Title: Discrete Approaches - 2

Date: Jul 25, 2013 02:30 PM

URL: http://pirsa.org/13070075

Abstract:

Pirsa: 13070075

Dynamics and (broken) symmetries of discrete gravity models

Philipp Höhn

Perimeter Institute

Review talk, discrete approaches session, Loops '13 @ Perimeter July 25th, 2013

P. Höhn (Perimeter)

Review: discrete approaches session

1 / 17

Pirsa: 13070075 Page 2/148

Plan of the talk Discretizing continuum theories Broken symmetries Canonical dynamics of discrete systems Canonical Regge Calculus Quantization P. Höhn (Perimeter) Review: discrete approaches session

Pirsa: 13070075 Page 3/148

Discretizing continuum theories

- Broadly:
 - discretize continuum eoms/constraints in gravity ⇒ get 2nd class constraints [Piran, Williams '86; Friedman, Jack '86; Loll '98] Which are not preserved by evolution (e.g. numerical relativity)
 - ② discretize continuum action ⇒ obtain eoms from discrete action
- 2nd option also used in regularizing the path integral in QM

$$\int \mathcal{D}x \, e^{iS} = \lim_{N \to \infty} \int \prod_{k=1}^{N} dx_k \, e^{i\sum_k S_k(x_k, x_{k-1})}$$

$$t_2$$

we shall follow 2nd option

P. Höhn (Perimeter)

Review: discrete approaches session

Discretizing spacetimes: Regge Calculus [Regge '61; Hartle, Sorkin '81]

• Regge Calculus: replace smooth D-dim. spacetime $(\mathcal{M}, g_{\mu\nu})$ by piecewise-linear flat metric living on triangulation \mathcal{T} , comprised of D-simplices σ

h: 'hinge' ((D-2)—subsimplex) θ^{σ}_h : interior dihedral angle at h in σ V_h : volume of h $\epsilon_h:=2\pi-\sum_{\sigma\supset h}\theta^{\sigma}_h$: deficit angle $\psi_h:=\pi-\sum_{\sigma\supset h}\theta^{\sigma}_h$: exterior angle

- configuration variables: edge lengths $\{I^e\}_{e\in\mathcal{T}}$, encode complete geometry
- (Euclidean) action $S_{EH} = -\int_{\mathcal{M}} \sqrt{g} R d^4 x \int_{\partial \mathcal{M}} \sqrt{q} K d^3 x \xrightarrow{\text{discretize}} S_R$

$$S_R(\{I^e\}) = -\sum_{h \subset T \setminus \partial T} V_h \epsilon_h - \sum_{h \subset \partial T} V_h \psi_h \qquad \Rightarrow \qquad S_R \text{ additive}$$

P. Höhn (Perimeter)

Review: discrete approaches session

- example: (broken) reparametrization invariance in discrete mechanics
- enlarge system, take t as variable, evolution w.r.t. parameter s

$$S = \int dt L(x(t), \dot{x}(t)) \longrightarrow S_e = \int ds L\left(x(s), \frac{x'(s)}{t'(s)}\right) t'(s)$$

- dynamics equivalent (eom for x solved \Rightarrow eom for t solved)
- system invariant under reparametrizations of s
- discretize $s_{in} < \ldots < s_k < \ldots < s_{fin}, x_k = x(s_k), t_k = t(s_k)$

◆□ → ◆□ → ◆ 差 → ◆ を ● ・ ◆ へ ○ ○

P. Höhn (Perimeter)

Review: discrete approaches session

- example: (broken) reparametrization invariance in discrete mechanics
- enlarge system, take t as variable, evolution w.r.t. parameter s

$$S = \int dt L(x(t), \dot{x}(t)) \longrightarrow S_e = \int ds L\left(x(s), \frac{x'(s)}{t'(s)}\right) t'(s)$$

- dynamics equivalent (eom for x solved \Rightarrow eom for t solved)
- system invariant under reparametrizations of s
- discretize $s_{in} < \ldots < s_k < \ldots < s_{fin}, x_k = x(s_k), t_k = t(s_k)$

P. Höhn (Perimeter)

Review: discrete approaches session

- example: (broken) reparametrization invariance in discrete mechanics
- enlarge system, take t as variable, evolution w.r.t. parameter s

$$S = \int dt \, L(x(t), \dot{x}(t)) \longrightarrow S_e = \int ds \, L\left(x(s), \frac{x'(s)}{t'(s)}\right) t'(s)$$

- dynamics equivalent (eom for x solved \Rightarrow eom for t solved)
- system invariant under reparametrizations of s
- discretize $s_{in} < \ldots < s_k < \ldots < s_{fin}, x_k = x(s_k), t_k = t(s_k)$

Figure: V = 0, sym. preserv.

4□ > 4回 > 4 直 > 4 直 > 1 直 9 Q G

P. Höhn (Perimeter)

Review: discrete approaches session

- example: (broken) reparametrization invariance in discrete mechanics
- enlarge system, take t as variable, evolution w.r.t. parameter s

$$S = \int dt L(x(t), \dot{x}(t)) \longrightarrow S_e = \int ds L\left(x(s), \frac{x'(s)}{t'(s)}\right) t'(s)$$

- dynamics equivalent (eom for x solved \Rightarrow eom for t solved)
- system invariant under reparametrizations of s
- discretize $s_{in} < \ldots < s_k < \ldots < s_{fin}, x_k = x(s_k), t_k = t(s_k)$

Figure: V = 0, sym. preserv.

◆□ > ◆□ > ◆ = > ◆ = > へ ●

P. Höhn (Perimeter)

Review: discrete approaches session

- example: (broken) reparametrization invariance in discrete mechanics
- enlarge system, take t as variable, evolution w.r.t. parameter s

$$S = \int dt \, L(x(t), \dot{x}(t)) \longrightarrow S_e = \int ds \, L\left(x(s), \frac{x'(s)}{t'(s)}\right) t'(s)$$

- dynamics equivalent (eom for x solved \Rightarrow eom for t solved)
- system invariant under reparametrizations of s
- discretize $s_{in} < \ldots < s_k < \ldots < s_{fin}, x_k = x(s_k), t_k = t(s_k)$

Figure: V = 0, sym. preserv.

◆□ → ◆□ → ◆ 壹 → ◆ 壹 → ○ へ ○

P. Höhn (Perimeter)

Review: discrete approaches session

- example: (broken) reparametrization invariance in discrete mechanics
- enlarge system, take t as variable, evolution w.r.t. parameter s

$$S = \int dt L(x(t), \dot{x}(t)) \longrightarrow S_e = \int ds L\left(x(s), \frac{x'(s)}{t'(s)}\right) t'(s)$$

- dynamics equivalent (eom for x solved \Rightarrow eom for t solved)
- system invariant under reparametrizations of s
- discretize $s_{in} < \ldots < s_k < \ldots < s_{fin}, x_k = x(s_k), t_k = t(s_k)$

Figure: V = 0, sym. preserv.

Figure: $V \neq 0$, sym. broken

P. Höhn (Perimeter)

Review: discrete approaches session

- example: (broken) reparametrization invariance in discrete mechanics
- enlarge system, take t as variable, evolution w.r.t. parameter s

$$S = \int dt L(x(t), \dot{x}(t)) \longrightarrow S_e = \int ds L\left(x(s), \frac{x'(s)}{t'(s)}\right) t'(s)$$

- dynamics equivalent (eom for x solved \Rightarrow eom for t solved)
- system invariant under reparametrizations of s
- discretize $s_{in} < \ldots < s_k < \ldots < s_{fin}, x_k = x(s_k), t_k = t(s_k)$

Figure: V = 0, sym. preserv.

Figure: $V \neq 0$, sym. broken

P. Höhn (Perimeter)

Review: discrete approaches session

Discretization and diffeomorphism symmetry

 analogous situation in discrete gravity ⇒ vertex displacement symmetry in flat sector of Regge Calculus

• symmetry broken in presence of curvature [Rocek, Williams '81; Dittrich '08; Bahr,

Dittrich '09]

Figure: Bahr, Dittrich, CQG 26 225011 (2009)

- gauge modes of the continuum become propagating in the discrete
- coarse graining/perfect actions [Bahr, Dittrich '09; Bahr, Dittrich, Steinhaus '11]
- here: review of systematic canonical tools for extracting dynamics

P. Höhn (Perimeter)

Review: discrete approaches session

6 / 17

Pirsa: 13070075

- example: (broken) reparametrization invariance in discrete mechanics
- enlarge system, take t as variable, evolution w.r.t. parameter s

$$S = \int dt L(x(t), \dot{x}(t)) \longrightarrow S_e = \int ds L\left(x(s), \frac{x'(s)}{t'(s)}\right) t'(s)$$

- dynamics equivalent (eom for x solved \Rightarrow eom for t solved)
- system invariant under reparametrizations of s
- discretize $s_{in} < \ldots < s_k < \ldots < s_{fin}, x_k = x(s_k), t_k = t(s_k)$

Figure: V = 0, sym. preserv.

Figure: $V \neq 0$, sym. broken

P. Höhn (Perimeter)

Review: discrete approaches session

Discretization and diffeomorphism symmetry

 analogous situation in discrete gravity ⇒ vertex displacement symmetry in flat sector of Regge Calculus

symmetry broken in presence of curvature [Rocek, Williams '81; Dittrich '08; Bahr,

Dittrich '09]

Figure: Bahr, Dittrich, CQG 26 225011 (2009)

- gauge modes of the continuum become propagating in the discrete
- coarse graining/perfect actions [Bahr, Dittrich '09; Bahr, Dittrich, Steinhaus '11]
- here: review of systematic canonical tools for extracting dynamics

P. Höhn (Perimeter)

Review: discrete approaches session

6 / 17

Pirsa: 13070075 Page 15/148

- dynamics generated by evolution moves, <u>not</u> constraints/Hamiltonian
- glue pieces of triangulation to triangulated hypersurface Σ_k at each step $k \in \mathbb{Z} \Rightarrow$ add action contributions

Pirsa: 13070075 Page 16/148

- dynamics generated by evolution moves, <u>not</u> constraints/Hamiltonian
- glue pieces of triangulation to triangulated hypersurface Σ_k at each step $k \in \mathbb{Z} \Rightarrow$ add action contributions

Pirsa: 13070075 Page 17/148

- dynamics generated by evolution moves, <u>not</u> constraints/Hamiltonian
- glue pieces of triangulation to triangulated hypersurface Σ_k at each step $k \in \mathbb{Z} \Rightarrow$ add action contributions

Pirsa: 13070075 Page 18/148

- dynamics generated by evolution moves, <u>not</u> constraints/Hamiltonian
- glue pieces of triangulation to triangulated hypersurface Σ_k at each step $k \in \mathbb{Z} \Rightarrow$ add action contributions

