discrete Spacetime

We present a new model for the origin of DE. The basic story:

@ Spacetime is fundamentally a kind of discrete geometry.

@ In a discrete geometry, there are more ways to encode states with
total scalar-curvature negative than positive.

@ This bias perturbs the ground state of the vacuum giving even empty
spacetime a small negative scalar-curvature.

An intrinsic negative curvature for empty space has the same effect as a
positive vacuum energy density.
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Dark Energy from Discrete Spacetime

We present a new model for the origin of DE. The basic story:

@ Spacetime is fundamentally a kind of discrete geometry.

@ In a discrete geometry, there are more ways to encode states with
total scalar-curvature negative than positive.

@ This bias perturbs the ground state of the vacuum giving even empty
spacetime a small negative scalar-curvature.

An intrinsic negative curvature for empty space has the same effect as a
positive vacuum energy density.

This story is supported by the basic structure of the Einstein-Hilbert
action.
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(R —2A) + Lom| /=g d"x.
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The Einstein-Hilbert Action Al
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AEH(g;w) — (R - 2/\) m £m vV —& dix:

@ Only the scalar-curvature term R has a physically distinguished
zero value. In QFT on a fixed background
Ly, — L, + const

doesn’t change the dynamics and we can simply set A = 0. Thus, it is
reasonable to argue that a non-zero A comes from quantum
perturbations on K.
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The Einstein-Hilbert Action Al

PDF File.

AEH(g;w) — (R - 2/\) m £m vV —& dix:

@ Only the scalar-curvature term R has a physically distinguished
zero value. In QFT on a fixed background

L, — L, + const

doesn’t change the dynamics and we can simply set A = 0. Thus, it is
reasonable to argue that a non-zero A comes from quantum
perturbations on K.

We expect an entropic perturbation on the value of a global
observable (like total R) to be independent of local dynamics. The
cosmological constant term A is the only term in Agy
independent of the metric.
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Sure, nice story ...can we fill in mathematical details?
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Sure, nice story ...can we fill in mathematical details? Yes!

We compute this effect using a novel variant of the dynamical
triangulations (DT) theory of quantum gravity and obtain

A~ 107123,
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Sure, nice story ...can we fill in mathematical details? Yes!

We compute this effect using a novel variant of the dynamical
triangulations (DT) theory of quantum gravity and obtain

A~ 107123,

@ Spacetime states in our model will be triangulations of a fixed
compact n-manifold M, just like in DT.

@ We use the standard DT action with A = 0.

@ However, this theory is not the same as DT since we will restrict the
set of triangulations which contribute to the partition function. (Like
in CDT, but here we include states based on their action value.)
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We will be concerned with the average DT action (per volume) for
triangulations of a fixed region with volume V = N, V,,(().

—_ ADT -7 1 1
= = cpl -
A v (/f(T) /f;f)

where
@ ¢, is a constant depending only on the dimension n,

@ [ is length of all the edges in T,

o 1(T) = Nn]:;mzrn—ZET deg(7"~?) is the mean hinge degree, and

o ¥ = ﬁﬁ is the “flat” hinge degree.

We suppress the ( and n dependence writing simply A(yt) and interpret
this quantity as the mean scalar-curvature over this region. Note that
for any 1 # pi* this quantity diverges like (2.
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Theorem

Let M be a closed 3-manifold and N3 a fixed number of tetrahedra. Then,
there are mean actions

Ernfn - j 4.5 -
(455

N3
N3+ 35 (3+ \/9+8N3))

so that for every integer Ny with

jJ'nax — Z (6

j = ﬁ(/!) = j(6N3/N1) (= (jmin-jmax)

we know A = A(T) for some triangulation T of M containing N3
tetrahedra and Ny edges.
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More on Main Result

The A given in the theorem are regularly spaced over (A,,,,-,,.ﬂ,,mx) with
separation

— 1 [

This is the smallest possible separation given fixed N3 so these are all the
possible mean-actions A on this interval.
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More on Main Result

The A given in the theorem are regularly spaced over (A,,,,-,,.ﬂ,,mx) with

separation
— 1/
YA=—-| — ).
-5 ()

This is the smallest possible separation given fixed N3 so these are all the
possible mean-actions A on this interval.

When N3 > 1 we get

j,'m'n ~ j(6) ~ _0-19/_2

Amax = j(45) ~ 0.17(72.
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Since GR vacua at A = 0 have total scalar-curvature zero, we aim to build

a model in which (A) =
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Constructing the N-Action Model

Since GR vacua at A = 0 have total scalar-curvature zero, we aim to build

a model in which (A) = 0.

