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Abstract: <span>l will review the reformulation of the loop gravity phase space in terms of spinor networks and twistor networks, and present how

these techniques can be used to write spinfoam amplitudes as discretized path integrals and to study the dynamics that they define (recursion,
Hamiltonian constraints as differential equations).</span>
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Understanding the Geometry of Loop Quantum Gravity

Part of the programme:

Understand the geometrical interpretation of the quantum states of
LQG and of their transition amplitude defined by spinfoam models
and parameterize systematically the deformations (diffeos?) of
their geometry in order to describe the dyn of the theory

@ LQG spin network states define a quantum geometry. .. but can it
be effectively interpreted as a classical discrete geometry?

@ Spinfoam models are discrete path integrals defining transition
amplitudes and projector on physical states, constructed
algebraically as state-sums for BF theory plus constraints at the
quantum level. . . but a discrete space-time geometry?
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The Rise of the Spinor Formalism for Loop Gravity & Spinfoams

A Basic Technical Ildea:
Introduce spinor variables as Darboux coordinates for the
holonomy-flux phase space of loop gravity on a fixed graph

Many developments:

@ From spinor networks to twisted geometry

e U(N) framework and coherent intertwiners, generating
functions and asymptotics for 3nj symbols & spinfoam ampl

@ Twistor networks for SL(2, C) and simple twistor networks

@ Spinfoam amplitude as path integral in spinor/twistor space

@ Extension to quantum groups for loop gravity with A # 0
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The Rise of the Spinor Formalism for Loop Gravity & Spinfoams

Historically, we worked completely backwards. ..

Action of U(N) on space of intertwiners

_ Freidel, L 2009
U(N) structure of SU(2)-invariant operators =——— g

Girelli, L 2005 U(N) Coherent Intertwiner States
Freidel, L2010

Twisted Geometries

2 *Freidel, Speziale 2010 ———pm Holomorphic Simplicity
Quantum Dupuis, L 2010 T ——gm. The Return of the Spinor

BFGL 2010
Holomorphic Simplicity /
/ Classical Dupuis, L 2010

Spinor Rep of Loop Gravity
Tambornino, L 2011

* BF Hamiltonian constraint

Twistor Networks / Bonzom, L 2011
Lorentzian case __—" | <712011
DFLS 2011 ‘

Spinfoam amplitude & Generating Function

/ Freidel, Hnybida 2012 & Bonzom, L 2012
Twistorial Structure of LQG and EPRL-FK

Speziale, Wieland 2012
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Spinor and Twistor Networks for Loop Gravity

@ Overview of spinor network formalism
Then more details on:

© Spinor phase space and Quantization

@ U(N) framework for polyhedra and intertwiners

© Spinor path integral and Hamiltonian constraints for
Spinfoams

© Twistor networks and Simplicity constraints
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Spinor Networks for Loop Gravity

A fresh look on the phase space of loop gravity

Always interesting to study new variables encoding the (quantum)
geometry. . .

» Canonical Variables {z,z} = —iJ on a fixed graph

@ Simpler Poisson bracket and kinematical structure

e Straightforward quantization and efficient framework to
investigate quantization ambiguities

@ Straightforward construction of coherent spin network states
from harmonic oscillators
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Spinor Networks for Loop Gravity

A fresh look on the phase space of loop gravity

Always interesting to study new variables encoding the (quantum)
geometry. . .

» Canonical Variables {z,z} = —ij on a fixed graph

@ Simpler Poisson bracket and kinematical structure

e Straightforward quantization and efficient framework to
investigate quantization ambiguities

@ Straightforward construction of coherent spin network states
from harmonic oscillators
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Spinor Networks for Loop Gravity

A formalism easy to handle and allowing a detailed analysis of the
degrees of freedom. ..

A new perspective on the geometry degrees of freedom

A single set of variables: holonomies g and fluxes X both as
composite variables in the spinor variables

Clear geometrical interpretation in terms of framed polyhedra
and twisted geometries

Easy to switch focus between edge d.o.f. and vertex d.o.f.

< two complementary points of view: holonomy formalism
for the parallel transport along edges vs. U(N) formalism for
polyhedra and intertwiners around vertices

A framework allowing a simpler exploration and analysis of
algebra of constraints and Hamiltonian dynamics
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Spinor Networks for Loop Gravity

Beyond the canonical framework, we apply these techniques to
spinfoams. . .

