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Abstract: <span>Severa lines of evidence hint that quantum gravity at distances a bit larger than the Planck scale may become effectively
two-dimensional.& nbsp; | will summarize the evidence for this "spontaneous dimensional reduction,” and suggest a further argument based on the
effect of vacuum fluctuations on light cones.&nbsp; If this description proves to be correct, it suggests an interesting relationship between
small-scale quantum spacetime and the behavior of cosmologies near a spacelike singularity.</span>
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Accumulating bits of evidence
for “spontaneous dimensional reduction”

e Lattice approaches to path integral (“causal dynamical triangulations”)
e Exact renormalization group analysis

Strong coupling approximation to the Wheeler-DeWitt equation

High temperature string theory

A number of others ...

Are these hints telling us something important? I
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Causal dynamical triangulations

Approximate path integral by sum over discrete triangulated manifolds
/[dg]eiIEH 9] — Z eI Regge[A]

Fix causal structure (=> no topology change)
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Nice “de Sitter” phase

e Volume profile fits (Euclidean) de Sitter
e Volume fluctuations fit quantum minisuperspace

But what about small scale structure?
How do you measure the “dimension” of a space that is not a nice manifold?
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Spectral dimension dg: dimension of spacetime seen by random walker
Basc idea: more dimensions = slower diffusion

o
Heat kernel K (z, z’; s): (8— — A:,,.) K(z,z';8) =0
8

K(z,x';8) ~ (4#3)_d5/26_”(m’m’)/28 (L+...)

Ambjern, Jurkiewicz, and Loll; Benedetti and Henson; Kommu:
edg(oc — o0) = 4,

edg(c = 0) =2

o (z,z’) o large

o0
Propagator G(x,x’) ~ / ds K (z,x';8) ~ {
0

log |o(x,2’)| o small

Short distances: characteristic behavior of a propagator in two dimensions
(Cooperman: physical scale for reduction ~ 15£p)
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Renormalization group

Lauscher, Reuter, Niedermaier, etc.:

Look at renormalization group flow for Einstein gravity plus higher derivative terms
- Truncate effective action
— Use exact renormalization group methods

— Find evidence for non-Gaussian fixed point, asymptotic safety
(cf Saueressig's talk)

At fixed point:
— anomalous dimensions <> two-dimensional field theory

— propagators ~ log |z — 2’|
— spectral dimension dg ~ 2

General argument (Percacci and Perini):

If gravity has non-Gaussian UV fixed point,
propagator must behave as In |z — 2’|
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High temperature string theory (Atick&Witten)
At high temperatures, free energy of a gas of strings is

F/VT ~ T ~ free energy of a2D QFT

“...alattice theory with a (1+1)-dimensional field theory on each lattice site” (1988)

Loop quantum gravity (Modesto)

Area spectrum A ~ £§ for large areas, but A ~ £,£; for small areas

Causal sets

Myrheim-Meyer dimension for a random causal set is ~ 2.38

Other hints

— Gas of Planck-scale virtual black holes (Crane, Smolin)?
— Multifractal geometry (Calgani)?

— Noncommutative geometry (Connes)?

— Anisotropic scaling (Horava)?
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Short distance approximation

Wheeler-DeWitt equation:

d o 1

3 _
89ij 09k 16‘”32\@( )R} Sl =

p

{ lﬁﬂegGijkt

“strong coupling” (G — oo) <> “small distance” (£, — oc)
<> “ultralocal” (no spatial derivatives)

Classical solution:
— Kasner at each point if £, — oo
— normally BKL/Mixmaster if £;, large but finite
(Kasner eras with bounces in which axes change)

Any signs of “dimensional reduction”?
Which dimensions are picked out?
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Kasner Space is effectively (1+1)-dimensional

ds? = dt® — t?P1dx? — t?P2dy? — t2P3d2?
Start timelike geodesic at t = ty, x = 0 with random initial velocity
Look at proper distance along each axis:

(>

Particle horizon shrinks to lineast — 0

Geodesics explore a nearly one-dimensional space! I

Various approximations of heat kernel (Futamase, Berkin):

, 1
K(xz,x;8) ~ 5(1+Qs) withQ ~ 2

1
(47s)
Small t: QQ term dominates, dg ~ 2
[Hu and O'Connor (1986): “effective infrared dimension”]

For BKL behavior, “preferred” dimension changes chaotically in space and time;
known probability distributions
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Asymptotic silence?