Pirsa: 13070075 Page 19/148

- dynamics generated by evolution moves, <u>not</u> constraints/Hamiltonian
- glue pieces of triangulation to triangulated hypersurface Σ_k at each step $k \in \mathbb{Z} \Rightarrow$ add action contributions

Pirsa: 13070075 Page 20/148

Canonical momenta [Marsden, West '01; Gambini, Pullin '03; Dittrich, PH '11,'13]

• discrete action $S = \sum_{k=1}^{N} S_k(x_{k-1}, x_k) \Rightarrow S_k$ as generating fct.

$${}^-p^{k-1} := -\frac{\partial S_k(x_{k-1}, x_k)}{\partial x_{k-1}} \quad , \quad {}^+p^k := \frac{\partial S_k(x_{k-1}, x_k)}{\partial x_k}$$

-p: pre-momenta, +p: post-momenta

defines time evolution map

$$\mathcal{H}_k: (x_{k-1}, {}^{-}p^{k-1}) \mapsto (x_k, {}^{+}p^k)$$

• similarly, use $S_{k+1}(x_k, x_{k+1})$ as gen. fct.

$${}^{-}p^{k} = -\frac{\partial S_{k+1}}{\partial x_{k}}$$

⇒ canon. and covar. formulation equivalent

4□ > 4回 > 4 直 > 4 直 > 1 直 9 Q G

P. Höhn (Perimeter)

Review: discrete approaches session

Constraints [Dittrich, PH '11, '13]

- in cont. $p = \frac{\partial L(q,\dot{q})}{\partial \dot{q}} \Rightarrow$ impl. fct. thm.: if $\det\left(\frac{\partial^2 L}{\partial \dot{q}^i \partial \dot{q}^j}\right) = 0$ get primary constraints $C_m(q,p) = 0$
- ullet in discrete, \mathcal{H}_k for evolution (k-1) o k defined by

$${}^{-}p^{k-1} := -\frac{\partial S_k(x_{k-1}, x_k)}{\partial x_{k-1}} \quad , \quad {}^{+}p^k := \frac{\partial S_k(x_{k-1}, x_k)}{\partial x_k}$$

- \Rightarrow obtain <u>two</u> types of constraints if $\det\left(\frac{\partial^2 S_k}{\partial x_{k-1}^i \partial x_k^j}\right) = 0$
 - ${}^{+}C^{k}(x_{k}, {}^{+}p^{k}) = 0$ \Rightarrow post-constraints
 - ${}^-C^{k-1}(x_{k-1}, {}^-p^{k-1}) = 0$ \Rightarrow pre-constraints
- time evol. map \mathcal{H}_k no longer unique:

e.g.,
$$-C^{k-1}(x_{k-1}, -p^{k-1}) = 0 \Rightarrow x_k = x_k(x_{k-1}, -p^{k-1}, \lambda_k^m)$$

 λ_k : a priori free parameter

P. Höhn (Perimeter)

Review: discrete approaches session

Pirsa: 13070075 Page 23/148

• 3 new edges, but no eoms for $k \to k+1$ \Rightarrow their lengths I_{k+1}^n are a priori free λ_{k+1}

(ロ) (日) (日) (目) (目) (日) (1

P. Höhn (Perimeter)

Review: discrete approaches session

- 3 new edges, but no eoms for $k \to k+1$ \Rightarrow their lengths I_{k+1}^n are a priori free λ_{k+1}
- extend phase space at step k, add (I_k^n, p_n^k)

• use $S_{\tau}(I_{k+1}^n,...)$ as type 1 gen. fct. (trivial dep. on I_k^n)

$$p_n^k = -\frac{\partial S_{\tau}}{\partial I_k^n} = 0$$
 , $p_n^{k+1} = \frac{\partial S_{\tau}}{\partial I_{k+1}^n}$

3 pre-constraints at k

P. Höhn (Perimeter)

Review: discrete approaches session

- 3 new edges, but no eoms for $k \to k+1$ \Rightarrow their lengths I_{k+1}^n are a priori free λ_{k+1}
- extend phase space at step k, add (I_k^n, p_n^k)

• use $S_{\tau}(I_{k+1}^n,...)$ as type 1 gen. fct. (trivial dep. on I_k^n)

$$p_n^k = -\frac{\partial S_{\tau}}{\partial I_k^n} = 0$$
 , $p_n^{k+1} = \frac{\partial S_{\tau}}{\partial I_{k+1}^n} = \psi_n^{k+1}$

3 pre-constraints at k

P. Höhn (Perimeter)

Review: discrete approaches session

- 3 new edges, but no eoms for $k \to k+1$ \Rightarrow their lengths I_{k+1}^n are a priori free λ_{k+1}
- extend phase space at step k, add (I_k^n, p_n^k)

• use $S_{\tau}(I_{k+1}^n,...)$ as type 1 gen. fct. (trivial dep. on I_k^n)

$$p_n^k = 0$$
 , $p_n^{k+1} = \psi_n^{k+1}(I_{k+1}^e, I_{k+1}^n)$

- 3 pre-constraints at *k*
- ullet ψ_n^{k+1} only depends on lengths from $\Sigma_{k+1} \Rightarrow$ obtain 3 post–constraints

P. Höhn (Perimeter)

Review: discrete approaches session

- 3 new edges, but no eoms for $k \to k+1$ \Rightarrow their lengths I_{k+1}^n are a priori free λ_{k+1}
- extend phase space at step k, add (I_k^n, p_n^k)

• use $S_{\tau}(I_{k+1}^n,...)$ as type 1 gen. fct. (trivial dep. on I_k^n)

$$p_n^k = 0$$
 , $p_n^{k+1} = \psi_n^{k+1}(I_{k+1}^e, I_{k+1}^n)$

- 3 pre-constraints at k
- ψ_n^{k+1} only depends on lengths from $\Sigma_{k+1} \Rightarrow$ obtain 3 post–constraints
- all Pachner moves in 3D/4D analogously \Rightarrow 'pre-symplectic transformations'

P. Höhn (Perimeter)

Review: discrete approaches session

- 3 new edges, but no eoms for $k \to k+1$ \Rightarrow their lengths I_{k+1}^n are a priori free λ_{k+1}
- extend phase space at step k, add (I_k^n, p_n^k)

• use $S_{\tau}(I_{k+1}^n,...)$ as type 1 gen. fct. (trivial dep. on I_k^n)

$$p_n^k = 0$$
 , $p_n^{k+1} = \psi_n^{k+1}(I_{k+1}^e, I_{k+1}^n)$

- 3 pre-constraints at k
- ψ_n^{k+1} only depends on lengths from $\Sigma_{k+1} \Rightarrow$ obtain 3 post–constraints
- all Pachner moves in 3D/4D analogously \Rightarrow 'pre-symplectic transformations'

P. Höhn (Perimeter)

Review: discrete approaches session

Constraints and symmetries [Dittrich, PH '13]

- evolution $(k-1) \to k \to (k+1)$: generally, ${}^+C^k \neq {}^-C^k$
- momentum matching: impose both ${}^+C^k$ and ${}^-C^k$ at k
- pre— and post—constraints each form 1st class sub-algebra

$$\{{}^{-}C_{i}^{k}, {}^{-}C_{j}^{k}\} \approx 0 \approx \{{}^{+}C_{i}^{k}, {}^{+}C_{j}^{k}\}$$

• generally mixture 2nd class

$$\{{}^{-}C_i^k,{}^{+}C_j^k\}\neq 0$$

⇒ fixes free parameters

- however, if $C^k = {}^{-}C^k = {}^{+}C^k$, then
 - first class
 - associated to gauge mode
 - generate gauge symmetry

• possible: constraint first class, but does not generate symmetry

P. Höhn (Perimeter)

Review: discrete approaches session

Constraints and symmetries [Dittrich, PH '13]

- evolution $(k-1) \to k \to (k+1)$: generally, ${}^+C^k \neq {}^-C^k$
- momentum matching: impose both ${}^+C^k$ and ${}^-C^k$ at k
- pre— and post—constraints each form 1st class sub-algebra

$$\{{}^{-}C_{i}^{k}, {}^{-}C_{j}^{k}\} \approx 0 \approx \{{}^{+}C_{i}^{k}, {}^{+}C_{j}^{k}\}$$

• generally mixture 2nd class

$$\{{}^{-}C_i^k,{}^{+}C_j^k\}\neq 0$$

⇒ fixes free parameters

- however, if $C^k = {}^{-}C^k = {}^{+}C^k$, then
 - first class
 - associated to gauge mode
 - generate gauge symmetry

• possible: constraint first class, but does not generate symmetry

P. Höhn (Perimeter)

Review: discrete approaches session

Constraints and symmetries [Dittrich, PH '13]

- evolution $(k-1) \to k \to (k+1)$: generally, ${}^+C^k \neq {}^-C^k$
- momentum matching: impose both ${}^+C^k$ and ${}^-C^k$ at k
- pre— and post—constraints each form 1st class sub-algebra

$$\{{}^{-}C_{i}^{k}, {}^{-}C_{j}^{k}\} \approx 0 \approx \{{}^{+}C_{i}^{k}, {}^{+}C_{j}^{k}\}$$

• generally mixture 2nd class

$$\{{}^{-}C_i^k,{}^{+}C_j^k\}\neq 0$$

⇒ fixes free parameters

- however, if $C^k = {}^{-}C^k = {}^{+}C^k$, then
 - first class
 - associated to gauge mode
 - generate gauge symmetry

• possible: constraint first class, but does not generate symmetry

P. Höhn (Perimeter)

Review: discrete approaches session

Propagating degrees of freedom [Dittrich, PH '13]

- ullet need <u>two</u> time steps for propagation, $\mathcal{H}_{k_f}:\mathcal{C}_{k_i}^- o \mathcal{C}_{k_f}^+$
- data propagating $k_i \rightarrow k_f$ commutes with pre-constraints at k_i and post-constraints at k_f
- in evolution $k_i \to k_f$ number of constraints at k_i depends on k_f (and vice versa)
- \Rightarrow number of propagating degrees of freedom, in general, $N_{k_i \to k_f} \neq N_{k_i' \to k_f'}$

P. Höhn (Perimeter)

Review: discrete approaches session

Propagating degrees of freedom [Dittrich, PH '13]

- need <u>two</u> time steps for propagation, $\mathcal{H}_{k_f}: \mathcal{C}_{k_i}^- \to \mathcal{C}_{k_f}^+$
- data propagating $k_i \rightarrow k_f$ commutes with pre-constraints at k_i and post-constraints at k_f
- in evolution $k_i \rightarrow k_f$ number of constraints at k_i depends on k_f (and vice versa)
- \Rightarrow number of propagating degrees of freedom, in general, $N_{k_i \to k_f} \neq N_{k_i' \to k_f'}$
 - e.g. 'discrete no boundary scenario':

