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Abstract: <span>We introduce a generalized version of the Causal Dynamical Triangulations (CDT) formulation of quantum gravity, in which the
regularized, triangulated path integral histories maintain their causal properties, but do not have a preferred proper-time foliation. An extensive
numerical study of the associated nonperturbative path integral in 2+1 dimensions shows that it can nevertheless reproduce the emergence of an
extended de Sitter universe on large scales, a key feature of CDT quantum gravity. This suggests that the preferred foliation normally used in CDT
isnot acrucial (although convenient) part of its background structure.</span>
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Questions for quantum gravity:

What are the quantum laws underlying General Relativity?
What are the quantum origins of space and time?

Can we explain gravitational attraction from first principles?
What is the quantum microstructure of spacetime?

Which observables capture its properties?

Questions for theories of quantum gravity:

How much of the classical structure of GR is

e present, not subject to quantum fluctuations (fixed background)? -
e.g. spacetime dimension in perturbative quantum gravity

e present, and subject to quantum fluctuations? - e.qg. metric, topology
e present (initially), but changed by quantum fluctuations/instabilities?
- e.g. spacetime dimension in nonperturbative quantum gravity

e not present, but regained dynamically (“emergent”)? - e.g. causality
and time in nonperturbative Euclidean quantum gravity
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Apart from their choices of elementary degrees of freedom and a
dynamical principle, different approaches to quantum gravity can

be distinguished by how much background structure they use, e.g.

whether metric, differentiable and manifold structure, topology,
dimension etc. are fixed a priori or part of dynamics, and which
extra structures and assumptions they use, e.g. additional

symmetries, a choice of preferred “variables”, extra dimensions, ...

From what “works” and what doesn’t, we try to learn about
gquantum gravity proper.

In my talk today, | will examine a piece of “background
structure” in CDT quantum gravity.
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... 1S @ nonperturbative implementation of the gravitational path integral,
much in the spirit of lattice quantum field theory, but based on dynamical
lattices, reflecting the dynamical nature of spacetime geometry.

CDT is currently the only candidate quantum
theory of gravity which can generate
dynamically a spacetime with semiclassical
properties from pure quantum excitations,
without using a background metric.

(C)DT has also given us crucial new insights
into nonperturbative dynamics and pitfalls.

main collaborators:
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Joshua Cooperman (UC Davis) - Tue, 5.40pm (= pirsa.org)

Lisa Glaser (NBI, Copenhagen) - Thu, 3.50pm (space)
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Key points of the CDT approach:

@ Few ingredients/priors:
® gquantum superposition principle
@ locality and causal structure (not
Euclidean quantum gravity)
® notion of (proper) time
@® Wick rotation
® standard tools of quantum field theory triangulated torus
© Few free parameters (A, Gy, A)
@ Robustness of construction; universality
@ Atintermediate stage, approximate curved spacetimes by triangulations
@ Crucial: nonperturb. computational tools to extract quantitative results

Key results: e = AN

e dynamical “emergence” of spacetime
e scale-dependent dimensionality (2 = 4)
e nontrivial phase structure

e second-order phase transition!

piece of causal triangulation
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Pl becomes a “democratic”, regularized sum over piecewise flat spacetimes:

l Regge action
H( ;_.j._,t
A (1S /i
ZG b)) = Iim E A lT]

a—0 C

N—o0o inequiv. edge length a =
Newton’s triangul.s diff-invariant
constant cosmol. constant TeEG, N | Aut(T)| UV regulator

Each triangulation T represents a different curved spacetime, consisting
of N simplices, which can be “Wick-rotated” to a Riemannian space.

IMPORTANT: the causal structure of CDT is essential! This does not
work in Euclidean signature (DT) - no sensible classical limit (~mid-90s).

In CDT, “causality” is enforced through a preferred slicing by simplicial
spatial hypermanifolds, with an associated preferred “proper time”.
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Does the preferred time/ :
foliation affect the results? > 1\ proper time t+1

Not a gauge choice (there o/ b d  \ifen
are no coordinates). e}

Continuum interpretation of proper time t

“t” on large scales only.

Previous work on relaxing the strict proper time foliation:

We will introduce a generalization of CDT quantum gravity,
where the causal structure and the preferred time are
dissociated (in fact, there will not be a preferred time).
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@ standard path integral formulation needs a time t; propagator G(gin, Gout;t)
satisfies
G(gins Jout:t) = Y Glgin- 9:11)G(g. Gouri t2). = ti+t
)
@ proper time is a natural geometric choice; in standard CDT, slices of
constant proper time t=0, 1, 2, 3, ... coincide with simplicial submanifolds,
consisting of purely spatial (d-1)-simplices

timelike t=3
edges
N\
t=1
spacelike edge
t=0

building block of standard

1+1 CDT (with light cone) building causal spacetimes from proper-time

strips in standard CDT quantum gravity
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@ standard path integral formulation needs a time t; propagator G(gin, Gout;t)
satisfies
G(Gin,Gout:t) = Z(?(ym-y:/l)(r'(rj..f/”m:/z)- t =t +to
g
@ proper time is a natural geometric choice; in standard CDT, slices of
constant proper time t=0, 1, 2, 3, ... coincide with simplicial submanifolds,
consisting of purely spatial (d-1)-simplices

timelike t=3
edges
N\
t=1
spacelike edge
t=0

building block of standard

1+1 CDT (with light cone) removing timelike links exhibits the strictly

foliated structure of CDT quantum gravity
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@ introduce additional elementary building blocks, e.g. in 1+1 dimensions

timelike spacelike
edges

edges timelike
d
>< >< edge

spacelike edge

® impose local causality
conditions at vertices:

building causal spacetimes in generalized
CDT from these two building blocks
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) ) spacelike
timelike P