For each ¢ and corresponding N3, let Ay be the closest attainable mean
action to zero. Our model uses triangulations with this mean-action, as
well as those having one of the N mean-action values A, on either side of
Ap. Let Ay and i, be the corresponding actions and mean edge-degrees.
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Constructing the N-Action Model

Since GR vacua at A = 0 have total scalar-curvature zero, we aim to build

a model in which (A) = 0.

For each ¢ and corresponding N3, let Ay be the closest attainable mean
action to zero. Our model uses triangulations with this mean-action, as
well as those having one of the N mean-action values A, on either side of
Ap. Let Ay and i, be the corresponding actions and mean edge-degrees.

By our main result, if N = N({) grows slower than (=2 then for small
enough ( all Ag lie in (Amin. Amax) and our partition function is

N
7 — Z eS;‘—i—i(Ao-i-k-r'i/-l)
k=—N

where Sy = In(# of T with Ap7(T) = Ay) is the entropy at action Ay
and 04 = VA = %( the separation between actions.
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Expected Action

The expected action for this model is then
1 N
= Yy Sk+i(Ao+k-aA)
(A) = > kE—N(AO + k - QA)e kTR0 .

It is currently impossible to write (A) as an exact closed-form expression.
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The expected action for this model is then
- . |
(A) _ Z (-/40 + k- (m)esk+f(¢40+k.fl4)_

< k=—N

It is currently impossible to write (A) as an exact closed-form expression.

However, under the affine entropy approximation
Sk =50+ k-1
where 1) = 1)(N3) does not depend on k, we get (A) equal to

A 0A

A0 = entidAd _ 1 i c(N+1)(n+idd) _ 1 NaA coth[(2N + 1)(n + idA)].
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Choosing an Appropriate N

A complete DT-style theory of QG coupled to matter would let us derive
an appropriate N for this model, but unfortunately we're not there yet!
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Choosing an Appropriate N

A complete DT-style theory of QG coupled to matter would let us derive
an appropriate N for this model, but unfortunately we're not there yet!

However, we know enough to guess what such a theory would say. We will
assume that Sy ~ So + k - 1) with n(N3) 40 as N3 — oc.

@ We must have N — o0 as { — 0. Otherwise, all the actions A, would
go to zero, and we wouldn't have a quantum theory.

@ The product NoA must converge as ( — 0. Otherwise, our formula
for the expected action (A) would diverge as { — 0.
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A complete DT-style theory of QG coupled to matter would let us derive
an appropriate N for this model, but unfortunately we're not there yet!

However, we know enough to guess what such a theory would say. We will
assume that Sy ~ So + k - 1) with n(N3) 40 as N3 — oc.

@ We must have N — o0 as { — 0. Otherwise, all the actions A, would
go to zero, and we wouldn't have a quantum theory.

@ The product NoA must converge as ( — 0. Otherwise, our formula
for the expected action (A) would diverge as { — 0.

. . . . v1/3
Since 0A o< ( and N is dimensionless, we are led to choose N = —
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The Cosmological Constant

Using this N along with the affine entropy assumption with 1 < 0 gives

lim (A) = L lim (A) = —

(—0 V (=0
which, by the Einstein-Hilbert action, implies an effective A of

1 1

A=—=lim(A) = — V3.

2 (—0 16
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The Cosmological Constant

Using this N along with the affine entropy assumption with 1 < 0 gives

lim (A) = L lim (A) = —

(—0 V (=0
which, by the Einstein-Hilbert action, implies an effective A of

1 1

A=—=lim(A) = — V3.

2 (—0 16

Can we use this result to estimate A in our universe? Considerations of
causality indicate we should use something like the Hubble volume H(t)™>

for V| giving
1

~ 16

0123 in agreement with observation.

A(t) H(t)?.

In the current era we get A ~ 1

Aaron Trout (Loops 2013) Dark Energy from Discrete Spacetime July 24, 2013 13 /18
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Our model shares two key features with HDE approaches:

@ Our A scales like the area of the cosmic horizon.

@ We coordinated the cut-offs ¢ and N so that the entropic
perturbation on (A) stays bounded as ¢ — 0. HDE models typically
contain UV and IR field cut-offs which are removed in a way that

saturates entropy in the Bekenstein bound.
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Discussion

Our model shares two key features with HDE approaches:

@ Our A scales like the area of the cosmic horizon.

