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Quantum General Covariance

o Every theory with diff symmetry has constraints that generate the
“hypersurface deformation” algebra

{D[N], D[M]} = D[£yM]
{D[N], HIN]} = HILgzN]
{H[N], HIM]} = D[g”*(MsN — NOyM)]

encoding 4D spacetime covariance in 3+1 form [HKT]
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Quantum General Covariance
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{DIN], H[N]} = H[LgN]
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encoding 4D spacetime covariance in 3+1 form [HKT]

o Philosophy: A representation of the HD algebra via quantum operators is
required in any (canonical) theory of quantized geometry, and defines the
notion of quantum spacetime covariance. E.g.,
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Quantum General Covariance

o Every theory with diff symmetry has constraints that generate the
“hypersurface deformation” algebra

{D[N], D[M]} = D[£xzM]
{D[N], HIN]} = HILzN]
{H[N], HIM]} = D[g”*(MsN — NOoyM)]

encoding 4D spacetime covariance in 3+1 form [HKT]

o Philosophy: A representation of the HD algebra via quantum operators is
required in any (canonical) theory of quantized geometry, and defines the
notion of quantum spacetime covariance. E.g.,

[AIN], H[M]] = ihD[&] (*)

o State-of-the-art LQG does not sufficiently capture this relation:

o Algebra computed partially “on-shell” [Nikolai et al.]
o Density weight responsible for trivial RHS [Lewandowski, Pullin et al.]
o Ultralocality responsible for trivial LHS
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Smolin's Weak-Coupling Limit!

Euclidean, self-dual, first order action:

1 . v
Sle,w] = G_N’ le|el* e} Ruu " [w].

Define A = Gb?lw, take Gy — 0, 3+1 split, get

S[A.E] = [dt (J;:(lsx E? Al — G[A] — D[N] - H[M)

G[A] = [NO,E? —U(1)® Gauss
DIN] = [E7LjAl  —diffeo
H[N] = 3 [Ne’*EFEPFY[A] —Euclidean Hamiltonian with

Abelian curvature F!, := 2(‘)[3AL]

Subalgebra of D and H again generates the HD algebra
Goal: Quantize H such that [H, H] = D off-shell

1CQG 9 883 1992
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Lessons from the Husain-Kucha¥ Model?

o Construct an operator D[N] such that

[D[N). D[M]] = ihD[LzM]

2| addha, Varadarajan CQG 29 2011
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Lessons from the Husain-Kucha¥ Model?

o Construct an operator D[N] such that

[D[N). D[M]] = ihD[L zM] (%)

o Strategy: Use classical geometric hints. Quantize regularized Dg,‘[N] on
Hyin such that 5
8
~ — (f"’)—' e 1
Ds[N] ~ %
C

2Laddha, Varadarajan CQG 29 2011
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Lessons from the Husain-Kucha¥ Model?

o Construct an operator D[N] such that

[D[N). D[M]] = ihD[L 3 M] (%)

o Strategy: Use classical geometric hints. Quantize regularized Dg[ﬁl] on
Hyiin such that
A — O((f")é') . 1
Ds[N] ~ —A——
)
o What is required of regularization and quantization choices?

o Curvature operator aquires non-trivial state-dependence and
non-perturbative modifications:

pi tr(hor') 3i tr(hg —1)

F‘; = 82 2¢ f., 82 Ei(Ss)

2Laddha, Varadarajan CQG 29 2011
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Lessons from the Husain-Kucha¥ Model?

o Construct an operator D[N] such that

[D[N). D[M]] = ihD[L 3 M] (%)

o Strategy: Use classical geometric hints. Quantize regularized Dg[N] on
Hyin such that
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Lessons from the Husain-Kucha¥ Model?

o Construct an operator D[N] such that

[D[N). D[M]] = ihD[L zM] (%)

o Strategy: Use classical geometric hints. Quantize regularized Dg[ﬁl] on
Hyin such that
Ds[N] ~ —A——
)
o What is required of regularization and quantization choices?

o Curvature operator aquires non-trivial state-dependence and
non-perturbative modifications:
i _ tr(hor') 3i tr(hg —1)
g e 22 52

Ei(Ss)
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Lessons from the Husain-Kucha¥ Model?

o Construct an operator D[N] such that

[D[N). D[M]] = ihD[L zM] (%)

o Strategy: Use classical geometric hints. Quantize regularized Dg[N] on
Hyiin such that
N
)
o What is required of regularization and quantization choices?
o Curvature operator aquires non-trivial state-dependence and
non-perturbative modifications:
i _ tr(hor!) 3i tr(hg —1)
o= )2 2(% )2

i o)
BRI e

Ei(Ss)
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Lessons from the Husain-Kucha¥ Model?

o Construct an operator D[N] such that

[D[N). D[M]] = ihD[L 3 M] (%)

o Strategy: Use classical geometric hints. Quantize regularized Dg,‘[N] on
Hyin such that
~ — D((-’)é—') — 1
Ds[N] ~ —A——
)
o What is required of regularization and quantization choices?
o Curvature operator aquires non-trivial state-dependence and
non-perturbative modifications:
i _ tr(hgr!) 3i tr(hg —1)
8752 T

Ei(Ss)

o Sum over triangulation — product: 37, dx; = [,(1 + dx/) — 1 + O(6?)
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non-perturbative modifications:
i _ tr(hor!) 3i tr(hg —1)
8 e 22 52

Ei(Ss)
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Lessons from the Husain-Kucha¥ Model?

o Construct an operator D[N] such that

[D[N). D[M]] = ihD[LzM] (%)

o Strategy: Use classical geometric hints. Quantize regularized Dg,‘[N] on
Hiin such that
A —: O (,-‘")é- — 1
Ds[N] ~ —( A;;)
o What is required of regularization and quantization choices?

o Curvature operator aquires non-trivial state-dependence and
non-perturbative modifications:
i _ tr(hor!) 3i tr(hg —1)
i 52 T

Ei(Ss)

o Sum over triangulation — product: 3=, dx; = [,(1 + dx;) — 1 + O(6?)
o What space supports the § — 0 limit?

o Not Hyin, but a well-chosen set of distributions (Lewandowski-Marolf
habitat):
D[N ~ wEaf
o Apply these ideas to the U(1)* Hamiltonian constraint
2 addha, Varadarajan CQG 29 2011
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3+1 Finite-Triangulation Hamiltonian

o Let Nf := g~ Y3NE/. Classically this "electric shift" is a (density weight
zero) vector field. The action of H on A can be written