A mathematical tool for Spinfoam amplitudes

Natural boundary data for spinfoam amplitudes computing
transition amplitudes between coherent spin network states

Express spinfoam amplitudes as path integral in spinor space
Powerful mathematical tool to evaluate amplitudes and
understand NC structure

— to study {3nj} symbols, generating functions and
asymptotics

Hamiltonian constraints implemented as differential equations

in the spinors and satisfied by spinfoam amplitudes (3d, 4d
BF, FRW cosmo, ...)
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Upgraded to Twistor Networks for Loop Gravity a /a Spinfoam

Twistors (or Dirac spinors) for representing Lorentz group
SL(2,C)...
» Developing a 4d covariant point of view:

@ Clear structure of algebra of constraints, allowing to solve explicitly
the simplicity constraints (reducing BF theory to GR)

< Holomorphic simplicity constraints & Simple twistor networks

Equivalence of SL(2,C) structures and SU(2) phase space
< Non-trivial embedding of T*SU(2) in T*SL(2,C) with SU(2)
holonomy carrying data about extrinsic curvature

Explore 4d geometry d.o.f. (time normal, 4d dihedral angles, . ..

EPRL-FK amplitudes as path integral over twistor space

< a good framework to investigate coarse-graining and effective
spinfoam actions
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The Spinor Phase Space and Quantization

The Holonomy-Flux Poisson algebra on a fixed graph

Let's go back to the standard holonomy-flux variables of loop
gravity...On a fixed oriented graph:

@ Holonomy along edge e

\ /

ge € SU(2) A X

@ Flux for edge e around vertex v
X! € su(2) ~ R3
T*SU(2) Poisson bracket :  With constraints:
e Parallel transport of vectors by
3d rotations along edges:
Xg(e) = —ge D> Xes(e)
@ Closure constraint around

vertices: ) . XJ =0
generating local SU(2)-inv

{gf-‘s ge’} =0
(X2, X5} = i0eer e XS

{)?E& ge} = 0&e
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The Spinor Phase Space and Quantization

The Holonomy-Flux Poisson algebra on a fixed graph

Let's go back to the standard holonomy-flux variables of loop
gravity...On a fixed oriented graph:

\

@ Holonomy along edge e N/ N/
ge e SU(2) \\(//S(U-..u-} xulu\ ,//

e Flux for edge e around vertex v SN % /N

\\

X! € su(2) ~ R3

T*SU(2) Poisson bracket :  With constraints:

e Parallel transport of vectors by
3d rotations along edges:
Xg(e) = —ge D> Xes(e)

@ Closure constraint around
vertices: ) . XJ =0
generating local SU(2)-inv

{gf-‘s ge’} =0
(X2, X5} = i0eer e XS

{)?Ev ge} = 0&e

Etera Livine ENS Lyon & PI Spinor and Twistor Networks for Loop Quantum Gravity

Page 13/47



Pirsa: 13070063

The Spinor Phase Space and Quantization

The Holonomy-Flux Poisson algebra on a fixed graph

Let's go back to the standard holonomy-flux variables of loop
gravity...On a fixed oriented graph:

@ Holonomy along edge e

\ / \__\
ge E SU(2) \ : U'.\!.- xulll\\\/
@ Flux for edge e around vertex v 0 /,7

/
/
/

X! € su(2) ~ R3

T*SU(2) Poisson bracket :  With constraints:

e Parallel transport of vectors by
3d rotations along edges:
Xg(e) = —ge D> Xes(e)

@ Closure constraint around
vertices: ) . XJ =0
generating local SU(2)-inv

{gf-‘s ge’} =0
(X2, X5} = i0eere?° XS

{)?E& ge} = 0&e
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The Spinor Phase Space and Quantization

The Holonomy-Flux Poisson algebra on a fixed graph

Where does it come from? What does it mean?. ..
Discretization of connection-triad fields A and E

N7 = Pexp(i [, A)

'-‘

S

%" - ] pES Bv—p Egv—)p

1

Geometrical Interpretation as Twisted Geometries

@ Closure constraint = convex polyhedra dual to each vertex

Each edge dual to a face with X
as the normal vector and norm | X¢|
giving the area of the face

@ Polyhedra glued along the edges by area matching
— 3ge € S0(3), X = —ge > X5 & | X = |X§|
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The Spinor Phase Space and Quantization

A word on Twisted Geometries

Twisted geometries generalize Regge geometries

On an edge, the vectors X$'* do not en-
e l tirely determine the holonomy ge:

oy .