@ We coordinated the cut-offs ¢ and N so that the entropic
perturbation on (A) stays bounded as ¢ — 0. HDE models typically
contain UV and IR field cut-offs which are removed in a way that
saturates entropy in the Bekenstein bound.

Finally, for a Planck-scale universe (V ~ 1) we predict A ~ 1 and hence
very rapid expansion.

This raises the tantalizing possibility that big-bang inflation and
dark-energy are manifestations of a common effect. This possibility is
already under active investigation in the HDE context (Easson et al. 2012).
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We used the Metropolis algorithm with quadratic objective function

U(T) = a (X(T) —ﬁ*)z + 8 (N3(T) ~ fv;‘):2

to sample triangulations of the 3-sphere near a target mean-action j-l- =0
and target number of tetrahedra N.;. Below is a histogram of samples for

NI = 1701, o = 3.5 x 10% and 3 = 1.0 x 1072,

| | | @ A Gaussian distribution
: ' means S, depends
linearly on k.

@ T[he displacement of the
sample mean away from

Sample Count

jr = 0 implies the slope
1) is negative.,

=0.00" 0.000 0,007 5.002
Mean Action & in £ /L7
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What happens to 1) as N3 — o0?

n in Bits

5
o
4
c
e
3=
3]
<<
g
>
o
[®]
N
c
L
A

1000 2000 3000 4000 5000 6000 7000
Mean Number of Tetrahedra, N,
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Evidence for the Entropies Sy

Finally, we can look at censuses of 3-manifold triangulations for small N3
as a sanity check. Data come from a complete census of the ~ 47 million
triangulations of S* with at most 9 tetrahedra (Burton 2011).

Technical note: the definition of “triangulation” used here is slightly more
general. Allows gluing together of the faces within a single tetrahedron.

Spacetime Enftropy S in Bits

01 02 03 04
Mean Action £ in &, /L,
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Thank you!
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A CDT Hamiltonian from Hortava-Lifshitz gravity

(arXiv:1302.6359)

Jan Ambj¢rn"2, Lisa Glaser! Yuki Sato?, Yoshiyuki Watabiki?

'Niels Bohr Institute, Copenhagen
*Radbaud University Nijmegen
“Nagoya University
1Tokyo Institute of Technology

July 25, 2013
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Qutline

Why should they be connected?

What did we do?

What does this imply?

Lisa Glaser CDT is HL gravity

NBI 1/ 10

/
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What will | talk about?

Causal Dynamical Triangulations Hofava Lifshitz gravity
(CDT) (HL)
m path integral m powercounting renormalizable
m non-perturbative m preferred time foliation
m not fundamentally discrete m continuum theory
m euclideanized m anisotropic scaling

Lisa Glaser CDT is HL gravity

NBI 2/ 10
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What makes us believe they might be the same?

A\
m phase structure : |
It Triple point
m spectral dimension e
_ _ 2 (arXiv:1203.3591)
m simulations :
17% .____‘,.J
m symmetry group ‘
(arXiv:1002.3298)
Lisa Glaser CDT is HL gravity
NBI 3/ 10
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What makes us believe they might be the same?

A\
m phase structure , .
I Triple point
m spectral dimension 3 S —C
i - " (arXiv:1203.3591)
m simulations 1
W symmetry group ) _—

(arXiv:1002.3298)

2D disclaimer

The rest of this talk we will be concerned with a 2d universe! ‘

Lisa Glaser CDT is HL gravity

NBI 3/ 10
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A hamiltonian in CDT

@
Loop loop correlator
Lo

C’(L1 i i Z Z (,;LN+)\1L1+)\2L2
9

geom

Ly

We can solve this to find:

Hamiltonian

. a 0
H_—()—LLE + AL

Lisa Glaser CDT is HL gravity
NBI 4/ 10
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The HL Lagrangian

—N(t)2 +~2(x, yNWD (2, )2 N (g, ¢ o
my —( () +. , 2, %) (2, ) . (‘]”)) metric in ADM form

Projectable Hofava Lifshitz

N (t) independent of position! ‘

Lisa Glaser CDT is HL gravity

NBI 5/ 10
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The HL Lagrangian

And the action is

= /(Zt dz N~y ((1 —/\)KQ—QA)

with K = 7% (%00’)/ — -,?lgc')lNl - %017) the external curvature

)
g L
(')(‘)(]A;.