{Af;. H[N]} = _ngﬁﬁj e gauge
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3+1 Finite-Triangulation Hamiltonian

o Let N7 := g~ Y3NE;. Classically this "electric shift” is a (density weight
zero) vector field. The action of H on A can be written

{Af.,,. H[N]} = —F’jkﬁﬁj 7 g gauge

o Since N?(v)|c) naturally splits into a sum over edges
N2 (v)|e) ~ > .. €’c). this translates into an action at finite triangulation:

< L i |Ce,i,8) — |C
Hs.u[N]|c) ~ N(v)Aq UszeﬁvZ"q"%
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3+1 Finite-Triangulation Hamiltonian

o Let N7 := g~ Y3NE;. Classically this "electric shift" is a (density weight
zero) vector field. The action of H on A can be written

{AL H[N]} = -F*’f"‘z:,v,j AL + gauge

o Since N?(v)|c) naturally splits into a sum over edges
N2 (v)|e) ~ Y. €’c). this translates into an action at finite triangulation:
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o Non-trivial vertex is moved = 2" f in commutator acts at displaced
vertex, removing ultralocality problem
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2-+1 Finite-Triangulation Hamiltonian

o One electric shift per vertex
o Switch to product form over edges at a vertex

o Deformations feature a new vertex, but it is only charged in a single factor
of U(1)—possible ultra-locality problem

Pirsa: 13070074 Page 28/111



2-+1 Finite-Triangulation Hamiltonian

o One electric shift per vertex
o Switch to product form over edges at a vertex

o Deformations feature a new vertex, but it is only charged in a single factor
of U(1)—possible ultra-locality problem

Pirsa: 13070074 Page 29/111



Pirsa: 13070074

2-+1 Finite-Triangulation Hamiltonian

o One electric shift per vertex
o Switch to product form over edges at a vertex

o Deformations feature a new vertex, but it is only charged in a single factor

of U(1)—possible ultra-locality problem
= Exploit availability of non-perturbative corrections to ensure that this vertex
moves under the action of a second Hamiltonian: Classically

{E7, HON]} ~ eEPEQON + - -

Nontrivial action of 2" [ on quantum shift components which gave the
first deformation
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Remarks

» Off-shell closure in a precise sense

(W[F’[N]- H[M]]6,6'|C) = (W|D[Q]6,5f|c)

[im
5,8’ 0

lim
8,6/ —0
and there is more than one way to do it.
» SU(2) looks promising

» Speculation: U(1)® E-representation has linear-in-momenta constraints.
Could investigate in flux rep of Dittrich et al.
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Introduction (0 1)-D Theory (3 + 1)-D Theory Conclusion

Why use Effective Equations?

Correlation functions are calculated with an absolutely
generalized initial state, as required for cosmology.

Can avoid several technical difficulties like the exact
structure of inner products on the Hilbert space, or the
non-unique nature of self-adjoint extensions.

Systematic way to realize higher derivative corrections in
the equations of motion for a canonically quantized system.
New perspective on known features of QFT, like
renormalization, which may prove to be useful while
quantizing with a dynamical background.

Being canonical, applicable to certain models of LQG and

LQC.

S.Brahma Effective Equations for QFT
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Introduction (0 + 1)-D Theory (3 + 1)-D Theory Conclusion Procedure Anharn
The New Variables

[M. Bojowald and A. Skirzewski, 2006]

@ Define expectation values, with respect to some state, as:

~

G = (B~ (A)"(@ — (@) )wen

@ Begin with a Hamiltonian operator: H = H(q, p)
Take its expectation value with respect to the same state to define an

‘effective’” Quantum Hamiltonian

<H<<a> (G- (@), (

n

iz 1 n ()”H(qp) é‘.i.l’!
nt\al oprogr—2

n=0 a=0

S.Brahma Effective Equations for QFT
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Introduction (0 4 1)-D Theory (3 + 1)-D Theory Conclusion Procedure Anl

The Equations of Motion

Let g := (§) and p := (p).

The Hamilton’s equations of motion gives us

4 =149,Hq}
p={p,Ho}

.
~

Gan — {'Ga.n‘ HQ}

Instead of solving the Schrodinger’s partial differential equation,
we have to solve this infinite set of coupled ordinary differential
equations.
@ 'T'he validity of the solutions to these equations of motion
are subject to certain “Uncertainty Relations’, imposed on

the moments.

S.Brahma Effective Equations for QFT
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Introduction (0 4 1)-D Theory (3 + 1)-D Theory Conclusion rocedure  Anharmonic Oscillator CW |

The Effective Quantum Hamiltonian

The Hamiltonian for an oscillator with a perturbation term is

o 1 T Y
H=—p+ -mw?d® + U(4
5P+ 5mwg + U(a)

The corresponding ‘effective’ Quantum Hamiltonian is

1

1 n - hw ) o -
HA = 2 wZ 2 U + GO.2 G2.2
Q=5 P+ 2m q°+ Ulg) + — (67" + 677)

+Z h/m nfe U(”)(q)GO‘”

) 2 -~ . .
where G*" = L™ “(mw)"*7?G?" are now dimensionless

quantities,

S.Brahma Effective Equations for QFT

Pirsa: 13070074 Page 41/111



Introduction (0 4 1)-D Theory (3 + 1)-D Theory Conclusion rocedure  Anharmonic Oscillator

We need to make two approximations:

1/2

@ Moments need to be solved perturbatively in (%)™*. Here L is some

L
angular momentum scale provided by the perturbing potential.

S.Brahma Effective Equations for QFT
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Introduction (0 + 1)-D Theory (3 + 1)-D Theory Conclusion rocedure  Anharmonic Oscillator

We need to make two approximations:

1/2

@ Moments need to be solved perturbatively in (%)™*. Here L is some

L
angular momentum scale provided by the perturbing potential.

Need to make an adiabatic approximation for the moments where we
assume they are slowly varying with time but the evolution of g and p

are free. Derivatives with respect to time in equations of motion are
- /\%. In the end, we shall set A =1

o

rescaled as =

S.Brahma Effective Equations for QFT
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Introduction (0 4+ 1)-D Theory (3 + 1)-D Theory Conclusion rocedure  Anharmonic Oscillator CW |

. ~ . A . 2/ .
Equation of motion for g up to ~2°/< and fourth

adiabatic order
We may now rewrite the equation of motion as:

—wig = U'(q)/m
h / [ - S, "’ i, =
U"(q) [f(a.q) + fi(q,q)d + £(q)a" + f3(q.9) 9 + fa(q) a] + O(h?)

’ o
2mew

where

a0 1, V') V2 gy L V@) 25U (q))2 RO /2
q, q - . . t +
" 2 mw? 16 mw? muw? 64m2ws mw?
U (q)q 1 U\ TP 21" (@)%g" U (q)
' - } i
64mw® mw? 256m2we mw?

