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Abstract: <span>1 will present the recently obtained non perturbative 1/N expansion of tensor models.& nbsp; The correlation functions are shown to
be analytic in the coupling constant in some domain of the complex plane and to support appropriate scaling bounds at large N. Surprisingly, the non

perturbative setting turns out& nbsp; to be a powerful computational tool allowing the explicit evaluation order by order (with bounded rest terms) of
the correlations.</span>
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The non perturbative 1/ N expansion of Tensor Models, Loops '13, Pl Razvan Gurdu,
Tensor Models

Tensor invariants as Edge Colored Graphs

Building blocks: tensors with no symmetry transforming as

T!;l___bD — Z Ué}ll e Uéglo Tal,,.aD ] _;;1...;30 Z U 1) U;(,DC)ID 7- 1.,.q°
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Tensor Models

Tensor invariants as Edge Colored Graphs

Building blocks: tensors with no symmetry transforming as

Throo =2 U+ Upsso Tarao s Toupo = 3 Ui

Invariants: colored graphs

D
Trs(T, T) = Z]'[Tal ,,,DHT v 1T TI dacas

c=1Je=(w,w)

» White (black) vertices for T (T).
» Edges for d,c4c colored by c, the position of the index.
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The non perturbative 1/ N expansion of Tensor Models, Loops '13, Pl Razvan Guriu,
Tensor Models

Invariant Actions for Tensor Models
The most general single trace tensor model

D
S(T,T)=)Y Ta. aoTq qo | [ Oacqe + Y taTrs(T, T)
c=1 B

Z(ts) = /[d'TdT] e~ N°TIS(T\T)
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Tensor Models

Invariant Actions for Tensor Models
The most general single trace tensor model

D
S(Ta 7-) - Z Tal...aD qu...qo H 6acqc + Z tBTrB(-Ta T)
c=1 B

Z(ts) = / [dTdT] e~V 'S(T.7)

Feynman graphs: “vertices” B.

e_ND_l (Z Tal.”aD T-f:;)‘..‘q‘r-) I_Ilcjfl (5acqc)

Trg, (T, T)Trs, (T, T)...
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Invariant Actions for Tensor Models
The most general single trace tensor model

D
S(Ta 7-) - Z Tal...aD qu...qo H 6acqf + Z tBTrB(-Ta T)
c=1 B

Z(ts) = / dTdT] e~V ST T)

Feynman graphs: “vertices” B.

e-ND_l (Z Tal.”aD T-t:;)‘..‘q‘r-) I_Ilcjfl Jacqc)

Trg, (T, T Trg,(T,T)...
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Tensor Models

Invariant Actions for Tensor Models
The most general single trace tensor model

Z T, aD ...q0 H 635 c -+ Z IBTI'B

Z(ts) = / dTdT] eV s

Feynman graphs: “vertices’ B. Gaussian integral: Wick contractions of T and T
(“propagators”) — dashed edges to which we assign the fictitious color 0.

Talagai Tp1p2ps
L - - >

1
~ D=1 9a1p10,2,20,3,3
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The non perturbative 1/ N expansion of Tensor Models, Loops '13, PI
Tensor Models

Colored Graphs as gluings of colored simplices

White and black D + 1 valent vertices connected by edges : \ ,L
with colors 0,1...D. ~

Edges <> gluings along
D — 1 simplices respecting
all the colorings

Vertex «» colored D
simplex .

Rézvan Gurdiu,
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Tensor Models

Colored Graphs as gluings of colored simplices

White and black D + 1 valent vertices connected by edges : \ A
with colors 0,1...D. ~)

Edges <> gluings along
D — 1 simplices respecting
all the colorings

Vertex «» colored D
simplex .

The invariants Trz have a double interpretation:
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Tensor Models

Colored Graphs as gluings of colored simplices

White and black D + 1 valent vertices connected by edges : \ A
with colors 0,1...D. ~)

Edges <> gluings along
D — 1 simplices respecting
all the colorings

Vertex ¢+ colored D
simplex .

The invariants Trz have a double interpretation:
- Graphs with D colors: D — 1 dimensional boundary triangulations.
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Tensor Models

Colored Graphs as gluings of colored simplices

White and black D + 1 valent vertices connected by edges : \ A
with colors 0,1...D. )

Edges <> gluings along
D — 1 simplices respecting
all the colorings

Vertex «» colored D
simplex .