@ M J _ ie 7 . —1
< j Be = Nie)€ ™ 2 € Ngie)

€ IR

i

Angle £ ~ «vK gives extrinsic curvature

Chunks of flat space (living in tangent space) glued together with
curvature and torsion
~ Can impose gluing constraints to restrict to Regge geometries
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The Spinor Phase Space and Quantization

A word on Twisted Geometries

Twisted geometries generalize Regge geometries

On an edge, the vectors X$'* do not en-
i g l tirely determine the holonomy ge:

1 ) r~
d ] 60_3_ -1
\ ,/ "‘/ Be = Nt(e) e't7 ¢ Ns(e)

\r

i 4

Angle £ ~ «vK gives extrinsic curvature

Chunks of flat space (living in tangent space) glued together with
curvature and torsion
~ Can impose gluing constraints to restrict to Regge geometries
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The Spinor Phase Space and Quantization

The Spinor Network phase space

Let us re-visit this phase space replacing vectors )2;:’ € R3 by
spinors |z¥) € C? ...

We describe twisted geometries
as Spinor Networks

@ Can reconstruct both g's and X's from spinors :
» X = (z|d|z) with Pauli matrices, area as norm |X| = (z|z)
» Unique SU(2) element g. mapping z7 to z. since we are in the
fundamental representation of SU(2)

N ) RN
8 =" Jamaiz | P ()

@ Darboux coordinates with canonical Poisson bracket
{zaazb} = —ilab
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The Spinor Phase Space and Quantization

The Spinor Network phase space

Let us re-visit this phase space replacing vectors )2;:’ € R3 by
spinors |z¥) € C? ...

We describe twisted geometries
as Spinor Networks

@ Can reconstruct both g's and X's from spinors :
» X = (z|d|z) with Pauli matrices, area as norm |X| = (z|z)
» Unique SU(2) element g. mapping z7 to z. since we are in the
fundamental representation of SU(2)

N I ) N
8 =" Jaimaz | AP ()

@ Darboux coordinates with canonical Poisson bracket
{zaazb} = —idab
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The Spinor Phase Space and Quantization

The Spinor Network phase space

We keep area-matching constraints and closure constraints :
Vv v
|28)(ze| o 1

= Generates SU(2) transformations on spinors

o around vertices: ) ..,

o along edges: (z3|z5) = (zt|zf)

= Generates inverse U(1) phase transformations on spinors

New feature: U(1) phase of spinors ...New d.o.f.'s?

— Vectors X invariant under U(1) transformations
< Holonomies g inv under joint U(1) on both spinors

— Relative phase gives angle &, conjugate to area !
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The Spinor Phase Space and Quantization

Quantizing: from Spinor Networks to Spin Networks

We have canonical Poisson brackets, so quantization is direct ...

@ Raise spinor components to creation/annihilation operators :

20 5 39

zl 5 a1, 304 50 314 plf

@ Gives Schwinger's representation of su(2) in terms of two
HOs, with spin j being total energy
Quantizing matching and closure constraints, we recover the
Hilbert space of spin network states as (holomorphic)
wave-functions in the spinors
We project HOs' coherent states and define coherent spin
network peaked on classical spinor networks :

,"D{Z.‘é'}(ge) . f[dhv] Z [Ze | s( ge t(e) |Ze )

Semi-classical Twisted Geometries for LQG
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The Spinor Phase Space and Quantization

A remark on quantization ambiguities

Actually there is no quantization ambiguity : use normal ordering
with annihilation a's on R and creation af on L.

= Quantum commutators reproducing exactly classical Poisson
algebra for quadratic observables such as vectors X's and with
known corrections for polynomials

But what happens for non-polynomial observables? .

_ |2)(Z|-|Z][2] 9

|.e.g. holonomy on an edge g = NEEEE) [
We know the action of g on spin basis of
L?(SU(2)): obvious quantization of numerator
and norm factor quantized simply as (2j + 1)~*

with +1 shift and split in J/ on left and right.

But could try Thiemann's trick? Generating them from bracket
{\/(z|z),-}. But then anomaly {g,g} # 0! Bad bad bad. . .
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The Spinor Phase Space and Quantization

A remark on quantization ambiguities

Actually there is no quantization ambiguity : use normal ordering
with annihilation a's on R and creation a' on L.