9

+7”111.':(q)”fn(q)(-!d (1 l “H(q)) /2 731”””(;)(”’”[(;]) (] } “‘N(”}) 11/2

mw? 512m3 w10 mw?

64m?2 w8

']
mow=

1155“”;!((’”4“4 | ””(({) 13/2
4096 m* w12

S.Brahma Effective Equations for QFT
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Introduction (0 + 1)-D Theory (3 + 1)-D Theory Conclusion tor CW Potential

CW Potential for a (0 + 1)-dimensional system

[S. Coleman and E. Weinberg, 1973|

For a given Lagrangian L(q.§.t) = 1mg® — V(q). with a vev defined by
(0] ¢|0) := qo, the Effective Coleman-Weinberg potential is given by

v 2 "
V() = Vi) + 5= [ etog (@) oty 22

2y/m | 2r k2

T'his integral is obviously convergent and it gives:

h
V(qo) +

2/ m

V(o) + O(H?)

S.Brahma Effective Equations for QFT
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Introduction (0 + 1)-D Theory (3 + 1)-D Theory Conclusion The Setup Th:

The Setup

@ Use the ‘in-in’ formalism to get equal-time correlation functions

@ The ‘phi-fourth” Hamiltonian

H Il|” ) + 3 (VX)) Mﬂ"(xﬂ

Define

S.Brahma Effective Equations for QFT
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Introduction (0 + 1)-D Theory (3 + 1)-D Theory Conclusion The Setup Thi

A

With (#(x)) := m(x) and {¢(x)) := ¢(x),

Ho = = /‘:l3x [rrz(x) + G2%(x, x) + m? (rﬂ':z(x) 4 Go‘z(x.x))

o
+V3 (6°%(x,%)) + (Vo(x)* + 22 {6 (x)

F60°(x) G (x, x) + 4p(x) G (x, x, x) + G**

The (equal time) Poisson Algebra is defined as:

;-5&@%ﬂﬁ@ﬂ>—fuy)

The equations of motion are derived as:

d
2 [0]:= {Ho.0}

S.Brahma Effective Equations for QFT
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Introduction (0 + 1)-D Theory (3 + 1)-D Theory Conclusion T he » The Equations of Motion

EOM (Higher Order Moments)

‘T'he general scheme for equations of higher order moments

S.Brahma Effective Equations for QFT
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Introduction (0 + 1)-D Theory (3 + 1)-D Theory Conclusion The Setup The Equ

A

With (#(x)) := w(x) and (¢(x)) := ¢(x),

1
Hqo =

3 / d3x [,‘2(x) + G*%(x, x) + m? (a,?(x) F G°-2(x.x))
+V2 (6%%(x.x)) + (Vo(x))* + 22 {6*(x)
60°(x)G % (x, x) + 4p(x) G

The (equal time) Poisson Algebra is defined as:

) #00] ) = 8 (x =)

The equations of motion are derived as:

d
[0]:= {Ho.0}

S.Brahma Effective Equations for QFT
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The Setup

@ Use the ‘in-in’ formalism to get equal-time correlation functions

@ The ‘phi-fourth” Hamiltonian

H tl{“ 3 R(x) + 3 (VA(X)) mﬂ"(xﬂ

Define

S.Brahma Effective Equations for QFT

Pirsa: 13070074 Page 50/111



Introduction (0 + 1)-D Theory (3 + 1)-D Theory Conclusion T he » The Equations of Motion Some Features

Solving these equations

Expand the moments in powers of the coupling constant,

(".i,h S ‘ '_\G'.‘J_Jll

Solve for the moments in lower orders in A, starting with the free field

solutions.

Plug the (solved) lower order A moments, in the equations containing

higher order in \.

[n this way, perturbatively solve for the moments, which shall give us
the required correlation functions.
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Solving these equations

Expand the moments in powers of the coupling constant,

G.i,h e | ._\G,'}'Jl,

Solve for the moments in lower orders in A, starting with the free field

solutions.

Plug the (solved) lower order A moments, in the equations containing

higher order in A,

[n this way, perturbatively solve for the moments, which shall give us
the required correlation functions.
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Cancellation of the tadpole term

For g')d theory,

dy,t) = —(m*=V2)o(y,t)
FANG (v, t) + 12Xo(y. t) GV (y. y. t)
+4XG(y,y,y, t) (3.9)

0 is easily a solution up to any order since all odd
0‘3(y1.y2.y3. t)) are zero up to any order,

[n this case, ¢(y, t) =
moments (including G

For ¢* theory,

H(y f) = —(!772 — Vf)u(y f)
F3NO(y. t) + 3,\60‘2(,\/. y,t)
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Cancellation of the tadpole term

For g':d theory,

dy,t) = —(m*=V2)o(y,t)
FANG (v, t) + 12Xo(y. t) GV (y. y. t)
+ANG (y.y, y. t) (3.9)

[n this case, ¢(y,t) =
moments (including G

0 is easily a solution up to any order since all odd
0‘3(y1.y2.y3. t)) are zero up to any order,

For ¢* theory,
" - 2 2
Py, t) = —(m" =V))o(y,t)
F3AO (v, t) + 3AGY3 (v, y. t) (3.10)

[n order for ¢(y. t) = 0 to be a solution of this equation, we require an
additional term (proportional to ¢) in the Hamiltonian (or equivalently.

' . ' . 2 .
Lagrangian) which will cancel off the GO'“(y.y. t) up to whichever order we

want,
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For a particular initial value of the moments, given by

3 R e B
Go‘z(qu.O) = 213/2\/}z|2k zeik.(yz) and
T +m

G%(y, z,0) 0 (3.13)

we reproduce the usual result from QFT, that is.

p ]

1 k L (O—5F
: ef/s.(v Z)

3.14
(2m3)V k? + m? ( )

0.2 .
¢y 2 1) /2

The unique factorization of w = w, — w, is why the two results
(rightly) match up.

@ 'I'he propagator has been calculated to agree up to one loop

order with QF'T.
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[mportant lessons and looking ahead

So, why Effective Equations?

@ Using these canonical techniques for effective action, we recover the
usual QFT results and also extend them, for instance, by including

more general states,

There is well defined systematic way to derive the higher derivative

corrections while avoiding some technical difficulties.
Where are these useful?

@ Currently being applied to certain models of isotropic, homogencous

cosmology and also to a de Sitter background.