The invariants Trz have a double interpretation:
- Graphs with D colors: D — 1 dimensional boundary triangulations.

Rézvan Gurdu,
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Tensor Models

Colored Graphs as gluings of colored simplices

White and black D + 1 valent vertices connected by edges _‘ \ A
with colors 0,1...D. ~)

Edges <> gluings along
D — 1 simplices respecting
all the colorings

Vertex «» colored D
simplex .

The invariants Trz have a double interpretation:
- Graphs with D colors: D — 1 dimensional boundary triangulations.

- Subgraphs:
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The non perturbative 1/ N expansion of Tensor Models, Loops '13, Pl
Tensor Models

Colored Graphs as gluings of colored simplices

White and black D + 1 valent vertices connected by edges : \ L
with colors 0,1...D. &

Edges <> gluings along
D — 1 simplices respecting
all the colorings

Vertex < colored D
simplex .

The invariants Trz have a double interpretation:
- Graphs with D colors: D — 1 dimensional boundary triangulations.

Gluing along all D — 1 simplices
except 0: “chunk” in D
dimensions

- Subgraphs: vertex <> D simplex

Rézvan Gurdiu,
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Tensor Models

The general framework

Observables = invariants Trg encoding boundary triangulations.
Expectations =

1 T R -
<Tr31Tr32 & 'Tqu> = Z(ts) [[deT] Trs, Tra, ... Tra, e~ NCIS(T,T)

correlations between boundary states given by sums over all bulk triangulations
compatible with the boundary states

- <Tr5>: B to vacuum amplitude

> <Tr51Tr32> = <Tr31Tr32> - <Tr31><Tr32>: transition amplitude between
C
the boundary states B; and B,
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The non perturbative 1/ N expansion of Tensor Models, Loops '13, Pl Razvan Gurdu,
Tensor Models

The general framework

Observables = invariants Trg encoding boundary triangulations.
Expectations =

1 T S -
<Tr31Tr32 & 'Tqu> = Z(ts) f[deT] Trs, Tra, ... Tra, e~ NPIS(T,T)

correlations between boundary states given by sums over all bulk triangulations
compatible with the boundary states

- <Tr5>: B to vacuum amplitude

> <Tr51Tr32> = <Tr31Tr32> - <Tr31><Tr32>: transition amplitude between
c
the boundary states B; and B,

Remarks:
» The path integral yields a canonical sum over “histories”.
» Weight of a triangulation: discretized EH, B A F, etc.

» Need to take some kind of limit in order to go from triangulations to
continuum geometries.
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Tensor Models

The general framework

Observables = invariants Trg encoding boundary triangulations.
Expectations =

1 T — -
<Tr31Tr32 . 'Tqu> = Z(ts) f[deT] Trp, Trp, ... Trg, eV 'S(T.7)

correlations between boundary states given by sums over all bulk triangulations
compatible with the boundary states

- <Tr5>: B to vacuum amplitude

> <Tr51Tr32> = <Tr31TrB2> - <Tr31><Tr32>: transition amplitude between
c
the boundary states B; and B,

Remarks:
» The path integral yields a canonical sum over “histories”.
» Weight of a triangulation: discretized EH, B A F, etc.

» Need to take some kind of limit in order to go from triangulations to
continuum geometries.
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Tensor Models

What is a non perturbative result and why do we
care?

Suppose we are interested in “Interesting Quantity”

A non perturbative result is a result concerning the full “Interesting Quantity”,
usually stated as:

Interesting Quantity = Explicit + Rest, and |Rest| < Good Bound
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Tensor Models

What is a non perturbative result and why do we
care?

Suppose we are interested in “Interesting Quantity”

A non perturbative result is a result concerning the full “Interesting Quantity”,
usually stated as:

Interesting Quantity = Explicit + Rest, and |Rest| < Good Bound
(Mathematical counterpart of: Interesting Quantity = Measured + Error Bar)

Evaluating Explicit, we get a Good approximation of Interesting Quantity!
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The non perturbative 1/ N expansion of Tensor Models, Loops '13, Pl Razvan Gurdu,
Tensor Models

What is a non perturbative result and why do we
care?

Suppose we are interested in “Interesting Quantity”

A non perturbative result is a result concerning the full “Interesting Quantity”,
usually stated as:

Interesting Quantity = Explicit + Rest, and |Rest| < Good Bound
(Mathematical counterpart of: Interesting Quantity = Measured + Error Bar)

Evaluating Explicit, we get a Good approximation of Interesting Quantity!