(ロ) (日) (日) (目) (目) (日)

P. Höhn (Perimeter)

Review: discrete approaches session

Propagating degrees of freedom [Dittrich, PH '13]

- ullet need <u>two</u> time steps for propagation, $\mathcal{H}_{k_f}:\mathcal{C}_{k_i}^- o \mathcal{C}_{k_f}^+$
- data propagating $k_i \rightarrow k_f$ commutes with pre-constraints at k_i and post-constraints at k_f
- in evolution $k_i \rightarrow k_f$ number of constraints at k_i depends on k_f (and vice versa)
- \Rightarrow number of propagating degrees of freedom, in general, $N_{k_i \to k_f} \neq N_{k_i' \to k_f'}$
 - e.g. 'discrete no boundary scenario':

◆□ > ◆□ > ◆ 壹 > ◆ 壹 > □ ● り Q ③

P. Höhn (Perimeter)

Review: discrete approaches session

Application: canonical Kegge Calculus [Dittrich, PH '09; '11]

- using formalism can implement general time evolution moves in canonical language on evolving phase spaces
- Regge Calculus as discrete dynamics of triangulated hypersurfaces

3D

- solutions flat, preserve symmetry
- each vertex equipped with three constraints $C^k = {}^+C^k = {}^-C^k$
- preserved by evolution
- generate vertex displacement symmetry
- 'hyperbolic'

<u>4D</u>

- solutions with curvature possible
- vertices generally <u>not</u> equipped with constraints
- symmetries broken
- generically no hypersurface deformation algebra
- 'non-hyperbolic'

◆□ ▶ ◆□ ▶ ◆ 豊 ▶ ◆ 豊 ▶ ◆ 夏 → 釣@(

P. Höhn (Perimeter)

Review: discrete approaches session

13 / 17

Pirsa: 13070075 Page 36/148

Perturbative 4D Regge Calculus [Dittrich, PH '09; PH to appear]

- expand $I^e = {}^{(0)}I^e + \varepsilon \delta I^e + O(\varepsilon^2)$ around flat solution
- inherits vertex displacement gauge symmetry from flat background

- 4 constraints per vertex $C_{vI}^k = {}^+C_{vI}^k = {}^-C_{vI}^k$, $I=1,\ldots 4$: preserved by dynamics, 1st class $\{C_{vI}^k,C_{v'J}^k\}\approx 0$ and generate symmetry
- 'gravitons': linearized deficit angles $\delta \epsilon_t$ (complete set) and $\{\delta \epsilon_t, C_{vl}^k\} \approx 0 \Rightarrow$ formalism describes their dynamics
- symmetries broken to first non-linear order: background gauge modes become propagating

P. Höhn (Perimeter)

Review: discrete approaches session

Quantization for configuration space $\mathcal{Q}\simeq \mathbb{K}''$ [PH to appear]

Impose constraints in quantum theory via group averaging

$${}^{\pm}\psi_k^{\rm phys} := \prod_l \delta({}^{\pm}\hat{C}_l^k)\psi_k^{\rm kin} = \prod_l \int ds_l \ e^{is^l \pm \hat{C}_l^k}\psi_k^{\rm kin}$$

physical inner product

$$\langle \pm \psi_k^{\text{phys}} | \pm \phi_k^{\text{phys}} \rangle_{\text{phys}} = \langle \psi_k^{\text{kin}} | \prod_l \delta(\pm \hat{C}_l^k) \phi_k^{\text{kin}} \rangle_{\text{kin}}$$

ullet For evolution move $0 \to 1$ define propagator

$$K_{0\to 1}(x_0,x_1)=M_{0\to 1}\,e^{iS_1(x_0,x_1)}$$
 $M_{0\to 1}$: measure

ullet construct (improper) projectors from $H_0^{
m kin}$ to $H_1^{
m phys+}$ and $H_1^{
m kin}$ to $H_0^{
m phys-}$

$$^{+}\psi_{1}^{\mathrm{phys}} = \int dx_{0} \, K_{0 \to 1} \, \psi_{0}^{\mathrm{kin}}, \qquad ^{-}\psi_{0}^{\mathrm{phys}} = \int dx_{1} \, (K_{0 \to 1})^{*} \, \psi_{1}^{\mathrm{kin}}$$

• $K_{0\rightarrow 1}$ must satisfy constraints and other conditions

$$\Rightarrow$$
 unitarity: $\langle {}^{+}\psi^{\rm phys}_{k+1}|^{+}\phi^{\rm phys}_{k+1}\rangle_{\rm phys} = \langle {}^{-}\psi^{\rm phys}_{k}|^{-}\phi^{\rm phys}_{k}\rangle_{\rm phys}$

P. Höhn (Perimeter)

Review: discrete approaches session

Quantization for configuration space $\mathcal{Q}\simeq \mathbb{K}''$ [PH to appear]

Impose constraints in quantum theory via group averaging

$${}^{\pm}\psi_k^{\rm phys} := \prod_l \delta({}^{\pm}\hat{C}_l^k)\psi_k^{\rm kin} = \prod_l \int ds_l \ e^{is^l \pm \hat{C}_l^k}\psi_k^{\rm kin}$$

physical inner product

$$\langle \pm \psi_k^{\text{phys}} | \pm \phi_k^{\text{phys}} \rangle_{\text{phys}} = \langle \psi_k^{\text{kin}} | \prod_l \delta(\pm \hat{C}_l^k) \phi_k^{\text{kin}} \rangle_{\text{kin}}$$

ullet For evolution move $0 \to 1$ define propagator

$$K_{0\to 1}(x_0,x_1)=M_{0\to 1}\,e^{iS_1(x_0,x_1)}$$
 $M_{0\to 1}$: measure

ullet construct (improper) projectors from $H_0^{
m kin}$ to $H_1^{
m phys+}$ and $H_1^{
m kin}$ to $H_0^{
m phys-}$

$$^{+}\psi_{1}^{\mathrm{phys}} = \int dx_{0} \, K_{0 \to 1} \, \psi_{0}^{\mathrm{kin}}, \qquad ^{-}\psi_{0}^{\mathrm{phys}} = \int dx_{1} \, (K_{0 \to 1})^{*} \, \psi_{1}^{\mathrm{kin}}$$

ullet $K_{0
ightarrow 1}$ must satisfy constraints and other conditions

$$\Rightarrow$$
 unitarity: $\langle {}^+\psi^{\rm phys}_{k+1}|^+\phi^{\rm phys}_{k+1}\rangle_{\rm phys} = \langle {}^-\psi^{\rm phys}_{k}|^-\phi^{\rm phys}_{k}\rangle_{\rm phys}$

P. Höhn (Perimeter)

Review: discrete approaches session

Evolving Hilbert spaces and cylindrical consistency [PH to appear]

regularized (e.g. Faddeev-Popov) composition yields path integral

$$\mathcal{K}_{0 \to \mathcal{N}}^{\mathrm{reg}} = \int \prod_{j=0}^{N-1} \mathcal{K}_{j \to j+1}^{\mathrm{reg}} \prod_{l=1}^{N-1} dx_l$$

- if number of variables varies, extend configuration spaces
 - \Rightarrow auxiliary dimension subject to $\hat{p}_{aux}^k \psi_k^{\rm phys} = 0$
 - $\Rightarrow \psi_k^{\rm phys}$ are cylindrical functions on extended configuration spaces, inner product invariant \Rightarrow naturally handles time varying discretization
- toy model for 'no boundary proposal'

Nothing'
$$0$$
 1 k

for evolution 'Nothing' $\to k$ always get unique physical state ${}^+\psi_k^{\rm phys}$

P. Höhn (Perimeter)

Review: discrete approaches session

16 / 1

(* ------

Pirsa: 13070075

Page 40/148

Evolving Hilbert spaces and cylindrical consistency [PH to appear]

regularized (e.g. Faddeev-Popov) composition yields path integral

$$\mathcal{K}_{0 \to \mathcal{N}}^{\mathrm{reg}} = \int \prod_{j=0}^{N-1} \mathcal{K}_{j \to j+1}^{\mathrm{reg}} \prod_{l=1}^{N-1} dx_l$$

- if number of variables varies, extend configuration spaces
 - \Rightarrow auxiliary dimension subject to $\hat{p}_{aux}^k \psi_k^{\text{phys}} = 0$
 - $\Rightarrow \psi_k^{\rm phys}$ are cylindrical functions on extended configuration spaces, inner product invariant \Rightarrow naturally handles time varying discretization
- toy model for 'no boundary proposal'

Nothing'
$$0$$
 1 k

for evolution 'Nothing' $\to k$ always get unique physical state ${}^+\psi_k^{\rm phys}$

P. Höhn (Perimeter)

Review: discrete approaches session

Summary

- ullet symmetries generically broken in the discrete \Rightarrow consequences for dynamics
- general constraint analysis for variational discrete systems available
 - ⇒ naturally handles time varying discretizations
 - ⇒ constraints and propagating dofs evolution move dependent
- can construct general canonical formulation of Regge Calculus
- formalism can be consistently quantized

P. Höhn (Perimeter)

Review: discrete approaches session

17 / 17

Transition Amplitudes in Causal Dynamical Triangulations

Jonah M. Miller Department of Physics, University of Colorado at Boulder

Joshua H. Cooperman Department of Physics, University of California, Davis

> Loops 13 25 July, 2013

Pirsa: 13070075 Page 43/148

Pirsa: 13070075 Page 44/148

What is causal dynamical triangulations? Click on Sign to add text and place signature on a PDF File. Toolbox • lattice regularization • finite-size scaling renormalization J. Miller (CU Boulder) CDT Transition Amplitudes July 2013 2 / 13

Pirsa: 13070075 Page 45/148

Click on Sign to add text and place signature on a PDF File.

Toolbox

- lattice regularization
- finite-size scaling
- renormalization

Lorentzian $\mathcal{A} = \int \mathcal{D}\mathbf{g} \, e^{iS[\mathbf{g}]}$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

2 / 13

Pirsa: 13070075 Page 46/148

Click on Sign to add text and place signature on a PDF File.

Toolbox

- lattice regularization
- finite-size scaling
- renormalization

Lorentzian $\mathcal{A} = \int \mathcal{D}\mathbf{g} \, e^{iS[\mathbf{g}]}$

Wick rotation

Euclidean $\mathcal{Z} = \int \mathcal{D}\mathbf{g} \, e^{-S^{(E)}[\mathbf{g}]}$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

2 / 13

Pirsa: 13070075 Page 47/148

Click on Sign to add text and place signature on a PDF File.