= Quantum commutators reproducing exactly classical Poisson
algebra for quadratic observables such as vectors X's and with
known corrections for polynomials

But what happens for non-polynomial observables? .

_ |2)(z|-|Z][2] 9

|.e.g. holonomy on an edge g = NEEEE) [
We know the action of g on spin basis of
L?(SU(2)): obvious quantization of numerator
and norm factor quantized simply as (2 + 1)~*

with +1 shift and split in J/ on left and right.

But could try Thiemann's trick? Generating them from bracket
{\/(z|z),-}. But then anomaly {g,g} # 0! Bad bad bad. . .
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U(N) Formalism for Polyhedra and Intertwiners

@ Spinor phase space and Quantization

@ U(N) framework for polyhedra and intertwiners

© Spinor path integral and Hamiltonian constraints for
Spinfoams

© Twistor networks and Simplicity constraints
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U(N) Formalism for Polyhedra and Intertwiners

U(N) Formalism for Polyhedra and Intertwiners

We focus on a single vertex of a spin(or) network

Why? Intertwiners are the basic building blocks of spin networks and
represent chunks of 3d volume. Essential to understand their structure
and geometrical interpretation.

What? U(N) transformations deforming and exploring the whole space
of polyhedra and intertwiners (with N faces) at fixed boundary area.

More? Basic SU(2)-invariant operators generating all deformations ,
fixing or not the area.

So...? Count intertwiners (for BHs), Define coherent intertwiners,
Decompose holonomies in elementary operators, Average over polyhedra
and trace on intertwiners by integral over U(N), Link with
Itzykson-Zuber formula and matrix models.
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U(N) Formalism for Polyhedra and Intertwiners

Framed Polyhedra: Spinor Phase Space for Intertwiners

A simple classical setting:

o Consider N spinors z; € C? with canoni-
cal bracket {z#,z8} = —i 4B

@ Map them on 3-vectors: |z) € C2 — V = (z|¢|z) € R3.

@ Define closure constraints C = Y izi|d|zi) = D ; Vi.

—

@ Defines a unique dual (convex) polyhedron with the V; being
the normal vectors are the N faces, with area V; = (z;|z;)

o C are 1st class and generates global SU(2) transf onspinors

Pn = C?N//SU(2) as space of framed polyhedra up to 3d rotations

< Dim of Py is (3N —6) + N. We have extra phases on each face!
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U(N) Formalism for Polyhedra and Intertwiners

Framed Polyhedra: Spinor Phase Space for Intertwiners

A simple classical setting:

o Consider N spinors z; € C? with canoni-
cal bracket {z#,z8} = —i 4B

»

| B8 L

@ Map them on 3-vectors: |z) € C2 — V = (z]5|z) € R3.

.8

@ Define closure constraints C = Y izild|zi) = D ; Vi.

—

@ Defines a unique dual (convex) polyhedron with the V; being
the normal vectors are the N faces, with area V; = (z;|z;)

o C are 1st class and generates global SU(2) transf onspinors

Pn = C?2N//SU(2) as space of framed polyhedra up to 3d rotations

< Dim of Py is (3N —6) + N. We have extra phases on each face!
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U(N) Formalism for Polyhedra and Intertwiners

Framed Polyhedra: SU(2)-invariant Observables

Scalar products between spinors define SU(2)-inv observables :

Efj - (Z,‘|Zj>, FU - [Z;|ZJ'), Fu - (Zj|2,']
E is Hermitian and F anti-symmetric but holomorphic

Diagonal elements Ej; give individual face areas
Commute with closure constraints, {C, E;j} = {C, Fjj} =0

Can express scalar products \7, \_/:, in terms of E's or F's:
Vi - V; = 3|Ej? — 3 EiiEjj = —3|Fil® + ¢ EiiEjy

And Poisson brackets form a closed Lie algebra

— That was indeed the initial motivation for this approach!