Current work is underway to include (perturbative) quantum
corrections in the Scalar and Diffeomorphism constraints of spherical
LOQG, and see what effects they have on the hyperspace deformation
algebra, In the high curvature regime, these might be of the same
order as that of other non-perturbative corrections (like holonomy
corrections), and hence they should be included for a full analysis.
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Qutline

o Conceptual setup

o A coherent state approach to the Born-Oppenheimer decomposition

o I'*U(1) & T*SU(2) theories
@ Applications to LQG, LQC & WdW

o Outlook & Final Remarks

A. Stotimeister Institute for Theoretical Physics I, FAU Erlangen-Nuremberg
Born-Oppenheimer decomposition for non-commuting slow variables

Pirsa: 13070074 Page 58/111



Conmptualsalup A coherent state approach to the Born-Oppenheimer decomposition * U ( arTr" (2) theories Outlook & Final Remarks

The Born-Oppenheimer decomposition in canonical LQG

The Born-Oppenheimer decomposition has a long tradition in quantum gravity
. It consist in a splitting of gravity-matter system $ in slow $g and fast
N sectors.

N=Ns®H (1)

Approximation schemes in this setting are governed by one or more adiabatic scales,
md

e.g. i

Its direct application to loop quantum gravity is prevented by the noncommutativity of

the fluxes, if one intends to work in a representation admitting a parametrisation by

classical metrics (qqp) in the fast sector, e.g. quantum fields on classical backgrounds

It is important to note, that the Born-Oppenheimer decomposition is not a semiclassical
approximation scheme per se , but we will combine it with coherent
state methods enabling us to
consider the semiclassical (h — 0) and the adiabatic limit simultaneously. Furthermore,
these methods allow us to surpass the difficulties imposed by the noncommutativity to
some extent.
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Remarks

1. Itis interesting to note that the passage from a theory of quantum gravity to
quantum field theory on curved spacetimes can be interpreted as a measurement
problem in disguise.

Recently, the possible need for a simultaneous consideration of the adiabatic and
semiclassical limit w.r.t. the measurement problem has be pointed out

. The application of the framework to deparametrised models seems to be
especially interesting

From a mathematical point of view intriguing connections with complex geometry,
microlocal analysis and pseudo-differential calculus arise
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The (generalised) Born-Oppenheimer decomposition

Let us shortly the discuss the setup of the traditional Born-Oppenheimer scheme:
Consider a quantum mechanical system described by a triple

H.H A={Q. P.q.p}.
Assume a splitting
N=Nsg@HP, A=UAsg@Ap
and a decomposition
H=Hg(P.Q)® L+ Hggr(Q.p.q).

If the subset {0} c 2Ag is a commutative subalgebra (2 ('(0(Q))), one considers the
restriction of Hggr to its joint spectral subspaces 1 = H

Ilf-.'(-g F‘ﬁ‘\’ : -\.1'(_‘) — § (W (5)

The eigenvalue problem of /1 is parametrised by the eigenvalue problems of the
restrictions Hgg psy,, -

(o = B, (Q) 0,1 (Q) = (Hs(P+ AT(Q).Q) 0 W), (Q)  (BOE)
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The (generalised) Born-Oppenheimer decomposition

Let us shortly the discuss the setup of the traditional Born-Oppenheimer scheme:
Consider a quantum mechanical system described by a triple

H.H A=1{Q. P.q.p}.
Assume a splitting
N=NHsg@Hp, A=UAsg@Ap
and a decomposition
H=Hg(P.Q)®lp+ Hggr(Q.p.q).

If the subset {(Q} c 2Ag is a commutative subalgebra (2 ('(0(Q))), one considers the
restriction of Hggr to its joint spectral subspaces $H = H

”,wtvolf‘\.\'u\, . -\."(.J —_— ﬁr_g- (5)

The eigenvalue problem of /1 is parametrised by the eigenvalue problems of the
restrictions Hgg psy,, -

(Ap = B, 0 (Q) W, r(Q) = (Hs(P+ AT (Q).Q)o W) . (Q) (BOE)  (6)
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The (generalised) Born-Oppenheimer decomposition

Let us shortly the discuss the setup of the traditional Born-Oppenheimer scheme:
Consider a quantum mechanical system described by a triple

H. 5 A={Q. P.q.p}.
Assume a splitting
N=Nsg@Hp, A=UAsg@Ap
and a decomposition
H=Hg(P.Q)® L+ Hggr(Q.p.q).

If the subset {0} c 2Ag is a commutative subalgebra (2 ('(0(Q))), one considers the
restriction of Hggr to its joint spectral subspaces 1 = Hi

”,wtvolf‘\.\'u\, . -\."(.J — ﬁr_g- (5)

The eigenvalue problem of /1 is parametrised by the eigenvalue problems of the
restrictions Hgg pisy,, -

(Ao = B, 0 (Q) W, r(Q) = (Hs(P+ AT (Q).Q) o W) . (Q) (BOE)  (6)
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Remarks

. The object AF = AF((Q) is a (generalised) Berry-Simon connection.

. The Born-Oppenheimer equation (6) is exact, but there are several approximation
schemes, e.g. the Born-Oppenheimer approximation (Af = 0) or the adiabatic or
no-mixing approximation (A preserves the eigenspaces of (5)).

Effective Hamiltonians for the slow variables arise, if we restrict the slow dynamics
to spectral subspaces of Hggpg,, . 1.€.

Hpe(P.Q)nm =< ul"|H|mF >, (7)

In the adiabatic approximation, we are led to the quantum geometric forces in
a(()).

. Additional complications arise due to spectral instabilities, e.g. eigenvalue
crossings or bifurcations.

. The quality of the approximations is controlled by spectral gap conditions
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Remarks

. The object AF = AF((Q) is a (generalised) Berry-Simon connection.

. The Born-Oppenheimer equation (6) is exact, but there are several approximation
schemes, e.g. the Born-Oppenheimer approximation (AF = 0) or the adiabatic or
no-mixing approximation (A preserves the eigenspaces of (5)).

Effective Hamiltonians for the slow variables arise, if we restrict the slow dynamics
to spectral subspaces of Hggpg,, . 1.€.

Hpe(P.Q)nm =< ul"|H|mF >, (7)

In the adiabatic approximation, we are led to the quantum geometric forces in
a(()).

. Additional complications arise due to spectral instabilities, e.g. eigenvalue
crossings or bifurcations.