edges edges timelike
:Xi >Xi edge

spacelike edge

K o &

1 light cone X 3 light cones X 2 light cones v
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@ introduce additional elementary building blocks, e.g. in 1+1 dimensions

timelike spacelike
edges

edges timelike
d
>< >< edge

spacelike edge

® impose local causality
conditions at vertices:

building causal spacetimes in generalized
CDT from these two building blocks
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@ introduce additional elementary building blocks, e.g. in 1+1 dimensions

spacelike

timelike
edges

edges timelike

><: :>< edge

spacelike edge

@ impose local causality
conditions at vertices:

s /N

removing timelike links results in a
structure with branches and bubbles
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© computational complexity already quite formidable in

three dimensions:
® implementation of Monte Carlo moves

® long simulation times

@ similar large-scale properties as in 4D of the dynamically

generated quantum spacetime:
® emergence of Euclidean de Sitter universe

@ plenty of recent interesting work in 3D CDT
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all flat tetrahedra that can be built from just two edge lengths

spacelike links ———— length assignment £space’ = @?

timelike links ——— length assignment &ime’ = - aa?, a >0

tetrahedra marked in yellow are Minkowskian for all values of a > 0
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re-introducing time:

spacetime topology is [0,1] x S?, with the spatial slices contracted to
points at 0 and 1, yielding effectively an S3*-topology

time coordinate of a vertex v = d4(v) - dy(v)

dr(v) ~ average length of future-oriented paths from v to “north pole”
dy(v) ~ average length of past-oriented paths from v to “south pole”

examples of new Monte Carlo moves:

pinching move “moving a pole”
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Phase diagram of nonfoliated CDT
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h
phase transition at k<t = 0.25,

measured along the “line of
isotropy” a =-1

the existence of a Wick rotation
requires that -3 <a <-0.5

k ~ inverse bare Newton constant

Looking at the behaviour of the order parameter No/N3, we find two
phases, of low (k < kt) and high vertex density (k > k™). Interesting

physics is found in the former.
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What happens to the foliation (part 1)?

strict CDT foliation < #(T,-tetrahedra) = #(T3-tetrahedra) =

emerges near kinematical

h b d -0.5
phase boundary a= kinematical phase

N 0.52 boundary \

mmmmmm

-100 100 -100 100 -100 I(l[)\.!

O 0.9

MMI M WMI e

-100 100 -100 100 -100 100

multiplicity of tetrahedra
tetrahedron distributions as function of of the various types, as
their time label (k=0) function of a (k=0)
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What happens to the foliation (part 2)?

multiplicity of tetrahedra of the

Depending on the location in
the phase of low vertex
density, the foliation of the
simplicial geometries gets | TT— e
more and more diluted. . T

I
1y
I
I

N, | / “not-so-nice”
CDT tetrahedra 10000 ¢ | phase
' .- - : I
‘ SP— |
new tetrahedra | “nice” phase J
. . ‘L--f--—»_-,__k_f_._ [ e
On the line a=-1, the alternating ol . | _ ]
pattern weakens further toward " !
lower k, but remains visible phase
” ) transition

= in the investigated region k < k<"t the degree of foliatedness
changes smoothly from strictly foliated to barely visible

various types, as function of k (a=-1):
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Phases of geometry in nonfoliated CDT

below the phase transition (k < k°): above the phase transition (k > k"):
2500 0.9
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extended volume profiles <N;(t)> one-dimensional tube

To be compared to:

X)) eor 4 7 ~ = cot

\é LW
i > } >
kcrit k crit k
crumpled branched-polymer de Sitter oscillating
phase phase phase phase
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Recovering de Sitter space

Expectation value <N;(t)> of the measured volume profiles,
rescaled with best value for dimension d from finite-size scaling:

close to phase transition: (k,a)=(0.0,-1.0) further away from transition: (k,a)=(-0.8,-1.0)
09T ) N ’ ) :lmn\.m'v;nl.ll.l ! ] 0o ' ’ ' ! . ]

Nl ——

Perfect match to the volume profile of a three-dimensional Euclidean de Sitter
space, as function of Euclidean proper time t=it, with scale factor a(t)? given by

ds® = dt® + (;(f)zflSZf._,) = dt® + ¢? cos? (f/(f) (/SZI'(Z)*\

volume el. S?2
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Recovering de Sitter space

Expectation value <N;(t)> of the measured volume profiles,
rescaled with best value for dimension d from finite-size scaling:

close to phase transition: (k,a)=(0.0,-1.0) further away from transition: (k,a)=(-0.8,-1.0)
09T ) . ’ ! ) :mn:\.uun;nl.ll.l : ] 0o ' ’ ' i ' ]

Nl ——

Perfect match to the volume profile of a three-dimensional Euclidean de Sitter
space, as function of Euclidean proper time t=it, with scale factor a(t)? given by

ds® = dt® + u({)'“’(lﬂf._,) = dt® + ¢? cos? (f/(f) r/SZ'(“)E}&._

volume el. S?
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Conclusion

@ we got rid of the preferred time and associated foliation, while
maintaining a well-behaved local causal structure
@ the nonperturbative path integral has two phases (as usual in 3D)
@ in the “nice”, physical phase we found:
® arange of degrees of “foliatedness” of simplicial geometry
(strong to weak)
® an excellent matching of volume profiles to a Euclidean de
Sitter universe throughout

@ this strongly suggests:
® distinguished foliation is not an essential part of CDT’s
“background structure” (unlike in Horava-Lifshitz gravity), and
the two models are in the same universality class
® because of the computational complexities, we may want to
stick with the usual formulation of CDT quantum gravity ...
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To learn more

about these results:

about CDT in general:
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