This is not the case if |Rest| is not < Good bound

Computing Explicit in the absence of |Rest| < Good Bound is at best naive and at
worst nonsensical.
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The non perturbative 1/ N expansion of Tensor Models, Loops '13, Pl Razvan Gurdu,

The 1/N expansion

The quartic tensor model
Our aim is to compute correlations

S(T,T) =Y Ta o Tg. qoﬂéaqc+ZrBTrB(T T)

<Tr31Tr32 ...Tr3q> = E(_t_zﬁ /[deT] Trg, Trp, ... Trg, e~ N°7IS(T,T)
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The 1/N expansion

The quartic tensor model
Our aim is to compute correlations

D
T T) Z Ta1 .ab T H (5va€ + Z tBTI’B(T, T)
c=1 B
1 = ~ ;
<Tr31TrB2 ... 1rg > Z( = /[deT] Tra, Trg, ... Trg, e—N°IS(T,T)

The simplest quartic invariants correspond to
“melonic”’ graphs with four vertices B(*4):c

Z(Tal‘..ao -qu...qD H 63C'qC’)53cPcabcqc(Tbl...bD -Tpl e ]_—[ 5bc ¢’ ) CJ IC

¢’ #e ¢’ #e

), B=B®s
0, otherwise

The simplest interacting theory: coupling constants tg = {
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The non perturbative 1/ N expansion of Tensor Models, Loops '13, Pl Razvan Guriu,
The 1/N expansion

Amplitudes and Dynamical Triangulations

Expand in A (Feynman graphs):

<%Tr5(2,> - 3 AS(N)

D+1 colored graphs G
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The non perturbative 1/ N expansion of Tensor Models, Loops '13, Pl Razvan Gurdu,

The 1/N expansion

Amplitudes and Dynamical Triangulations

Expand in A (Feynman graphs):

<%Tr5m> - 3 AS(N)

D+1 colored graphs G

Each graph is dual to a triangulation

AS(N) = eRo-:AMQ0-2-ko(\N)o

Discretized Einstein Hilbert action on the dual triangulation with Qp equilateral
D-simplices and Qp—_2 (D — 2)-simplices.
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The non perturbative 1/ N expansion of Tensor Models, Loops '13, Pl Razvan Guriu,
The 1/N expansion

The 1/N expansion

Two parameters: A and N.

1) Feynman expansion: K2 =1 — DA — 55 DA+ > A°(N)  AS(N) ~ N2
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The 1/N expansion

The 1/N expansion

Two parameters: A and N.

1) Feynman expansion: Kz =1 — DA — 55 DA+ > A°(N)  AS(N) ~ N2

2) 1/N expansion: K, = (“4;;\/3 by S c A¢(N) AC¢(N) < o=
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The non perturbative 1/ N expansion of Tensor Models, Loops '13, Pl Razvan Gurdu,

The 1/N expansion

The 1/N expansion

Two parameters: A and N.

1) Feynman expansion: K2 =1 — DA — 55 DA 4+ > A°(N)  AS(N) ~ N2

2) 1/N expansion: K, = (“4;33 L+ Y AG(N) AC(N) < o=

3) non perturbative: K, = (“43;\;} P+ RS\?)(/\)

725{;))(/\) analytic in A = |\|e'? in

the domain (p)
Ry (A <

AP
L I pl ABP

NpP(D—2)
' D)~ (cos £ )

Pirsa: 13070066
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The non perturbative 1/ N expansion of Tensor Models, Loops '13, Pl Rézvan Gurdu,
The continuum limit(s)

The N — oo limit

Good Bound ensures limy_, o ’RS\})()\H = 0, hence

, (1+4D))>
lim K, =
Nevee 2 2D
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The continuum limit(s)

The N — oo limit

Good Bound ensures limy_; o0 |’R5\})()\)| =0, hence

. (1+4D\)2 —1
lim K, =
Nopeo |2 2D

» is the sum of an infinite family of graphs of spherical topology (“melons”)
» becomes critical for A - —(4D)~!