. The quality of the approximations is controlled by spectral gap conditions
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The coherent state form of the Born-Oppenheimer decomposition |
Again, we consider a quantum mechanical system given in terms of a triple

a splitting
N=Ng®Hp. A=VUg@UAp
and a decomposition
H=Hg(A A" )Y@ lp+ Hggp(A. A" q.p). (10)

Furthermore, we require the existence of a complete set of coherent states in the slow
sector, but there are NO commutativity assumptions

Alz>= 22> lg= /;‘“' dp(=2,2)|2 >< 2], < 2|Oglz >= 0 e Og = 0. (11)

(

This allows us to obtain a diagonal form for Hsgp in Hg

Hsor = [ dn(: ) Piiggp (=, 9|z ><

(
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The coherent state form of the Born-Oppenheimer decomposition |
Again, we consider a quantum mechanical system given in terms of a triple

a splitting
N=Ng®Hp. A=VUg@UAp
and a decomposition
H=Hg(A A" )Y@ lp+ Hggp(A. A" q.p). (10)

Furthermore, we require the existence of a complete set of coherent states in the slow
sector, but there are NO commutativity assumptions

Alz>= 22> lg = [I'“' dp(=2,2)|2 >< 2], < 2|Oglz >= 0 e Og = 0. (11)

(

This allows us to obtain a diagonal form for Hggp in Hg

Hsgp = fl dp(z, Z) P ggp (2. 2)|2 ><

(
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The coherent state form of the Born-Oppenheimer decomposition |
Again, we consider a quantum mechanical system given in terms of a triple

a splitting
N=Ng®Hp. A=VUAg@UAp
and a decomposition
H=Hg(A A" )Y@ Llp+ Hggp(A. A" q.p). (10)

Furthermore, we require the existence of a complete set of coherent states in the slow
sector, but there are NO commutativity assumptions

Alz>=z2|2> lg= [I'“' dp(=2, )|z >< 2], < 2|Oglz >= 0 e Og = 0. (11)

(

This allows us to obtain a diagonal form for Hggp in Hg

Hsgp = fl dp(z, 2) P ggp (2. 7)|2 ><

(
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The coherent state form of the Born-Oppenheimer decomposition |
Again, we consider a quantum mechanical system given in terms of a triple

a splitting
N=Ng®Hp. A=VUg@UAp
and a decomposition
H=Hg(A A" )Y@ lp+ Hggp(A. A" q.p).

Furthermore, we require the existence of a complete set of coherent states in the slow
sector, but there are NO commutativity assumptions

Alz>= 22> llg = j;‘“' dp(=2,2)|2 >< 2], < 2|Oglz >= 0 e Og = 0. (11)

(

This allows us to obtain a diagonal form for Hggp in Hg

Hsgp = fl dp(z, Z2) P ggp (2. 2)|2 >< 2

(
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The coherent state form of the Born-Oppenheimer decomposition |l

In the following, we will use the spectral decomposition of the upper symbol
Phcer(2,2) :9p(2,2) — HF(2,2)
as input for the eigenvalue problem of 1.
(!\'o!'((,\q,l',‘”;s))‘[’)”,n('.')(H,q(‘.‘.:')‘\F,{)\’I.))O\IJ) (5.5) (CSBOE)
: (14
The resolution of unity of the coherent states system identifies a fibre bundle structure
s @ Hp 2 HL?(Ug. disp) (15)

and typically leads to additional flathess constraints on the solutions

o (pW),r (2.2) =0,
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Remarks

1. The upper symbol is generically not unique. It can be determined from the lower
symbol < »|Hggp|> > by duality (non trivial), and exists for a (strongly) dense set
of operators

. The solutions to the eigenvalue equation of /1 can be considered as holomorphic,
horizontal sections of a $;--bundle on the complexified (slow) phase space I'.

. The main difference of this approach arises through the integral operator K o U,
which is composed of the coherent states kernel A and the bundle transition
operator U.

. Similar to the traditional approach, we obtain a (generalised) Berry-Simon
connection AF = A¥F (=, 7).

. Completeness can be conveniently achieved in complexifier framework exploiting
holomorphicity . The associated covariant differential can be
interpreted as covariant Dolbeault operator.

. Approximation schemes similar to those of the traditional Born-Oppenheimer
approach are conceivable in the semiclassical limit, but require a detailed
asymptotic expansion of K o {7 and the upper symbol Py .. = Py, (2. %)
(heat kernel analysis, microlocal analysis).

Essentially the same is required for effective Hamiltonians, spectral stability and
gap conditions.
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Remarks

1. The upper symbol is generically not unique. It can be determined from the lowe
symbol < =|Hggp|> > by duality (non trivial), and exists for a (strongly) dense set
of operators

. The solutions to the eigenvalue equation of /1 can be considered as holomorphic,
horizontal sections of a $;--bundle on the complexified (slow) phase space I'..

. The main difference of this approach arises through the integral operator K o U/,
which is composed of the coherent states kernel A and the bundle transition
operator U.

. Similar to the traditional approach, we obtain a (generalised) Berry-Simon
connection AF = A¥ (=, 7).

. Completeness can be conveniently achieved in complexifier framework exploiting
holomorphicity . The associated covariant differential can be
interpreted as covariant Dolbeault operator.

. Approximation schemes similar to those of the traditional Born-Oppenheimer
approach are conceivable in the semiclassical limit, but require a detailed
asymptotic expansion of K o {7 and the upper symbol Py .. = Py, (2.7)
(heat kernel analysis, microlocal analysis).

Essentially the same is required for effective Hamiltonians, spectral stability and
gap conditions.
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Remarks

1. The upper symbol is generically not unique. It can be determined from the lower
symbol < =|Hggp|> > by duality (non trivial), and exists for a (strongly) dense set
of operators

. The solutions to the eigenvalue equation of /1 can be considered as holomorphic,
horizontal sections of a $;--bundle on the complexified (slow) phase space I';..

. The main difference of this approach arises through the integral operator K o U,
which is composed of the coherent states kernel A and the bundle transition
operator U.

. Similar to the traditional approach, we obtain a (generalised) Berry-Simon
connection AF = A¥F (=, 7).

. Completeness can be conveniently achieved in complexifier framework exploiting
holomorphicity . The associated covariant differential can be
interpreted as covariant Dolbeault operator.

. Approximation schemes similar to those of the traditional Born-Oppenheimer
approach are conceivable in the semiclassical limit, but require a detailed
asymptotic expansion of K o {7 and the upper symbol Py .. = Py, (2. %)
(heat kernel analysis, microlocal analysis).