Cosmology near generic spacelike singularity:

— Asymptotic silence: light cones shrink to timelike lines

— Asymptotic locality: inhomogeneities fall outside shrinking horizons
faster than they grow

= “anti-Newtonian” limit (as if ¢ — 0)
=> spatial points decouple; BKL behavior

Underlying physics: extreme focusing near initial singularity
Is this also true at very short distances?

Mielczarek: asymptotic silence near critical density in loop quantum cosmology
(Barrau’s talk Monday: ¢s — 0)
Pierce: shape of light cones in causal dynamical triangulations (in progress)
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Vacuum fluctuations and the Raychaudhuri equation

1dA
Expansion of a bundle of null geodesics: 0 = ———

AdA
Raychaudhuri equation:

do 1
= —592 — 0a%0p? + wepw®® — 16w GT k%KY
Semiclassically:

— Expansion and shear focus geodesics

— Vorticity remains zero if it starts zero

— What about stress-energy tensor?

Fewster, Ford, and Roman:

Vacuum fluctuations of Tabk“kb are usually negative (defocusing)

But lower bound, long positive tail (focusing)

Page 18/24



Pirsa: 13070070

Vacuum fluctuations and the Raychaudhuri equation

1dA
Expansion of a bundle of null geodesics: 0 = ———

AdA
Raychaudhuri equation:

do 1
= —592 — 0a%0p? + wepw®® — 16w GT k%KY
Semiclassically:

— Expansion and shear focus geodesics

— Vorticity remains zero if it starts zero

— What about stress-energy tensor?

Fewster, Ford, and Roman:

Vacuum fluctuations of T, k®k? are usually negative (defocusing)

But lower bound, long positive tail (focusing)

Page 19/24



Pirsa: 13070070

- Frequent negative fluctuations will defocus geodesics, but their effect is limited
— Rare large positive fluctuations will strongly focus geodesics
— Once the focusing is strong enough, nonlinearities take over

“Gambler’s ruin”:

Whatever the odds, if you bet long enough against a House
with unlimited resources, you always lose in the end.

Back-of-the envelope estimate:
Let min(T,,k?kb) = —T
Let “smearing time” be At
Let p be the probability of a positive vacuum fluctuation with a value > 27

Then the time for 0 to be driven to —oo

is approximately described by an exponential distribution
P ,—pt/At
At

with a mean value ~ 15.4At
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Simulation for dilaton gravity (Mosna, Pitelli, S.C.):

— Dimensionally reduce to two dimensions

— For matter: massless scalar field (central charge ¢ = 1)

— Take At =t

— Assume fluctuations are independent (not quite right. ..)

— Run simulation 10 million times, measure time to § — —oo

™
e
v
3
g
=
[
~
5
3
L

(1] 20 0 6l B0 100
!

Probability of expansion divergiﬁg to —oo as a function of
Planck time steps. Solid line is exponential distribution.

Full (3+1)-dimensional version in progress . ..

Pirsa: 13070070 Page 21/24



Simulation for dilaton gravity (Mosna, Pitelli, S.C.):

— Dimensionally reduce to two dimensions

— For matter: massless scalar field (central charge ¢ = 1)

— Take At =t

— Assume fluctuations are independent (not quite right. . .)

— Run simulation 10 million times, measure time to § — —oo

™
e
v
3
g
<
[
.
3
L

(1] p. 1} 0 6 B0 100
!

Probability of expansion divergihg to —oo as a function of
Planck time steps. Solid line is exponential distribution.

Full (3+1)-dimensional version in progress . ..

Pirsa: 13070070 Page 22/24



Some typical runs
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Short-distance picture (at perhaps ~ 15€p):

e short distance asymptotic silence

e “random” direction at each point in space
- not changing too rapidly in space: regions of size > £, fairly independent
- evolving in time; “bouncing,” axes rotating, etc.

e effective two-dimensional behavior:
dynamics concentrated along preferred direction

e Lorentz violation near Planck scale, but “nonsystematic”

Can we use this?

e 't Hooft, Verlinde and Verlinde, Kabat and Ortiz: eikonal approximation

ds? = gapda®dzP + hijdy'dy’

with different natural scales for the two metrics

e Haba: lower dimensional gravity provides natural cutoff for field theory
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