Toolbox

- lattice regularization
- finite-size scaling
- renormalization

Lorentzian ? Euclidean
$$\mathcal{A} = \int \mathcal{D}\mathbf{g} \, e^{iS[\mathbf{g}]} \qquad ? \qquad \mathcal{Z} = \int \mathcal{D}\mathbf{g} \, e^{-S^{(E)}[\mathbf{g}]}$$
 causal triangulation
$$\mathcal{A}_{CDT} = \sum_{\mathcal{T}_c} \mu(\mathcal{T}_c) e^{iS_R[\mathcal{T}_c]}$$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

Click on Sign to add text and place signature on a PDF File.

Toolbox

- lattice regularization
- finite-size scaling
- renormalization

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

Pirsa: 13070075 Page 50/148

What is a causal triangulation?

Click on Sign to add text and place signature on a PDF File.

(1,3) 3-simplex

(2,2) 3-simplex

(3,1) 3-simplex

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

What is a causal triangulation?

Click on Sign to add text and place signature on a PDF File.

(1,3) 3-simplex

t = 1

t = 0

Segment of a causal triangulation

t = 2

t = 0

(2,2) 3-simplex

t = 1

t = 0

(3,1) 3-simplex

t = 1

t = 0

.

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

3 / 13

What is a causal triangulation?

t = 1

t = 0

Click on Sign to add text and place signature on a PDF File.

(1,3) 3-simplex

Segment of a causal triangulation

t = 0

(2,2) 3-simplex

(3,1) 3-simplex

$$t = 0$$

t = 1

$$l_{SL}^2 = a^2$$
$$l_{TL}^2 = -\alpha a^2$$

J. Miller (CU Boulder)

CDT Transition Amplitudes

Forbidden

spacetimes

July 2013

3 / 13

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

4 / 13

Pirsa: 13070075 Page 54/148

Lorentzian Euclidean
$$\mathcal{A} = \int \mathcal{D}\mathbf{g} \, e^{iS[\mathbf{g}]} \quad ----- \stackrel{?}{\longrightarrow} \quad \mathcal{Z} = \int \mathcal{D}\mathbf{g} \, e^{-S^{(E)}[\mathbf{g}]}$$
causal triangulation Wick
$$\mathcal{A}_{CDT} = \sum_{\mathcal{T}_c} \mu(\mathcal{T}_c) e^{iS_R[\mathcal{T}_c]} \xrightarrow{\text{rotation}} \mathcal{Z}_{CDT} = \sum_{\mathcal{T}_c} \mu(\mathcal{T}_c) e^{-S_R^{(E)}[\mathcal{T}_c]}$$

Numerical Simulation

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

1 / 13

Pirsa: 13070075 Page 55/148

Lorentzian
$$\mathcal{A} = \int \mathcal{D}\mathbf{g} \, e^{iS[\mathbf{g}]} \qquad \stackrel{?}{-----} \qquad \qquad \mathcal{Z} = \int \mathcal{D}\mathbf{g} \, e^{-S^{(E)}[\mathbf{g}]}$$
causal triangulation
$$\mathcal{A}_{CDT} = \sum_{\mathcal{T}_c} \mu(\mathcal{T}_c) e^{iS_R[\mathcal{T}_c]} \xrightarrow{\text{votation}} \mathcal{Z}_{CDT} = \sum_{\mathcal{T}_c} \mu(\mathcal{T}_c) e^{-S_R^{(E)}[\mathcal{T}_c]}$$

Numerical Simulation

- $\bullet \quad \alpha \rightarrow -\alpha$
- Select topology $\mathcal{M}^2 \times \mathcal{M}^1$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

/ 13

Lorentzian Euclidean
$$\mathcal{A} = \int \mathcal{D}\mathbf{g} \, e^{iS[\mathbf{g}]} \quad ----- \stackrel{?}{\longrightarrow} \quad \mathcal{Z} = \int \mathcal{D}\mathbf{g} \, e^{-S^{(E)}[\mathbf{g}]}$$
causal triangulation Wick
$$\mathcal{A}_{CDT} = \sum_{\mathcal{T}_c} \mu(\mathcal{T}_c) e^{iS_R[\mathcal{T}_c]} \xrightarrow{\text{rotation}} \mathcal{Z}_{CDT} = \sum_{\mathcal{T}_c} \mu(\mathcal{T}_c) e^{-S_R^{(E)}[\mathcal{T}_c]}$$

Numerical Simulation

- \bullet $\alpha \to -\alpha$
- Select topology $\mathcal{M}^2 \times \mathcal{M}^1$
- Fix number T of time slices and number N of simplices

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

Lorentzian Euclidean
$$\mathcal{A} = \int \mathcal{D}\mathbf{g} \, e^{iS[\mathbf{g}]} \quad ------ \underbrace{?}_{?} \quad \mathcal{Z} = \int \mathcal{D}\mathbf{g} \, e^{-S^{(E)}[\mathbf{g}]}$$
causal triangulation Wick
$$\mathcal{A}_{CDT} = \sum_{\mathcal{T}_c} \mu(\mathcal{T}_c) e^{iS_R[\mathcal{T}_c]} \xrightarrow{\text{rotation}} \mathcal{Z}_{CDT} = \sum_{\mathcal{T}_c} \mu(\mathcal{T}_c) e^{-S_R^{(E)}[\mathcal{T}_c]}$$

Numerical Simulation

- \bullet $\alpha \rightarrow -\alpha$
- Select topology $\mathcal{M}^2 \times \mathcal{M}^1$
- Fix number T of time slices and number N of simplices

$$Z_{CDT} = \sum_{\mathcal{T}_c[T,N]} \mu(\mathcal{T}_c) e^{-S_R^{(E)}[\mathcal{T}_c]}$$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

1 / 13

Lorentzian Euclidean
$$\mathcal{A} = \int \mathcal{D}\mathbf{g} \, e^{iS[\mathbf{g}]} \quad ------ \stackrel{?}{\longrightarrow} \quad \mathcal{Z} = \int \mathcal{D}\mathbf{g} \, e^{-S^{(E)}[\mathbf{g}]}$$
causal triangulation Wick
$$\mathcal{A}_{CDT} = \sum_{\mathcal{T}_c} \mu(\mathcal{T}_c) e^{iS_R[\mathcal{T}_c]} \xrightarrow{\text{Votation}} \mathcal{Z}_{CDT} = \sum_{\mathcal{T}_c} \mu(\mathcal{T}_c) e^{-S_R^{(E)}[\mathcal{T}_c]}$$

Numerical Simulation

- $\bullet \quad \alpha \rightarrow -\alpha$
- Select topology $\mathcal{M}^2 \times \mathcal{M}^1$
- Fix number T of time slices and number N of simplices

$$Z_{CDT} = \sum_{\mathcal{T}_c[T,N]} \mu(\mathcal{T}_c) e^{-S_R^{(E)}[\mathcal{T}_c]}$$

Markov chain Monte Carlo

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

1 / 13

Click on Sign to add text and place signature on a PDF File.

Quantization of Einstein gravity for spacetime topology $\mathcal{S}^2 \times \mathcal{S}^1$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

5 / 13

Pirsa: 13070075 Page 60/148

Quantization of Einstein gravity for spacetime topology $S^2 \times S^1$

• Observable $N_2^{SL}(\tau)$ Ensemble average $\langle N_2^{SL}(\tau) \rangle$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

5 / 13

Click on Sign to add text and place signature on a PDF File.

Quantization of Einstein gravity for spacetime topology $\mathcal{S}^2 \times \mathcal{S}^1$

• Observable $N_2^{SL}(\tau)$ Ensemble average $\langle N_2^{SL}(\tau) \rangle$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

/ 13

Pirsa: 13070075 Page 62/148

Quantization of Einstein gravity for spacetime topology $\mathcal{S}^2 \times \mathcal{S}^1$

• Gravitational effective action

$$S_{\text{eff}}^{(E)}[N_2^{SL}(\tau)] = c_1 \sum_{\tau=1}^{T} \left\{ \frac{1}{N_2^{SL}(\tau)} \left[\frac{\Delta N_2^{SL}(\tau)}{\Delta \tau} \right]^2 - \lambda N_2^{SL}(\tau) \right\}$$

•
$$\langle N_2^{SL}(\tau) \rangle = \frac{2}{\pi} \frac{\langle N_3^{(1,3)} \rangle}{\tilde{s}_0 \langle N_3^{(1,3)} \rangle^{1/3}} \cos^2 \left(\frac{\tau}{\tilde{s}_0 \langle N_3^{(1,3)} \rangle^{1/3}} \right)$$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

5 / 13

Pirsa: 13070075 Page 63/148

Quantization of Einstein gravity for spacetime topology $\mathcal{S}^2 \times \mathcal{S}^1$

• Gravitational effective action

$$S_{\text{eff}}^{(E)}[N_2^{SL}(\tau)] = c_1 \sum_{\tau=1}^{T} \left\{ \frac{1}{N_2^{SL}(\tau)} \left[\frac{\Delta N_2^{SL}(\tau)}{\Delta \tau} \right]^2 - \lambda N_2^{SL}(\tau) \right\}$$

•
$$\langle N_2^{SL}(\tau) \rangle = \frac{2}{\pi} \frac{\langle N_3^{(1,3)} \rangle}{\tilde{s}_0 \langle N_3^{(1,3)} \rangle^{1/3}} \cos^2 \left(\frac{\tau}{\tilde{s}_0 \langle N_3^{(1,3)} \rangle^{1/3}} \right)$$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

5 / 13

Pirsa: 13070075 Page 64/148

Pirsa: 13070075 Page 65/148

Pirsa: 13070075 Page 66/148

Transition amplitudes

$$S[\mathbf{g}] = \frac{1}{16\pi G} \left[2 \int_{\partial \mathcal{M}_i} d^2 y \sqrt{h_i} K_i + \int_{\mathcal{M}} d^3 x \sqrt{-g} (R - 2\Lambda) + 2 \int_{\partial \mathcal{M}_f} d^2 y \sqrt{h_f} K_f \right]$$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

6 / 13

Pirsa: 13070075 Page 67/148

Transition amplitudes

$$S[\mathbf{g}] = \frac{1}{16\pi G} \left[2 \int_{\partial \mathcal{M}_i} d^2 y \sqrt{h_i} K_i + \int_{\mathcal{M}} d^3 x \sqrt{-g} (R - 2\Lambda) + 2 \int_{\partial \mathcal{M}_f} d^2 y \sqrt{h_f} K_f \right]$$

Compute
$$\mathcal{A}[\mathbf{h}_i, \mathbf{h}_f] = \int_{\mathbf{g}|_{\partial \mathcal{M}_i} = \mathbf{h}_i}^{\mathbf{g}|_{\partial \mathcal{M}_f} = \mathbf{h}_f} \mathcal{D}\mathbf{g} \, e^{iS[\mathbf{g}]}$$
 given fixed \mathbf{h}_i and \mathbf{h}_f