Essentially the same is required for effective Hamiltonians, spectral stability and
gap conditions.
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1T*U(1) coherent states |

If we consider theories with phase space 7T*(/(1) =2 U/(1)¢ = (** for the slow sector,
the (slow) Hilbert space will be given by

Ns = Lz(“BOhI’-'U"H) = @ No- (17)

gesl

Two sets of elementary operators are important for the construction

(U= J U =U [LU)=U) AN X* | X =e 27 Uen?” cUe 7). (18)

The coherent state system is constructed by heat kernel methods and adapted to the
decomposition of Hg:

- " A ' " 1 t I j & ) ‘
X|€ >j0=El€ >4, Jo = —, jo= (&) D em 20 (e20€)7I|j >, (19)
JEL

de A de 2
X _ —(||I|t|+l'l||) ¢ , ¢
| No T ﬁ,_‘ k . “\ >.I|J J||< ‘-«l'

3.,
lr2i|¢)?
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1 SU(2) coherent states |

Theories admitting a phase space 1™ SU(2) =z SU(2)¢ = SL2(C) for the slow sector,
will be formulated on the (slow) Hilbert space

N5 = L*(SU(2). dpy). (23)

Similar to the [/ (1)-case, we need to sets of elementary operators

| 2 2 .
{f,ﬂ_lil[/,r_h]:”.[‘f},h} :—k>(‘j'h.}3><,3:.r"f;}. {\l‘ |_\:r '.I_'" ¢ ‘_I_"“ = ¢ J:”"”

Again, the coherent state system is constructed by heat kernel methods:

| | J .
Alg >=glg >. |g >= Z (2j + 1) e~ 230+1) Z 7 () mnlimn > (25)

.f"-ial\lll mn=—j

L. = / dpi(g,q) g >< gl g=c¢ ,l"%h. heSU(2).
' SLa(0)
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Applications to LQG, LQC & WdW

Applications in quantum gravity

1. In a first attempt, the method has been applied to WdW theory, as it makes
computations simpler.

A specific model that was considered is FLRW-cosmology coupled to a scalar field
leading to the reduced action

Sred = fm [,,,,_a 4 f A2 pgd (29)
ol
- N {I:- ! !;;": + l { '\u:*' - u}]
la w3

y /\f v ”:” I
3, 2 ab &b & “(h
_{[\:J a1 (-__)\/,,T”I"]'+ ,\’\/J{'_’u'-'q (DaP)Y(DpD) + ) (])})]}]

which leads to the following CSBOE

d*

T

’\‘[’lll{n;_.}(-'-):!!f-'(“‘*)ll’{u;‘}(‘~.)+ﬁ{ l"‘{l’”.‘}(-")-( | >‘I’{HL}(.‘.)'

i“‘:”;_,}(-‘ -):
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Applications to LQG, LQC & WdW

Applications to LQG, LQC & WdW

2.

The formulas for canonical LQG on a single graph are under consideration
(truncated dynamics).

Earlier work in this respect makes use of the lower symbol

An extension to infinite graphs along the lines of the infinite tensor product
construction is conceivable, but probably needs a revision to make the
semiclassical limit feasible

3. The U/(1)-case applies to LQC as well as linearized gravity ({/(1)*) or Maxwell

theory in the parametrized field theory framework.

. It would be interesting to consider the gauge invariant sector, but it is not strictly

necessary, since the coherent state mainly serve as a technical tool in the
formulation of the method

Although, it could be advantageous to go to the gauge invariant sector in the
approximations schemes.

. The volume operator in relation to coherent states will be crucial in this approach

A. Stotimeister

, as it enters in all vacuum & matter coupling
Hamiltonians in an essential way.

Institute for Theoretical Physics I, FAU Erlangen-Nuremberg

Born-Oppenheimer decomposition for non-commuting slow variables

Page 77/111



Conceptual setup A coherent state approach to the Born-Oppenheimer decomposition *U( & T" (2) theories Outlook & Final Remarks

Outlook & Final Remarks

The asymptotic analysis of A" o {7 and the upper symbol Py, .. = Prgg,.(7.7) s

technically conceivable, but more involved than in the original BOE.

The proposed method applies to general Hamiltonian systems that admit a
fast-slow decomposition.

Especially, in LQG it applies to totally constrained as well as deparametrised
models.

The (nonlinear) Fock space structures of the T*U/(1) & T SU(2) theories differ
from those discussed in the (mathematical) literature )
Nevertheless, these constructions generalise to the case of Lie groups of compact
type K, as well.

Similarly, the inversion formulas developed for T*1/(1) & T*SU/(2) generalise to
arbitrary 1'* ', but the determination of the upper symbol of the ground state
projection P, is non trivial.

A. Stotimeister Institute for Theoretical Physics I, FAU Erlangen-Nuremberg
Born-Oppenheimer decomposition for non-commuting slow variables
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Outlook & Final Remarks

The asymptotic analysis of A" o {7 and the upper symbol Py, .. = Prgg,.(7.7) s

technically conceivable, but more involved than in the original BOE.

The proposed method applies to general Hamiltonian systems that admit a
fast-slow decomposition.

Especially, in LQG it applies to totally constrained as well as deparametrised
models.

The (nonlinear) Fock space structures of the T/ (1) & T SU(2) theories differ
from those discussed in the (mathematical) literature .
Nevertheless, these constructions generalise to the case of Lie groups of compact
type K, as well.

Similarly, the inversion formulas developed for T*1/(1) & T*SU/(2) generalise to
arbitrary 1'* I\', but the determination of the upper symbol of the ground state
projection P, is non trivial.

A. Stotimeister Institute for Theoretical Physics I, FAU Erlangen-Nuremberg
Born-Oppenheimer decomposition for non-commuting slow variables
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The SL(2,R) totally constrained model
within the Uniform Discretizations
quantization approach

Javier Olmedo

Instituto de Fisica, Facultad de Ciencias (UDELAR)
in collaboration with R. Gambini

LOOPS13
July 2013

Page 80/111



Pirsa: 13070074

Classical system

1) The system consists in two pairs (u;.p;) and (v;, 7;), with
i = 1,2, and three constraints

q

g 9 9 B B 2 2}
H, = !,(m+p§—\';—\'3). Hy, = 5(mi + 75 — uy — u3),

D=up)+ upy —vim — vam,

{H.H,} =D, {H;,D}=—-2H,. {H>,D}=2H>.
2) The constants of motion —so(2,2) Lie algebra—

Oy =upy —pra. Or3 = uvy —pamy, Oy = upvy — pma,

()” =u\vy —p|m, ()34 = UrVy — P27, ()~:,4:W;\'3—'|'|W3.
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Classical system: observables

3) A more convenient choice —so(2,1) x so(2, 1) algebra—

] l

Q1 =5(03+014), Q=3(=013+0), Q3=5(0)2—03)
l |

Py =5(03—014), Pr=5(-013—-0), P3=5(012+0x).