Lisa Glaser CDT is HL gravity
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Hamiltonian formalism

The Hamiltonian

= /(lr tYH + NV (z, f)%l]
@ o ,
H = ’74(1 Yy + 2A Hamiltonian constraint
— Oy .
Hi = ('YW Momentum constraint
Hi =0 — 71'7(15)

We can introduce L(t) = [ da~y(x,t)

Lisa Glaser CDT is HL gravity

NBI 6/ 10
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Hamiltonian formalism

The Hamiltonian

= /(lr tYH + NV (z, f)%l]
@ o ,
H = ’74(1 Yy + 2A Hamiltonian constraint
— Oy .
Hi = ('YW Momentum constraint
Hi =0 — 71'7(15)

We can introduce L(t) = [ da~y(x,t)

Lisa Glaser CDT is HL gravity
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Quantization

We rescale the hamiltonian
H = N(t) (L(r)n“f(f)?’ ﬂ‘\L(r))

We can gauge fix N(t) = 1 and then require

cannonical commutation relations

{L(t),m"(t)} =1 = 1L, 7] = i

Lisa Glaser CDT is HL gravity

NBI 7/ 10
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Quantization

We rescale the hamiltonian
H = N(t) (L(r)w“f(f)'-’ +;‘\L(r))

We can gauge fix N(t) = 1 and then require

cannonical commutation relations

(L(t), 7 (t)} = 1 - L, =i

- ~ AL D v N
H=Ln"*+ AL

Ordering ambiguity?

Lisa Glaser CDT is HL gravity
NBI 7/ 10
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Ordering Ambiguity

a0 :
= _ﬁLﬁ +AL — open boundary + no marked point
(-.)2
/2 = _LW + AL — closed boundary + marked point
(-.)2
H = _WL + AL —  closed boundary + no marked point
A w!
t
—
Lisa Glaser CDT is HL gravity
NBI 8/ 10
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Ordering Ambiguity

a0 :
= _ﬁ[’ﬁ +AL — open boundary + no marked point
(-.)2
/2 = _LW + AL — closed boundary + marked point
(-.)2
H = _WL + AL —  closed boundary + no marked point
A —Q—21
e
Lisa Glaser CDT is HL gravity
8/ 10
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Ordering Ambiguity

a0 :

= _ﬁ[’ﬁ +AL — open boundary + no marked point

(-.)2
/2 = _LW + AL — closed boundary + marked point
(-.)2
H = _WL + AL —  closed boundary + no marked point
A —

Lisa Glaser CDT is HL gravity
8/ 10
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Ordering Ambiguity

a0 :
= _ﬁLﬁ +AL — open boundary + no marked point
52
/2 = _Lc')d? + AL — closed boundary + marked point
(o
5 = —;?L + AL —  closed boundary + no marked point

We have open boundary conditions and no marked point

CDT and HL in 2d are described by the same Hamiltonian!

Lisa Glaser CDT is HL gravity

NBI 8/ 10
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So is HL the continuum theory for CDT?

m the Hamiltonian agrees with the minisuperspace formulation of GR

m our results show that in 2d HL is the continuum theory

What about 4d?

m HL is a QFT following Wilsonian ideas
=> all higher order terms that symmetry allows have to be included

m The CDT action is generally covariant

=> entropic terms do lead to spatial higher derivatves as in HL

Lisa Glaser CDT is HL gravity

NBI 9/ 10
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So is HL the continuum theory for CDT?

m the Hamiltonian agrees with the minisuperspace formulation of GR

m our results show that in 2d HL is the continuum theory

What about 4d?

m HL is a QFT following Wilsonian ideas
=> all higher order terms that symmetry allows have to be included

m The CDT action is generally covariant

=> entropic terms do lead to spatial higher derivatves as in HL

CDT is HL gravity

(isotropic point might still be GR!)

Lisa Glaser CDT is HL gravity

NBI 9/ 10
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Summary

m CDT and HL have the same symmetries
m in 2d they have the same Hamiltonian
m HL is the continuum theory for part of the CDT phase space

0.8

0.6 F

04 | C

Triple point

Lisa Glaser CDT is HL gravity

NBI 10/ 10
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Summary

Thank you for your attention.

Lisa

NBI

m CDT and HL have the same symmetries
m in 2d they have the same Hamiltonian

m HL is the continuum theory for part of the CDT phase space

0.8

0.6 F

04 | C

Triple point

0.2 L L I I L

0 1 2 3 4 5
Ko

Glaser CDT is HL gravity
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