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

6 / 13

Pirsa: 13070075 Page 68/148

Transition amplitudes

$$S[\mathbf{g}] = \frac{1}{16\pi G} \left[2 \int_{\partial \mathcal{M}_i} d^2 y \sqrt{h_i} K_i + \int_{\mathcal{M}} d^3 x \sqrt{-g} (R - 2\Lambda) + 2 \int_{\partial \mathcal{M}_f} d^2 y \sqrt{h_f} K_f \right]$$

Compute
$$\mathcal{A}[\mathbf{h}_i, \mathbf{h}_f] = \int_{\mathbf{g}|_{\partial \mathcal{M}_i} = \mathbf{h}_i}^{\mathbf{g}|_{\partial \mathcal{M}_f} = \mathbf{h}_f} \mathcal{D}\mathbf{g} \, e^{iS[\mathbf{g}]}$$
 given fixed \mathbf{h}_i and \mathbf{h}_f

Numerically simulate $Z_{CDT}[\partial \mathcal{T}_{c_i}, \partial \mathcal{T}_{c_f}]$ given fixed $\partial \mathcal{T}_{c_i}$ and $\partial \mathcal{T}_{c_f}$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

6 / 13

Pirsa: 13070075 Page 69/148

Pirsa: 13070075 Page 70/148

Semiclassical expectations for transition amplitudes

No-boundary proposal of Hartle and Hawking

$$\mathcal{A}[\mathbf{h}_f] = \int^{\mathbf{g}|_{\partial \mathcal{M}_f} = \mathbf{h}_f} \mathcal{D}\mathbf{g} \, e^{iS[\mathbf{g}]} \quad \longrightarrow \quad \mathcal{A}[\mathbf{h}_f] = \int_{\mathbf{g}|_{\partial \mathcal{M}_i} = \emptyset}^{\mathbf{g}|_{\partial \mathcal{M}_f} = \mathbf{h}_f} \mathcal{D}\mathbf{g} \, e^{-S^{(E)}[\mathbf{g}]}$$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

7 / 13

Semiclassical expectations for transition amplitudes

No-boundary proposal of Hartle and Hawking

$$\mathcal{A}[\mathbf{h}_f] = \int^{\mathbf{g}|_{\partial \mathcal{M}_f} = \mathbf{h}_f} \mathcal{D}\mathbf{g} \, e^{iS[\mathbf{g}]} \quad \longrightarrow \quad \mathcal{A}[\mathbf{h}_f] = \int_{\mathbf{g}|_{\partial \mathcal{M}_i} = \emptyset}^{\mathbf{g}|_{\partial \mathcal{M}_f} = \mathbf{h}_f} \mathcal{D}\mathbf{g} \, e^{-S^{(E)}[\mathbf{g}]}$$

• Minisuperspace truncation

$$ds^2 = d\tau^2 + a^2(\tau)(d\theta^2 + \sin^2\theta d\phi^2)$$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

No-boundary proposal of Hartle and Hawking

$$\mathcal{A}[\mathbf{h}_f] = \int^{\mathbf{g}|_{\partial \mathcal{M}_f} = \mathbf{h}_f} \mathcal{D}\mathbf{g} \, e^{iS[\mathbf{g}]} \quad \longrightarrow \quad \mathcal{A}[\mathbf{h}_f] = \int_{\mathbf{g}|_{\partial \mathcal{M}_i} = \emptyset}^{\mathbf{g}|_{\partial \mathcal{M}_f} = \mathbf{h}_f} \mathcal{D}\mathbf{g} \, e^{-S^{(E)}[\mathbf{g}]}$$

• Minisuperspace truncation

$$ds^{2} = d\tau^{2} + a^{2}(\tau)(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

• Saddle point approximation

$$\mathcal{A}[a(t)] = \mathcal{N} e^{-S^{(E)}[a_{cl}(\tau)]}$$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

7 / 13

No-boundary proposal of Hartle and Hawking

$$\mathcal{A}[\mathbf{h}_f] = \int^{\mathbf{g}|_{\partial \mathcal{M}_f} = \mathbf{h}_f} \mathcal{D}\mathbf{g} \, e^{iS[\mathbf{g}]} \quad \longrightarrow \quad \mathcal{A}[\mathbf{h}_f] = \int_{\mathbf{g}|_{\partial \mathcal{M}_i} = \emptyset}^{\mathbf{g}|_{\partial \mathcal{M}_f} = \mathbf{h}_f} \mathcal{D}\mathbf{g} \, e^{-S^{(E)}[\mathbf{g}]}$$

Extrema $a_{\rm cl}(\tau)$ of the action $S^{(E)}[a(\tau)]$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

8 / 13

No-boundary proposal of Hartle and Hawking

$$\mathcal{A}[\mathbf{h}_f] = \int^{\mathbf{g}|_{\partial \mathcal{M}_f} = \mathbf{h}_f} \mathcal{D}\mathbf{g} \, e^{iS[\mathbf{g}]} \quad \longrightarrow \quad \mathcal{A}[\mathbf{h}_f] = \int_{\mathbf{g}|_{\partial \mathcal{M}_i} = \emptyset}^{\mathbf{g}|_{\partial \mathcal{M}_f} = \mathbf{h}_f} \mathcal{D}\mathbf{g} \, e^{-S^{(E)}[\mathbf{g}]}$$

Extrema $a_{\rm cl}(\tau)$ of the action $S^{(E)}[a(\tau)]$

Case 1: $a_i = 0, a_f = 0$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

No-boundary proposal of Hartle and Hawking

$$\mathcal{A}[\mathbf{h}_f] = \int^{\mathbf{g}|_{\partial \mathcal{M}_f} = \mathbf{h}_f} \mathcal{D}\mathbf{g} \, e^{iS[\mathbf{g}]} \quad \longrightarrow \quad \mathcal{A}[\mathbf{h}_f] = \int_{\mathbf{g}|_{\partial \mathcal{M}_i} = \emptyset}^{\mathbf{g}|_{\partial \mathcal{M}_f} = \mathbf{h}_f} \mathcal{D}\mathbf{g} \, e^{-S^{(E)}[\mathbf{g}]}$$

Extrema $a_{\rm cl}(\tau)$ of the action $S^{(E)}[a(\tau)]$

Case 1:
$$a_i=0, a_f=0$$
 Case 2: $a_i=0, a_f>0$

with
$$0 < a_f \le l_{dS}$$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

No-boundary proposal of Hartle and Hawking

$$\mathcal{A}[\mathbf{h}_f] = \int^{\mathbf{g}|_{\partial \mathcal{M}_f} = \mathbf{h}_f} \mathcal{D}\mathbf{g} \, e^{iS[\mathbf{g}]} \quad \longrightarrow \quad \mathcal{A}[\mathbf{h}_f] = \int_{\mathbf{g}|_{\partial \mathcal{M}_i} = \emptyset}^{\mathbf{g}|_{\partial \mathcal{M}_f} = \mathbf{h}_f} \mathcal{D}\mathbf{g} \, e^{-S^{(E)}[\mathbf{g}]}$$

Extrema $a_{\rm cl}(\tau)$ of the action $S^{(E)}[a(\tau)]$

Case 1: $a_i = 0$, $a_f = 0$ Case 2: $a_i = 0$, $a_f > 0$ Case 3: $a_i > 0$, $a_f > 0$

with $0 < a_f \le l_{dS}$ with $a_i \le l_{dS}$, $a_f \le l_{dS}$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

Click on Sign to add text and place signature on a PDF File.

2-sphere spatial topology, periodic in time

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

9 / 13

Pirsa: 13070075 Page 78/148

Click on Sign to add text and place signature on a PDF File.

2-sphere spatial topology, periodic in time

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

9 / 13

Pirsa: 13070075 Page 79/148

Click on Sign to add text and place signature on a PDF File.

2-sphere spatial topology, periodic in time

2-sphere spatial topology, finite interval in time

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

Click on Sign to add text and place signature on a PDF File.

2-sphere spatial topology, periodic in time

2-sphere spatial topology, finite interval in time

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

Click on Sign to add text and place signature on a PDF File.

2-sphere spatial topology, periodic in time

2-sphere spatial topology, finite interval in time

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

Click on Sign to add text and place signature on a PDF File.

2-sphere spatial topology, finite interval in time

Final discrete spatial volume

$$N_2^{SL} (S_f^2) = 4$$

$$N_2^{SL} (S_f^2) = 100$$

$$N_2^{SL} (S_f^2) = 300$$

$$N_2^{SL} (S_f^2) = 500$$

$$N_2^{SL} (S_f^2) = 700$$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

Click on Sign to add text and place signature on a PDF File.

2-sphere spatial topology, finite interval in time

For
$$N_2^{SL}(\mathcal{S}_f^2) = 500$$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

Click on Sign to add text and place signature on a PDF File.

2-sphere spatial topology, finite interval in time

Final discrete spatial volume

For
$$N_2^{SL}(\mathcal{S}_f^2) = 500$$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

Click on Sign to add text and place signature on a PDF File.

2-sphere spatial topology, finite interval in time

Final discrete spatial volume

For
$$N_2^{SL}(\mathcal{S}_f^2) = 500$$

T=24

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

Case 3: Nonminimal initial and final boundaries

Click on Sign to add text and place signature on a PDF File.

2-sphere spatial topology, finite interval in time

$$N_2^{SL}(\mathcal{S}_i^2) = 300$$

$$N_2^{SL}(\mathcal{S}_f^2) = 700$$

$$N_2^{SL}(\mathcal{S}_i^2) = 500$$

$$N_2^{SL}(\mathcal{S}_f^2) = 500$$

$$N_2^{SL}(\mathcal{S}_i^2) = 500$$

$$N_2^{SL}(\mathcal{S}_f^2) = 700$$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

Case 3: Nonminimal initial and final boundaries

Click on Sign to add text and place signature on a PDF File.

2-sphere spatial topology, finite interval in time

$$N_2^{SL}(\mathcal{S}_i^2) = 300$$

$$N_2^{SL}(\mathcal{S}_f^2) = 700$$

$$N_2^{SL}(\mathcal{S}_i^2) = 500$$

$$N_2^{SL}(\mathcal{S}_f^2) = 500$$

$$N_2^{SL}(\mathcal{S}_i^2) = 500$$

$$N_2^{SL}(\mathcal{S}_f^2) = 700$$

How should we interpret these transition amplitudes?

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

Case 3: Nonminimal initial and final boundaries

Click on Sign to add text and place signature on a PDF File.

2-sphere spatial topology, finite interval in time

$$N_2^{SL}(\mathcal{S}_i^2) = 300$$

$$N_2^{SL}(\mathcal{S}_f^2) = 700$$

$$N_2^{SL}(\mathcal{S}_i^2) = 500$$

$$N_2^{SL}(\mathcal{S}_f^2) = 500$$

$$N_2^{SL}(\mathcal{S}_i^2) = 500$$

$$N_2^{SL}(\mathcal{S}_f^2)=700$$

How should we interpret these transition amplitudes?