{010} =€;*0x, {Pi.P} =¢€;“Pr, {Qi,P;} =0.

l
2

4) ldentities between observables and constraints

0} + Q% — 3 = P2+ P} — P} = (D* +4H\H,) =: C,

403P; = (uf + u%)HI — (i py + uapr + vimy + vama)D — (1'f + 1'§)H3

5) Solution space: four cones joined in the origin
a) P, =0and Qs € R, with Q7 + Q3 = 03,
b) Qi =0and P; € R, with P; + P; = P3,
c) Qi=0andP; = 0.
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Kinematical Hilbert space

1) Kinematical Hilbert space Hyi, = £>(R*) (and h = 1).

2) Operator representation

piv(u,v) = =i, Y(u,v), wip(u,v) = —io,Y(u,v),

wp(u,v) = w(u,v), viplu,v) =vip(u,v).

3) Quantum constraints

4

(()‘3_] + 0, + uf 5 u%)

— (’);I + ();2 + V] + v3) Hr, = —

l
~ ), H=—3

D = —i(118uy + U204y = V19, = v20,,).

(factor ordering of D yields anomaly free constraint algebra)

(H,.H,) =iD, [H, D)= -2iH,, [H, D]=2iH,.
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Uniform discretizations: quantum description

1) Simultaneous diagonalization of H, H_, 03 and P; on Hyin:

a) k=o0,(H-) € Z,b) 2q3 = 0,(Q3) € Z, C) 2p3 = 0,(P3) € Z.
d) The continuous spectrum is
(Tt(H) == /\L'UIII = 1 23 3 > U, X E {() X)

Otherwise, if k > 0 and |¢g; + p3| — |¢g3 — p3| = 2 or k < 0 for
|3 + p3| — |3 — p3| < 2 the discrete counterpart:

(Tl'(H) o ’\clm'l' =211 —1t) + I\'l-
with ¢ = 1.2,....3min(|k],||g3 + p3| — |g3 — p3]|) for even &,

and r=2,2..., smin([k],||g3 + p3| = |g3 — p3|]) for odd k.

Page 84/111



Uniform discretizations: modified observable algebra
description

1) Let us define

f = 2] + J-I-[ — L‘““__ €q H= ] — ()l(_)l|f =p — ] = dll-{‘"{ .

A more convenient family of observables is Q. := £,044,.
and Py := ;‘I,Pif,}.

Qxlq3.p3)ik = £(1 = 81310 (1 = jgasr)s) \_/f, g3 £t g3 £ 1,p3) 0k
i)-}—lqﬁ'l,ﬁ)f.f\' — :f:(l = J]’J|-’)( | — (5‘“,}%]'_,) \_/“;_ [/Jy; e f} q3.P3 - l},‘,".

2) The subspaces {|¢3 = £, p3),x} and {|qz,p3 = £t),4}, with
q3.p3 € (—o0, —t| U [t, 00) respectively, remain invariant.
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Master constraint programme

1) 2M = H> + H> + D* has a minimum nonvanishing eigenvalue
in o, (k=0 and \.on = 1/2) and the operators Qs and P; are
unbounded on that subspace.

2) The prescription in this case

_ _ [ . N
M” =M — =1+ -(Q3P3)*

e

l
2

with the (on shell) observables Q7 := [sgn(Q3)[Q;[sgn(Q3)| and
P! .= |sgn(P3)|P;|sgn(P3)].

3) Physical Hilbert space

{|’\L‘nnl = ]/2 l\ — () (/_;.[)3)} Wi[h qz = () or /)3 — ()
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Conclusions and outlook

1) Within the uniform discretizations approach (as well as in the
MC) we provide a prescription for the quantization of an
SL(2,IR) model by:

a) Considering the whole infrarred spectrum of the discrete
Hamiltonian (discrete dynamics).

b) Together with a suitable choice of observable algebra.

2) The physical Hilbert space is a subspace of the kinematical
one.

3) Study of the discrete (quantum) dynamics (comparison
between evolving constants and conditional probabilities).

Page 87/111



Pirsa: 13070074

Conclusions and outlook

1) Within the uniform discretizations approach (as well as in the
MC) we provide a prescription for the quantization of an
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Constraint Lie algebra and true local Hamiltonian
for the CGHS model

Saeed Rastgoo
CCM, UNAM. Mexico

July 25, 2013

Saeed Rastgoo (CCM, UNAM, Mexico) July 25, 2013 1/15

Pirsa: 13070074 Page 89/111



Why the CGHS model?

The Callan-Giddings-Harvey-Strominger model is 2D dilatonic (¢) model
which (coupled to matter field f) reads

| 3 1,1 1 Lo\ [ o
ScGHS /dix\/ 8 (8""‘R f 25_{”! Jy POy D 2‘]’1/\1) / (f'.\'\/f ggmr Oof Opf

@ It contain black hole solutions, FRW cosmological models, Hawking
radiation etc.,

Saeed Rastgoo (CCM, UNAM, Mexico) July 25, 2013 Sl
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What do we address?

We propose a classical formulation of the CGHS model where we have:
@ CGHS in Ashtekar-like variables: very similar canonical transformation
from a generic 2D action = CGHS/3+1 in Ashtekar-like variables.

Saeed Rastgoo (CCM, UNAM, Mexico) July 25, 2013 3/15
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What do we address?

We propose a classical formulation of the CGHS model where we have:
@ CGHS in Ashtekar-like variables: very similar canonical transformation
from a generic 2D action = CGHS/3+1 in Ashtekar-like variables.

@ Possibility of traditional Dirac quantization: the constraint algebra is a
Lie algebra even in presence of matter,

Saeed Rastgoo (CCM, UNAM, Mexico) July 25, 2013 il
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A generic 2D dilatonic Lagrangian

@ An “almost” generic diffeomorphism invariant action yielding 2nd order
differential equations for the metric g and a scalar (dilaton) field ¢ in 2D

1
L:-‘. \/7‘&" {Y((l))R t 2(Q¢I!,‘l)(r‘[)")i>([’ 1 V{(]))}

Ll” o \/7‘:\,'W((I))g{‘f’fl)(Lf."l)f:_fl-

Saeed Rastgoo (CCM, UNAM, Mexico) July 25, 2013 sl
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A generic 2D dilatonic Lagrangian

@ An “almost” generic diffeomorphism invariant action yielding 2nd order
differential equations for the metric ¢ and a scalar (dilaton) field & in 2D

1
L, \/—‘g‘ {Y(‘l’)R | zg”hf')”{[n');,([w * V{(]))}_
Ll” o \/7‘:\,'W((I))g{‘f’fl)(Lf."l)f:_fl-
» Y(b). Vid)and W(d) model specific functions of the dilaton field.