» in the critical regime infinite graphs (representing infinitely refined geometries)
dominate

Pirsa: 13070066 Page 29/45



The non perturbative 1/ N expansion of Tensor Models, Loops '13, Pl Razvan Gurdu,
The continuum limit(s)

The N — oo limit

Good Bound ensures limy_, o |’R5\})()\)| = 0, hence
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» in the critical regime infinite graphs (representing infinitely refined geometries)
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The continuum limit(s)

The N — oo limit

Good Bound ensures limy_, o |’R5\})(/\)| = 0, hence

. (1+4D\)2 —1
lim K, =
Nopeo |2 2D

» is the sum of an infinite family of graphs of spherical topology (“melons”)
» becomes critical for A - —(4D)~!

» in the critical regime infinite graphs (representing infinitely refined geometries)
dominate

A continuous random geometry emerges! But this emergent geometry is a
branched polymer.
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The continuum limit(s)

The N — oo limit

Good Bound ensures limpy_,00 |’R(A})(/\)| = 0, hence

. (1+4D\)2 —1
lim Ko =
s 2 2D\

» is the sum of an infinite family of graphs of spherical topology (“melons”)
» becomes critical for A - —(4D)~!

» in the critical regime infinite graphs (representing infinitely refined geometries)
dominate

A continuous random geometry emerges! But this emergent geometry is a
branched polymer.

» Try a different approach (CDT, etc.)
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The continuum limit(s)

The N — oo limit

Good Bound ensures limpy_,00 |’R(,J)(/\)| = 0, hence

. (1+4D\)2 —1
lim Ko =
M 2 2D\

» is the sum of an infinite family of graphs of spherical topology (“melons”)
» becomes critical for A - —(4D)~*

» in the critical regime infinite graphs (representing infinitely refined geometries)
dominate

A continuous random geometry emerges! But this emergent geometry is a
branched polymer.

» Try a different approach (CDT, etc.)
» Add holonomies, change the propagator (GFT, etc.)
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The continuum limit(s)

The N — oo limit

Good Bound ensures limy_; o0 |’R(A})()\)| =0, hence

: (1+4D\): —1
lim K, =
Nevee. 2 2D

» is the sum of an infinite family of graphs of spherical topology (“melons”)
» becomes critical for A - —(4D)™*

» in the critical regime infinite graphs (representing infinitely refined geometries)
dominate

A continuous random geometry emerges! But this emergent geometry is a
branched polymer.

» Try a different approach (CDT, etc.)
» Add holonomies, change the propagator (GFT, etc.)

» Take the branched polymer seriously: a first phase transition (protospace)
followed by subsequent phase transitions to smoother spaces.
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The non perturbative 1/ N expansion of Tensor Models, Loops '13, Pl Razvan Gurdu,

The continuum limit(s)

The Double Scaling Limit

The graphs can be reorganized as

Ko = \/(4D)"1 + 1) P 5 + Res

Set x = NO=2[(4D)"! + )] = A = =7 + ==,

) - C
Ky = N* ¢ 2 pp - + Rest Rest < NY/2-P/2
N X 2
p,..o
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The non perturbative 1/ N expansion of Tensor Models, Loops '13, Pl Razvan Gurdu,
The continuum limit(s)

The Double Scaling Limit

The graphs can be reorganized as

Ko = \/(4D)"1 + 1) P 5 + Res
2 \/( )14 ;?T-?)(NDQ[MD)H,\D + Rest

Set x = NP=2[(4D)~1 + A\] = A = — 35 + 7=,

) - C
Ky = N* E L le + Rest Rest < NY/2-P/2

p—3
o0 X

Double scaling (inferred by Kaminski, Oriti, Ryan): send N — oo, A — —410 while
keeping x fixed (Rest is suppressed)
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The non perturbative 1/ N expansion of Tensor Models, Loops '13, Pl Razvan Gurdu,

The continuum limit(s)

The Double Scaling Limit

The graphs can be reorganized as

Ky, = 4D 14N + Rest
. ;?—‘O(ND 21(49) 14A])”

Set x = NP=2[(4D)~1 + A\] = A = — 35 + 7=,

) - C
Ky = N* 2 2 ppl + Rest Rest < NY/2-P/2
N X 2
p,..O

Double scaling (inferred by Kaminski, Oriti, Ryan): send N — oo, A — —410 while
keeping x fixed (Rest is suppressed)

At leading order in the double scaling limit an explicit family of graphs larger than
the “melonic” family emerges!