Case 2

No-boundary wave function $\mathcal{A}[a_f]$ for $a_f > l_{dS}$

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

Pirsa: 13070075 Page 90/148

• Which analytic minisuperspace quantization corresponds to the technique of causal dynamical triangulations?

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

12 / 13

- Which analytic minisuperspace quantization corresponds to the technique of causal dynamical triangulations?
- Do the nonminimal to nonminimal boundary transition amplitudes agree quantitatively with the analytic minisuperspace quantization?

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

12 / 13

- Which analytic minisuperspace quantization corresponds to the technique of causal dynamical triangulations?
- Do the nonminimal to nonminimal boundary transition amplitudes agree quantitatively with the analytic minisuperspace quantization?
- Can we observe effects beyond the minisuperspace truncation by imposing nonspherically symmetric boundary geometries?

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

12 / 13

- Which analytic minisuperspace quantization corresponds to the technique of causal dynamical triangulations?
- Do the nonminimal to nonminimal boundary transition amplitudes agree quantitatively with the analytic minisuperspace quantization?
- Can we observe effects beyond the minisuperspace truncation by imposing nonspherically symmetric boundary geometries?
- Is there gauge redundancy in the number T of time slices of a causal triangulation?
 (c.f. this morning's talk)

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

2 / 13

Thanks to...

- Steve Carlip for tremendous insight and guidance
- Rajesh Kommu for initially developing the Davis group's code
- David Kamensky for developing the algorithm to include fixed boundaries in the Monte Carlo code
- The other members of the Carlip group for many helpful discussions

(http://zombierobots.net/wormhole-cat)

• You!

J. Miller (CU Boulder)

CDT Transition Amplitudes

July 2013

13 / 13

Pirsa: 13070075 Page 95/148

Aaron Trout

Loops 2013

July 24, 2013

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

1 / 18

Pirsa: 13070075 Page 96/148

Observational Evidence for Dark Energy

Multiple independent sets of empirical evidence say dark energy (DE) is $\approx 70\%$ of the matter-energy in our universe.

- Cosmic microwave background (Hinshaw et al. 2012)
- Apparent luminosity of supernovae (Kowalski et al. 2008)
- X-ray emissions from galaxy clusters (Allen et al. 2008)
- Large scale distribution of galaxies (Tegmark et al. 2004)

Data are consistent with DE as a cosmological constant or equivalently a uniform vacuum energy density of

$$\Lambda \approx 10^{-122}$$

in Planck units. The data are *also* consistent with more exotic models, like those where Λ varies with time.

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

2 / 18

Pirsa: 13070075 Page 97/148

Why is Λ So Tiny?

A theoretical explanation for the magnitude of Λ is difficult.

- Naive quantum field theory (QFT) says $\Lambda \approx 1$.
- Can construct natural theories (e.g. SUSY) where $\Lambda=0$.
- Very hard to find natural way to get $\Lambda \approx 10^{-122}$.

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

3 / 18

Pirsa: 13070075 Page 98/148

Why is Λ So Tiny?

A theoretical explanation for the magnitude of Λ is difficult.

- Naive quantum field theory (QFT) says $\Lambda \approx 1$.
- Can construct natural theories (e.g. SUSY) where $\Lambda = 0$.
- Very hard to find natural way to get $\Lambda \approx 10^{-122}$.

Various explanations of DE, for example:

- Holographic Dark Energy (HDE): Accelerating expansion driven by entropy on cosmic horizon. (Cohen, et al. 1999)
- Quintessence: Accelerating expansion driven by exotic matter field(s).
 (Caldwell, et al. 1998)
- Quantum Non-Locality: Λ is a non-local quantum residue of spacetime discreteness. (Sorkin 1988)
- Anthropic Principle: Only universes with $\Lambda \ll 1$ support life. (Weinberg 1987)

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

3 / 18

Pirsa: 13070075 Page 99/148

Click on Sign to add text and place signature on a PDF File.

We present a new model for the origin of DE. The basic story:

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

4 / 18

Pirsa: 13070075 Page 100/148

We present a new model for the origin of DE. The basic story:

- Spacetime is fundamentally a kind of discrete geometry.
- In a discrete geometry, there are *more ways* to encode states with total scalar-curvature negative than positive.
- This bias perturbs the ground state of the vacuum giving even empty spacetime a small negative scalar-curvature.

An intrinsic negative curvature for empty space has the same effect as a positive vacuum energy density.

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

4 / 18

We present a new model for the origin of DE. The basic story:

- Spacetime is fundamentally a kind of discrete geometry.
- In a discrete geometry, there are *more ways* to encode states with total scalar-curvature negative than positive.
- This bias perturbs the ground state of the vacuum giving even empty spacetime a small negative scalar-curvature.

An intrinsic negative curvature for empty space has the same effect as a positive vacuum energy density.

This story is supported by the basic structure of the Einstein-Hilbert action.

(D) (A) (E) (E) (E) (O)

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

4 / 18

Pirsa: 13070075 Page 102/148

The Einstein-Hilbert Action

$$\mathcal{A}_{E\!H}(g_{\mu
u}) = \int_{M} \left[rac{1}{16\pi} \left(R - 2\Lambda
ight) + \mathcal{L}_{m}
ight] \sqrt{-g} \ d^{n}x.$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 釣<0</p>

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

The Einstein-Hilbert Action

$$\mathcal{A}_{EH}(g_{\mu
u}) = \int_{\mathcal{M}} \left[rac{1}{16\pi} \left(R - 2\Lambda
ight) + \mathcal{L}_m
ight] \sqrt{-g} \ d^n x.$$

 Only the scalar-curvature term R has a physically distinguished zero value. In QFT on a fixed background

$$\mathcal{L}_m o \mathcal{L}_m + \mathsf{const}$$

doesn't change the dynamics and we can simply set $\Lambda=0$. Thus, it is reasonable to argue that a non-zero Λ comes from quantum perturbations on R.

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

The Einstein-Hilbert Action

$$\mathcal{A}_{EH}(g_{\mu
u}) = \int_{M} \left[rac{1}{16\pi} \left(R - 2\Lambda
ight) + \mathcal{L}_{m}
ight] \sqrt{-g} \ d^{n}x.$$

 Only the scalar-curvature term R has a physically distinguished zero value. In QFT on a fixed background

$$\mathcal{L}_m o \mathcal{L}_m + \mathsf{const}$$

doesn't change the dynamics and we can simply set $\Lambda=0$. Thus, it is reasonable to argue that a non-zero Λ comes from quantum perturbations on R.

 We expect an entropic perturbation on the value of a global observable (like total R) to be independent of local dynamics. The cosmological constant term Λ is the only term in A_{EH} independent of the metric.

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

Pirsa: 13070075 Page 106/148

Basics of Our Model

Sure, nice story . . . can we fill in mathematical details? Yes!

We compute this effect using a novel variant of the *dynamical* triangulations (DT) theory of quantum gravity and obtain

$$\Lambda \approx 10^{-123}$$
.

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

Basics of Our Model

Sure, nice story . . . can we fill in mathematical details? Yes!

We compute this effect using a novel variant of the *dynamical* triangulations (DT) theory of quantum gravity and obtain

$$\Lambda \approx 10^{-123}$$
.

- Spacetime states in our model will be triangulations of a fixed compact n-manifold M, just like in DT.
- We use the standard DT action with $\Lambda = 0$.
- However, this theory is *not the same* as DT since we will restrict the set of triangulations which contribute to the partition function. (Like in CDT, but here we include states based on their *action value*.)

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

Mean DT Action

We will be concerned with the average DT action (per volume) for triangulations of a fixed region with volume $V = N_n V_n(\ell)$.

$$\overline{\mathcal{A}} := \frac{\mathcal{A}_{DT}}{V} = c_n \ell^{-2} \left(\frac{1}{\mu(T)} - \frac{1}{\mu_n^*} \right)$$

where

- \bullet ℓ is length of all the edges in T,
- $\mu(T) = \frac{1}{N_{n-2}(T)} \sum_{\tau^{n-2} \in T} \deg(\tau^{n-2})$ is the **mean hinge degree**, and
- $\mu_n^* = \frac{2\pi}{\cos^{-1}(1/n)}$ is the "flat" hinge degree.

We suppress the ℓ and n dependence writing simply $\overline{\mathcal{A}}(\mu)$ and interpret this quantity as the **mean scalar-curvature** over this region. Note that for any $\mu \neq \mu^*$ this quantity diverges like ℓ^{-2} .

Main Mathematical Result

Theorem

Let M be a closed 3-manifold and N_3 a fixed number of tetrahedra. Then, there are mean actions

$$\overline{\mathcal{A}}_{min} = \overline{\mathcal{A}} \left(4.5 \cdot \frac{N_3}{N_3 - \frac{1}{2} \gamma^*(M)} \right)$$

and

$$\overline{\mathcal{A}}_{max} = \overline{\mathcal{A}} \left(6 \cdot \frac{N_3}{N_3 + \frac{1}{2} \left(3 + \sqrt{9 + 8N_3} \right)} \right)$$

so that for every integer N_1 with

$$\overline{\mathcal{A}} = \overline{\mathcal{A}}(\mu) = \overline{\mathcal{A}}\left(6N_3/N_1
ight) \in \left(\overline{\mathcal{A}}_{min}, \overline{\mathcal{A}}_{max}
ight)$$

we know $\overline{A} = \overline{A}(T)$ for some triangulation T of M containing N_3 tetrahedra and N_1 edges.

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

More on Main Result

The $\overline{\mathcal{A}}$ given in the theorem are regularly spaced over $\left(\overline{\mathcal{A}}_{min}, \overline{\mathcal{A}}_{max}\right)$ with separation

$$\delta \overline{\mathcal{A}} = \frac{1}{8} \left(\frac{\ell}{V} \right).$$

This is the smallest possible separation given fixed N_3 so these are all the possible mean-actions $\overline{\mathcal{A}}$ on this interval.

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

More on Main Result

The $\overline{\mathcal{A}}$ given in the theorem are regularly spaced over $\left(\overline{\mathcal{A}}_{min}, \overline{\mathcal{A}}_{max}\right)$ with separation

$$\delta \overline{\mathcal{A}} = \frac{1}{8} \left(\frac{\ell}{V} \right).$$

This is the smallest possible separation given fixed N_3 so these are all the possible mean-actions $\overline{\mathcal{A}}$ on this interval.

When $N_3 \gg 1$ we get

$$\overline{\mathcal{A}}_{min} pprox \overline{\mathcal{A}}(6) pprox -0.19\ell^{-2}$$

and

$$\overline{\mathcal{A}}_{max} pprox \overline{\mathcal{A}} (4.5) pprox 0.17 \ell^{-2}$$
.