» Contains CGHS (¢ =dilaton field), 3+1 spherically symmetric
(ds? gupdxtdx” + D2 (dO* + sin?(6)dH?)), etc.

Saeed Rastgoo (CCM, UNAM, Mexico) July 25, 2013 DL
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The CGHS Hamiltonian in new variables

Write the theory in tetrads

Saeed Rastgoo (CCM, UNAM, Mexico) July 25, 2013 6/15
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The CGHS Hamiltonian in new variables

Write the theory in tetrads
Y
Make a Legendre transformation to a generic Hamiltonian
U
Use specific Y (). V(P) and W (D)
4

Make a canonical transformation to new variables for CGHS:

P, =2 cosh(n)E*. P, =2 sinh(n)E".

L S i S
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The CGHS Hamiltonian in new variables

Write the theory in tetrads

|

Make a Legendre transformation to a generic Hamiltonian

|}
Use specific Y (). V(P) and W (D)
)
Make a canonical transformation to new variables for CGHS:
P, =2 cosh(n)E*. P, =2 sinh(n)E".

J

A second class Hamiltonian H(K.E*.K .. E¥. &, Py f. Py)
with two second class constraints o and ji: {p.«} % 0.

L July 25, 2013
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The CGHS Hamiltonian in new variables

Write the theory in tetrads
Similar transformations for the 3+1 case
This is much like what we do to get the 3+ 1 case from generic action:
cosh(n) .. .sinh(n) ., . EX
p, =2 pe. p, =2>——"pe, P, =
Ex i 2

but we get a first class system.

Make a canonical transformation to new variables for CGHS:

P, =2 cosh(n)E*. P, =2 sinh(n)E*.

U

A second class Hamiltonian H (K. E*.K .. E¥. &, Py, f. Py)
with two second class constraints o and ji: {p. v} % 0.

B e July 25, 2013
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Second class procedure

Similar transformations for the 3+1 case
Finally we get a total Hamiltonian density in new variables
H=NH+N'D

with 4 and D being the Hamiltonian and diffeomorphism constraints and N

and N'! lapse and shift.

S o July 25,2013 7/15
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Second class procedure

Similar transformations for the 3+1 case
Finally we get a total Hamiltonian density in new variables
H=NH+N'D

with 4 and D being the Hamiltonian and diffeomorphism constraints and N

and N'! lapse and shift.

B A e July 25,2013 7/15
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Transforming the Hamiltonian constraint

Rescale lapse and shift

N~ N NK,

B
U

The total Hamiltonian density will become

fPk, | E(*+ P)

ExE? QE72Ex

+NILU£”ﬁH§+EKJ

N

e T e A A e S
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Lie algebra of constraints

Now H constraint has strongly Abelian algebra with itself in both vacuum and
coupled-to-matter cases:

(H(x). H(y)}p =0.

H(x) HY)

f=0.Pr=0 f=0.Pr=0 D

chance of implementing back-reaction?

B A o it
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Lie algebra of constraints

Now H constraint has strongly Abelian algebra with itself in both vacuum and
coupled-to-matter cases:

[H(x). H(y)}p =O0.

H(x) H(Y)

f=0.Pr=0 f=0.Pr=0 D

chance of implementing back-reaction?
4
Constraints algebra is now a Lie algebra,
(D.D} =D
{D.H} =H
{H.H} =0

and the same method works for vacuum 3+ 1 model.

B T L et
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Possibility of resolution of singularity?

CGHS Hamiltonian in this formulation is very similar to the 3+ 1 model.

L e ot e e L
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Possibility of resolution of singularity?

CGHS Hamiltonian in this formulation is very similar to the 3+ 1 model.

Gambini-Pullin method of eliminating the singularity for 3+1 can be used
here? (work under development).

The metric becomes an evolving constant operator = self-adjointness of this
operator leads to removal of singularity.

L B et it e A
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Deparametrizing and gauge fixing

@ Deparametrizing the constraints by transformation to new canonical
coordinates (Brown, Kuchar, Thiemann, Giesel, Gambini, Pullin, ...).

@ Step 1: fix the first gauge ¢; = E* — h(x) 2~ 0 to get
(1=0=N =0

so that

& , 1KZ 'PK PR’ 'fr2
HM-'—N!(')\-(]. h — 2h\*¢ | ) _f i 15 | L I’f

2 hE»? 2 h hE: 2 hE#2 = 2 hE#2

L S

13/15
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Deparametrizing and gauge fixing

@ Deparametrizing the constraints by transformation to new canonical
coordinates (Brown, Kuchar, Thiemann, Giesel, Gambini, Pullin, ...).

@ Step 1: fix the first gauge ¢; = E* — h(x) 2~ 0 to get
(1=0=N =0

so that

” , 1KZ 'PK PR’ 'fr2
HH-'—N[()\-(I f — 2h \° | ) _.f ik 15 | L I’f

2 hE+? 2 h hE: 2 hE+2 = 2 hE#2

B T AN S et

13/15

Page 107/111



Pirsa: 13070074

Deparametrizing and gauge fixing

@ Step 3: find the conjugate momentum

hh'

Py = —
YUUQKLX) (K, + QK X))

o Step 4: From H ~ 0 find K, = K_.(X.f. Py). Substituting this in above
gives the new total Hamiltonian

; . hh'
tot A SZ(XI P’) (KF (Xf P;') T S?[Xf Pf'))

e July 25, 2013

13/15
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The true dynamics

@ The true local Hamiltonian gives the correct evolution: since f and Py
commute with Py, we get

f = {f / (f,\”][mt} - {f / d"\””“""} '
. D : b
P,- {P,-. /(f,\‘”un} {Pr‘- /dx””“'} '
o D ' b

@ [t is a local Hamiltonian density: N not an integral of canonical variables,
the Hamiltonian not an integral of an integral (non-local), eqs. of motion
local.

By e ot et i e L
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Summary

@ The CGHS can be written in a similar Ashtekar-like variables as in the
341, from a generic 2D dilatonic Lagrangian. In this formulation:

Saeed Rastgoo (CCM, UNAM, Mexico) July 25, 2013 15/15
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Summary

@ The CGHS can be written in a similar Ashtekar-like variables as in the
341, from a generic 2D dilatonic Lagrangian. In this formulation:

@ The constraint algebra can be cast into a Lie algebra: possibility of
completing the Dirac quantization / implementing back-reaction?

@ Similarity to the 3+1 Hamiltonian: possibility to eliminate the singularity
a la Gambini and Pullin?

L o T e b
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