Page 37/45



The non perturbative 1/ N expansion of Tensor Models, Loops '13, Pl Razvan Gurlu,

Conclusions

Advantages vs. Questions
have an analytic framework to study random discrete geometries!

canonical path integral formulation.

built in scales (tensors of size NP).

sums over discretized geometries.

with weights the discretized (Einstein Hilbert, B A F, etc.) action.
non perturbative predictions
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Conclusions

Advantages vs. Questions
have an analytic framework to study random discrete geometries!
canonical path integral formulation.

built in scales (tensors of size N°).

sums over discretized geometries.

with weights the discretized (Einstein Hilbert, B A F, etc.) action.
non perturbative predictions

Question: Is space truly discrete?
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Conclusions

Advantages vs. Questions
have an analytic framework to study random discrete geometries!

canonical path integral formulation.

built in scales (tensors of size NP).

sums over discretized geometries.

with weights the discretized (Einstein Hilbert, B A F, etc.) action.
non perturbative predictions

Question: |s space truly discrete? what we know for sure is that the universe has a
large number of degrees of freedom => the universe must be composed of a large
number of quanta (a harmonic oscillator on level n — oo still has only one degree
of freedom).
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Conclusions

Advantages vs. Questions
have an analytic framework to study random discrete geometries!

canonical path integral formulation.

built in scales (tensors of size NP).

sums over discretized geometries.

with weights the discretized (Einstein Hilbert, B A F, etc.) action.
non perturbative predictions

Question: |s space truly discrete? what we know for sure is that the universe has a
large number of degrees of freedom => the universe must be composed of a large
number of quanta (a harmonic oscillator on level n — oo still has only one degree
of freedom).

» infinitely refined geometries with simple topology arise at criticality.

» fine structure effects are probed by tuning the approach to criticality.
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Conclusions

Advantages vs. Questions
have an analytic framework to study random discrete geometries!
canonical path integral formulation.

built in scales (tensors of size NP).

sums over discretized geometries.

with weights the discretized (Einstein Hilbert, B A F, etc.) action.
non perturbative predictions

Question: |s space truly discrete? what we know for sure is that the universe has a
large number of degrees of freedom = the universe must be composed of a large
number of quanta (a harmonic oscillator on level n — oo still has only one degree
of freedom).

» infinitely refined geometries with simple topology arise at criticality.

» fine structure effects are probed by tuning the approach to criticality.

Question: What precise model in this framework describes our universe?
» we don't know hence we concentrate on universal predictions.
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Conclusions

Conclusions

More results: GFT/Tensor Models session, Thursday 25th July, 14h30
The tensor track is largely open and begs to be explored!

A personal list of open questions:

» non perturbative results

» extend the non perturbative treatment to other models.

» extend the analyticity domain of the rest and study the discontinuity of the rest
on the negative real axis (non perturbative cut effects are crucial for unitarity
and the role of time)

» study the geometry of the space emerging under multiple scalings.
» algebra of constraints, Hausdorff and spectral dimensions, geodesics.

» Effective field theory description of the confined phase.

» Phenomenological implications.
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The continuum limit(s)

The Double Scaling Limit

The graphs can be reorganized as

Ko = \/(4D)"1 + 1) P 5 + Res
2 \/( )~14 ;?T-B(ND 2[(4D)'1i/\J) + Rest

Set x = NP=2[(4D)~1 + A\] = A = — 35 + 7=,

) - C
Ky = N* I-'L prl + Rest Rest < NY/2-P/2

pP—3
>0 X

Double scaling (inferred by Kaminski, Oriti, Ryan): send N — oo, A — —410 while
keeping x fixed (Rest is suppressed)

At leading order in the double scaling limit an explicit family of graphs larger than
the “melonic” family emerges!
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The continuum limit(s)

The N — oo limit

Good Bound ensures limy_, o0 |’R5\})()\)| =0, hence

. (1+4D\)2 —1
lim K, =
Noneo |2 2D

» is the sum of an infinite family of graphs of spherical topology (“melons”)
» becomes critical for A - —(4D)~!

» in the critical regime infinite graphs (representing infinitely refined geometries)
dominate

A continuous random geometry emerges! But this emergent geometry is a
branched polymer.

» Try a different approach (CDT, etc.)
» Add holonomies, change the propagator (GFT, etc.)

» Take the branched polymer seriously: a first phase transition (protospace)
followed by subsequent phase transitions to smoother spaces.
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