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

Constructing the *N*-Action Model

Since GR vacua at $\Lambda=0$ have total scalar-curvature zero, we aim to build a model in which $\langle \overline{\mathcal{A}} \rangle = 0$.

<ロ > → □ > → □ > → □ > → □ → □ ● ● のへで

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

10 / 18

Pirsa: 13070075 Page 113/148

Constructing the *N*-Action Model

Since GR vacua at $\Lambda=0$ have total scalar-curvature zero, we aim to build a model in which $\langle \overline{\mathcal{A}} \rangle = 0$.

For each ℓ and corresponding N_3 , let $\overline{\mathcal{A}}_0$ be the closest attainable mean action to zero. Our model uses triangulations with this mean-action, as well as those having one of the N mean-action values $\overline{\mathcal{A}}_k$ on either side of $\overline{\mathcal{A}}_0$. Let \mathcal{A}_k and μ_k be the corresponding actions and mean edge-degrees.

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

10 / 18

Pirsa: 13070075 Page 114/148

Constructing the N-Action Model

Since GR vacua at $\Lambda=0$ have total scalar-curvature zero, we aim to build a model in which $\langle \overline{\mathcal{A}} \rangle = 0$.

For each ℓ and corresponding N_3 , let $\overline{\mathcal{A}}_0$ be the closest attainable mean action to zero. Our model uses triangulations with this mean-action, as well as those having one of the N mean-action values $\overline{\mathcal{A}}_k$ on either side of $\overline{\mathcal{A}}_0$. Let \mathcal{A}_k and μ_k be the corresponding actions and mean edge-degrees.

By our main result, if $N = N(\ell)$ grows slower than ℓ^{-2} then for small enough ℓ all $\overline{\mathcal{A}}_k$ lie in $(\overline{\mathcal{A}}_{min}, \overline{\mathcal{A}}_{max})$ and our partition function is

$$Z = \sum_{k=-N}^{N} e^{S_k + i(A_0 + k \cdot \delta A)}$$

where $S_k = \ln(\# \text{ of } T \text{ with } \mathcal{A}_{DT}(T) = \mathcal{A}_k)$ is the entropy at action \mathcal{A}_k and $\delta \mathcal{A} = V \delta \overline{\mathcal{A}} = \frac{1}{8} \ell$ the separation between actions.

<ロ > 4回 > 4回 > 4 直 > 4 直 > 一直 の4の

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

Expected Action

The expected action for this model is then

$$\langle \mathcal{A} \rangle = \frac{1}{Z} \sum_{k=-N}^{N} (\mathcal{A}_0 + k \cdot \delta \mathcal{A}) e^{S_k + i(\mathcal{A}_0 + k \cdot \delta \mathcal{A})}.$$

It is currently impossible to write $\langle \mathcal{A} \rangle$ as an exact closed-form expression.

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

Expected Action

The expected action for this model is then

$$\langle \mathcal{A} \rangle = \frac{1}{Z} \sum_{k=-N}^{N} (\mathcal{A}_0 + k \cdot \delta \mathcal{A}) e^{S_k + i(\mathcal{A}_0 + k \cdot \delta \mathcal{A})}.$$

It is currently impossible to write $\langle \mathcal{A} \rangle$ as an exact closed-form expression.

However, under the affine entropy approximation

$$S_k = S_0 + k \cdot \eta$$

where $\eta = \eta(N_3)$ does not depend on k, we get $\langle A \rangle$ equal to

$$\mathcal{A}_0 - rac{\delta \mathcal{A}}{e^{\eta + i\delta \mathcal{A}} - 1} + rac{\delta \mathcal{A}}{e^{(2N+1)(\eta + i\delta \mathcal{A})} - 1} + N\delta \mathcal{A} \coth \left[(2N+1)(\eta + i\delta \mathcal{A})
ight].$$

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

Choosing an Appropriate N

A complete DT-style theory of QG coupled to matter would let us *derive* an appropriate N for this model, but unfortunately we're not there yet!

◆□ → ◆□ → ◆豆 → ◆豆 → □ ◆ ○ へ ○

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

12 / 18

Pirsa: 13070075 Page 118/148

Choosing an Appropriate N

A complete DT-style theory of QG coupled to matter would let us *derive* an appropriate N for this model, but unfortunately we're not there yet!

However, we know enough to guess what such a theory would say. We will assume that $S_k \approx S_0 + k \cdot \eta$ with $\eta(N_3) \not \to 0$ as $N_3 \to \infty$.

- We must have $N \to \infty$ as $\ell \to 0$. Otherwise, all the actions \mathcal{A}_k would go to zero, and we wouldn't have a *quantum* theory.
- The product $N\delta A$ must converge as $\ell \to 0$. Otherwise, our formula for the expected action $\langle A \rangle$ would diverge as $\ell \to 0$.

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

12 / 18

Pirsa: 13070075 Page 119/148

Choosing an Appropriate N

A complete DT-style theory of QG coupled to matter would let us *derive* an appropriate N for this model, but unfortunately we're not there yet!

However, we know enough to guess what such a theory would say. We will assume that $S_k \approx S_0 + k \cdot \eta$ with $\eta(N_3) \not \to 0$ as $N_3 \to \infty$.

- We must have $N \to \infty$ as $\ell \to 0$. Otherwise, all the actions \mathcal{A}_k would go to zero, and we wouldn't have a *quantum* theory.
- The product $N\delta A$ must converge as $\ell \to 0$. Otherwise, our formula for the expected action $\langle A \rangle$ would diverge as $\ell \to 0$.

Since $\delta A \propto \ell$ and N is dimensionless, we are led to choose $N = \frac{V^{1/3}}{\ell}$.

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

The Cosmological Constant

Using this N along with the affine entropy assumption with $\eta < 0$ gives

$$\lim_{\ell \to 0} \langle \overline{\mathcal{A}} \rangle = \frac{1}{V} \lim_{\ell \to 0} \langle \mathcal{A} \rangle = -\frac{1}{8} V^{-\frac{2}{3}}$$

which, by the Einstein-Hilbert action, implies an effective Λ of

$$\Lambda = -\frac{1}{2} \lim_{\ell \to 0} \langle \overline{\mathcal{A}} \rangle = \frac{1}{16} V^{-\frac{2}{3}}.$$

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

The Cosmological Constant

Using this N along with the affine entropy assumption with $\eta < 0$ gives

$$\lim_{\ell \to 0} \langle \overline{\mathcal{A}} \rangle = \frac{1}{V} \lim_{\ell \to 0} \langle \mathcal{A} \rangle = -\frac{1}{8} V^{-\frac{2}{3}}$$

which, by the Einstein-Hilbert action, implies an effective Λ of

$$\Lambda = -\frac{1}{2} \lim_{\ell \to 0} \langle \overline{\mathcal{A}} \rangle = \frac{1}{16} V^{-\frac{2}{3}}.$$

Can we use this result to estimate Λ in our universe? Considerations of causality indicate we should use something like the Hubble volume $H(t)^{-3}$ for V, giving

$$\Lambda(t) \approx \frac{1}{16} H(t)^2$$
.

In the current era we get $\Lambda \approx 10^{-123}$ in agreement with observation.

< ロト < 回 > < 直 > < 直 >) 直 り へ ()

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

Discussion

Our model shares two key features with HDE approaches:

- Our Λ scales like the area of the cosmic horizon.
- We coordinated the cut-offs ℓ and N so that the entropic perturbation on $\langle \overline{\mathcal{A}} \rangle$ stays bounded as $\ell \to 0$. HDE models typically contain UV and IR field cut-offs which are removed in a way that saturates entropy in the Bekenstein bound.

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

14 / 18

Pirsa: 13070075 Page 123/148

Discussion

Our model shares two key features with HDE approaches:

- Our Λ scales like the area of the cosmic horizon.
- We coordinated the cut-offs ℓ and N so that the entropic perturbation on $\langle \overline{\mathcal{A}} \rangle$ stays bounded as $\ell \to 0$. HDE models typically contain UV and IR field cut-offs which are removed in a way that saturates entropy in the Bekenstein bound.

Finally, for a Planck-scale universe $(V \approx 1)$ we predict $\Lambda \approx 1$ and hence very rapid expansion.

This raises the tantalizing possibility that big-bang inflation and dark-energy are manifestations of a common effect. This possibility is already under active investigation in the HDE context (Easson et al. 2012).

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

14 / 18

Pirsa: 13070075

Numerical Evidence for the Entropies S_k

We used the Metropolis algorithm with quadratic objective function

$$U(T) = \alpha \left(\overline{\mathcal{A}}(T) - \overline{\mathcal{A}}^{\dagger} \right)^{2} + \beta \left(N_{3}(T) - N_{3}^{\dagger} \right)^{2}$$

to sample triangulations of the 3-sphere near a target mean-action $\overline{\mathcal{A}}^\dagger=0$ and target number of tetrahedra N_3^\dagger . Below is a histogram of samples for $N_3^\dagger=1701,~\alpha=3.5\times10^6$ and $\beta=1.0\times10^{-2}$.

- A Gaussian distribution means S_k depends linearly on k.
- The displacement of the sample mean away from $\overline{\mathcal{A}}^\dagger = 0$ implies the slope η is negative.

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

Evidence for the Entropies S_k

What happens to η as $N_3 \to \infty$?

◆□ → ←□ → ← 量 → ← 量 → りへで

Aaron Trout (Loops 2013)

Dark Energy from Discrete Spacetime

July 24, 2013

16 / 18

Pirsa: 13070075

Evidence for the Entropies S_k

Finally, we can look at censuses of 3-manifold triangulations for small N_3 as a sanity check. Data come from a complete census of the \approx 47 million triangulations of S^3 with at most 9 tetrahedra (Burton 2011).

Technical note: the definition of "triangulation" used here is slightly more general. Allows gluing together of the faces within a single tetrahedron.

Pirsa: 13070075 Page 127/148

Pirsa: 13070075 Page 128/148

A CDT Hamiltonian from Hořava-Lifshitz gravity

(arXiv:1302.6359)

 ${\sf Jan\ Ambjørn^{1,2},\ \underline{Lisa\ Glaser^1}, Yuki\ Sato^3,\ Yoshiyuki\ Watabiki^4}$

Niels Bohr Institute, Copenhagen
 Radbaud University Nijmegen
 Nagoya University
 Tokyo Institute of Technology

July 25, 2013

Pirsa: 13070075 Page 129/148

Outline

Why should they be connected?

What did we do?

What does this imply?

Lisa Glaser

NBI

CDT is HL gravity

1/10

Pirsa: 13070075

What will I talk about?

Causal Dynamical Triangulations (CDT)

- path integral
- non-perturbative
- not fundamentally discrete
- euclideanized

Hořava Lifshitz gravity (HL)

- powercounting renormalizable
- preferred time foliation
- continuum theory
- anisotropic scaling

Lisa Glaser NBI CDT is HL gravity

2/10

Pirsa: 13070075 Page 131/148

What makes us believe they might be the same?

- phase structure
- spectral dimension
- simulations
- symmetry group

(arXiv:1002.3298)

(arXiv:1203.3591)

Lisa Glaser

NBI

CDT is HL gravity
3/ 10

Pirsa: 13070075 Page 132/148

What makes us believe they might be the same?

- phase structure
- spectral dimension
- simulations
- symmetry group

(arXiv:1002.3298)

(arXiv:1203.3591)

2D disclaimer

The rest of this talk we will be concerned with a 2d universe!

Lisa Glaser CDT is HL gravity NBI

3/10

Pirsa: 13070075 Page 133/148

A hamiltonian in CDT

Loop loop correlator

$$G(L_1, L_2, T) = \sum_{L_1} = \sum_{\text{geom}} e^{\mu N + \lambda_1 L_1 + \lambda_2 L_2}$$

We can solve this to find:

Hamiltonian

$$\hat{H} = -\frac{\partial}{\partial L} L \frac{\partial}{\partial L} + \Lambda L$$

Lisa Glaser

NBI

CDT is HL gravity

The HL Lagrangian

$$g_{\mu\nu} = \begin{pmatrix} -N(t)^2 + \gamma^2(x,t)N^{(1)}(x,t)^2 & N^{(1)}(x,t) \\ N^{(1)}(x,t) & \gamma^2(x,t) \end{pmatrix} \quad \text{metric in ADM form}$$

Projectable Hořava Lifshitz

N(t) independent of position!

Lisa Glaser NBI CDT is HL gravity

$$g_{\mu\nu} = \begin{pmatrix} -N(t)^2 + \gamma^2(x,t)N^{(1)}(x,t)^2 & N^{(1)}(x,t) \\ N^{(1)}(x,t) & \gamma^2(x,t) \end{pmatrix} \quad \text{metric in ADM form}$$

And the action is

$$I = \int dt \ dx \ N\gamma \left((1 - \lambda)K^2 - 2\Lambda \right)$$

with $K=\frac{1}{N}\left(\frac{1}{\gamma}\partial_0\gamma-\frac{1}{\gamma^2}\partial_1N_1+\frac{N_1}{\gamma^3}\partial_1\gamma\right)$ the external curvature

$$\pi^{\gamma} = \frac{\partial \mathcal{L}}{\partial \partial_0 \gamma} = 2(1 - \lambda)K$$

Lisa Glaser

CDT is HL gravity

NBI

Hamiltonian formalism

The Hamiltonian

$$H = \int dx \left[N(t)\mathcal{H} + N^{(1)}(x,t)\mathcal{H}_1 \right]$$

$$\mathcal{H} = \gamma \frac{(\pi^{\gamma})^2}{4(1-\lambda)} + 2\Lambda$$

Momentum constraint

Hamiltonian constraint

$$\mathcal{H}_1 = \frac{-\partial_x \pi^\gamma}{\gamma}$$

 $\mathcal{H}_1 = 0$

$$\rightarrow \qquad \qquad \pi^{\gamma}(t)$$

We can introduce $L(t) = \int dx \gamma(x,t)$

$$H = N(t) \left(L(t) \frac{\pi^{\gamma}(t)^{2}}{4(1-\lambda)} + 2\Lambda L(t) \right)$$

Lisa Glaser

CDT is HL gravity

NBI

Hamiltonian formalism

The Hamiltonian

$$H = \int dx \left[N(t)\mathcal{H} + N^{(1)}(x,t)\mathcal{H}_1 \right]$$

$$\mathcal{H} = \gamma \frac{(\pi^{\gamma})^2}{4(1-\lambda)} + 2\Lambda$$

$$\mathcal{H}_1 = rac{-\partial_x \pi^\gamma}{\gamma}$$

$$\mathcal{H}_1 = 0$$

Hamiltonian constraint

Momentum constraint

$$\pi^{\gamma}(t)$$

We can introduce $L(t) = \int dx \gamma(x,t)$

$$H = N(t) \left(L(t) \frac{\pi^{\gamma}(t)^2}{4(1-\lambda)} + 2\Lambda L(t) \right)$$

Lisa Glaser

NBI

CDT is HL gravity

Quantization

NBI

We rescale the hamiltonian

$$H = N(t) \left(L(t)\pi^{\gamma}(t)^{2} + \tilde{\Lambda}L(t) \right)$$

We can gauge fix N(t) = 1 and then require

cannonical commutation relations

$$\{L(t), \pi^{\gamma}(t)\} = 1$$
 \rightarrow $[\hat{L}, \hat{\pi^{\gamma}}] = i$

$$H = \hat{L}\,\hat{\pi}^{\gamma 2} + \tilde{\Lambda}\hat{L}$$

Lisa Glaser CDT is HL gravity

7/ 10

Pirsa: 13070075 Page 139/148

Quantization

We rescale the hamiltonian

$$H = N(t) \left(L(t)\pi^{\gamma}(t)^{2} + \tilde{\Lambda}L(t) \right)$$

We can gauge fix N(t) = 1 and then require

cannonical commutation relations

$$\{L(t), \pi^{\gamma}(t)\} = 1$$
 \rightarrow $[\hat{L}, \hat{\pi^{\gamma}}] = i$

$$H = \hat{L}\,\hat{\pi}^{\gamma 2} + \tilde{\Lambda}\hat{L}$$

Ordering ambiguity?

Lisa Glaser

CDT is HL gravity

NBI

NBI

Position basis $(\hat{\pi^{\gamma}} = -i\frac{\partial}{\partial L})$

$$H=-rac{\partial}{\partial L}Lrac{\partial}{\partial L}+\Lambda L \quad o \quad$$
 open boundary $+$ no marked point

$$H = -Lrac{\partial^2}{\partial L^2} + \Lambda L \qquad
ightarrow \qquad ext{closed boundary} + ext{marked point}$$

$$H=-rac{\partial}{\partial L}Lrac{\partial}{\partial L}+\Lambda L \quad o \quad ext{ open boundary} + ext{ no marked point}$$
 $H=-Lrac{\partial^2}{\partial L^2}+\Lambda L \quad o \quad ext{ closed boundary} + ext{ marked point}$ $H=-rac{\partial^2}{\partial L^2}L+\Lambda L \quad o \quad ext{ closed boundary} + ext{ no marked point}$

Lisa Glaser CDT is HL gravity

8/10

Pirsa: 13070075 Page 141/148

NBI

CDT is HL gravity

Position basis $(\hat{\pi^{\gamma}} = -i\frac{\partial}{\partial L})$

$$H=-rac{\partial}{\partial L}Lrac{\partial}{\partial L}+\Lambda L \quad o \quad$$
 open boundary $+$ no marked point

$$H = -Lrac{\partial^2}{\partial L^2} + \Lambda L \qquad
ightarrow \qquad ext{closed boundary} + ext{marked point}$$

$$H=-rac{\partial}{\partial L}Lrac{\partial}{\partial L}+\Lambda L \quad o \quad ext{ open boundary} + ext{ no marked point}$$
 $H=-Lrac{\partial^2}{\partial L^2}+\Lambda L \quad o \quad ext{ closed boundary} + ext{ marked point}$ $H=-rac{\partial^2}{\partial L^2}L+\Lambda L \quad o \quad ext{ closed boundary} + ext{ no marked point}$

Lisa Glaser

8/10

Pirsa: 13070075 Page 142/148

NBI

Position basis $(\hat{\pi^{\gamma}} = -i\frac{\partial}{\partial L})$

$$H=-rac{\partial}{\partial L}Lrac{\partial}{\partial L}+\Lambda L \quad o \quad$$
 open boundary $+$ no marked point

$$H = -Lrac{\partial^2}{\partial L^2} + \Lambda L \qquad
ightarrow \qquad ext{closed boundary} + ext{marked point}$$

$$H=-rac{\partial}{\partial L}Lrac{\partial}{\partial L}+\Lambda L \quad o \quad ext{ open boundary} + ext{ no marked point}$$
 $H=-Lrac{\partial^2}{\partial L^2}+\Lambda L \quad o \quad ext{ closed boundary} + ext{ marked point}$ $H=-rac{\partial^2}{\partial L^2}L+\Lambda L \quad o \quad ext{ closed boundary} + ext{ no marked point}$

Lisa Glaser CDT is HL gravity

8/10

Pirsa: 13070075 Page 143/148

Position basis $(\hat{\pi^{\gamma}} = -i\frac{\partial}{\partial L})$

$$H=-rac{\partial}{\partial L}Lrac{\partial}{\partial L}+\Lambda L \quad o \quad ext{ open boundary} + ext{ no marked point}$$

$$\partial L \ \partial L$$

$$H = -L \frac{\partial^2}{\partial L^2} + \Lambda L \qquad o \qquad \text{closed boundary} + \text{marked point}$$

$$H = -rac{\partial^2}{\partial L^2} L + \Lambda L \qquad o \quad {
m closed boundary} + {
m no \ marked \ point}$$

We have open boundary conditions and no marked point

CDT and HL in 2d are described by the same Hamiltonian!

Lisa Glaser

CDT is HL gravity

NBI

So is HL the continuum theory for CDT?

- the Hamiltonian agrees with the minisuperspace formulation of GR
- our results show that in 2d HL is the continuum theory

What about 4d?

- HL is a QFT following Wilsonian ideas
 - → all higher order terms that symmetry allows have to be included
- The CDT action is generally covariant
 - → entropic terms do lead to spatial higher derivatves as in HL

Lisa Glaser

CDT is HL gravity

9/10

NBI

Pirsa: 13070075 Page 145/148

So is HL the continuum theory for CDT?

- the Hamiltonian agrees with the minisuperspace formulation of GR
- our results show that in 2d HL is the continuum theory

What about 4d?

- HL is a QFT following Wilsonian ideas
 - → all higher order terms that symmetry allows have to be included
- The CDT action is generally covariant
 - → entropic terms do lead to spatial higher derivatves as in HL

CDT is HL gravity

(isotropic point might still be GR!)

Lisa Glaser

CDT is HL gravity

NBI

9/10

Pirsa: 13070075 Page 146/148

Summary

- CDT and HL have the same symmetries
- in 2d they have the same Hamiltonian
- HL is the continuum theory for part of the CDT phase space

Lisa Glaser

CDT is HL gravity

10/10

NBI

Pirsa: 13070075 Page 147/148

Summary

- CDT and HL have the same symmetries
- in 2d they have the same Hamiltonian
- HL is the continuum theory for part of the CDT phase space

Thank you for your attention.

Lisa Glaser

CDT is HL gravity

NBI

10/ 10

Pirsa: 13070075 Page 148/148