Generate deformations of the polyhedron :
@ E's commute with boundary area A=) _; Vi = > _.(zi|z)
@ Holomorphic F's decrease area while anti-holomorphic F's

increase area
Etera Livine ENS Lyon & PI Spinor and Twistor Networks for Loop Quantum Gravity

Page 28/47



Pirsa: 13070063

U(N) Formalism for Polyhedra and Intertwiners

Framed Polyhedra: U(N) Action

Ej's actually generate U(N) transformations on spinors:

|zi) — |(Uz)i ZUU|ZJ

@ Commutes with closure constraints & Conserves the total area
@ Phases are relevant, it doesn't work with only 3-vectors V;

@ Cyclic action: can reach any polyhedron from squashed
configuration

=g ) 1= (] ) =0

3 2 = VAU = m(

= |dentify polyhedron space at fixed area as Grassmannian
Pn = U(N)/(U(N — 2) x SU(2))
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U(N) Formalism for Polyhedra and Intertwiners

Framed Polyhedra: U(N) Action

Ej's actually generate U(N) transformations on spinors:

z1) — |(Uz); Z Ujlz)

@ Commutes with closure constraints & Conserves the total area
@ Phases are relevant, it doesn't work with only 3-vectors V;

@ Cyclic action: can reach any polyhedron from squashed
configuration

=g ) 1e=(] ) =0

3 2 = VAU = m(

= ldentify polyhedron space at fixed area as Grassmannian
Pn = U(N)/(U(N — 2) x SU(2))
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U(N) Formalism for Polyhedra and Intertwiners

Framed Polyhedra: U(N) Action

Ej's actually generate U(N) transformations on spinors:

|zi) — |(Uz)i ZUU|ZJ

@ Commutes with closure constraints & Conserves the total area
@ Phases are relevant, it doesn't work with only 3-vectors V;

@ Cyclic action: can reach any polyhedron from squashed
configuration

=) 1= (] ) =0

3 2 = VAU = m(

= ldentify polyhedron space at fixed area as Grassmannian
Pn = U(N)/(U(N —2) x SU(2))
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U(N) Formalism for Polyhedra and Intertwiners

Framed Polyhedra: Using the U(N) tool and Computing Averages

@ e.g. distribution of individual face area:

(n+1)I(N — 1)!

Vo = A (N +n—1)!

Average of shape tensor ©,, = »_; VAV — 36?°V;V;

= (O.) =0, (Tre%) ~ A*N3 — 0

N—o0

~+ Polyhedra peaked around spherical config. Concentration
of measure?

Study other observables, e.g. (squared) volume?
Link with matrix models through the Itzykson-Zuber formula?

Dynamics of framed polyhedra by unitary transformations?
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U(N) Formalism for Polyhedra and Intertwiners

Coherent Intertwiners

These are semi-classical intertwiner states peaked on classical
framed polyhedra

@ Allow a simple decomposition of the identity:

(z |zr

T L1 D Ut

@ Can glue them together into semi-classical coherent spin network
states.

@ All SU(2)-invariant operators can be decomposed in terms of E and
F operators and they act on spinor wave-functions and coherent
spin networks as differential operators in the spinors z's.
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U(N) Formalism for Polyhedra and Intertwiners

(Generalized) Holonomy Operators

Let us have a look at the LQG holonomy operator around a loop L:

Re-group terms by vertices instead of edges

(F1Fv2, . F" + FEF ---+ ...
VIIiz127) (] |zf)

= TI’GC:

Up to norm factors, each sequence of E, F's correspond to a

definite shift +% or —% shift in the spins j; on each link.
— generalized holonomies allow for finer analysis of deformations

& dynamics
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U(N) Formalism for Polyhedra and Intertwiners
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Spinor Tools for Spinfoam Amplitudes

Spinfoams in terms of Spinors: effective Hamiltonian

Compute spinfoam amplitudes for coherent spin network . . .

@ Gives quantum transition amplitude Asr[{zin}, {Zout }] for classical
spinor networks and twisted geometries on the canonical boundary

@ From this, we extract the effective dynamics and Hamiltonian for
spinor networks as prescribed by a spinfoam model:

< Hamiltonian constraints as diff ops in the z's satisfied by
amplitude Ase[{zin}, {Zout }], expressing inv under certain
deformations of the boundary (diffeo inv?)

Already applied in a few cases with exact results:

Spinfoam cosmology or transition from @ to isotropic v~
© states on 2-vertex graph = modified FRW equations |
(un-improved LQC dynamics) :

@ 3d and 4d BF = flatness constraint as eqn (z|2’) = (z|G|2")
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Spinor Tools for Spinfoam Amplitudes

Just a Simple Model: The 2-vertex Model for Spinfoam Cosmology

SF amplitude @ LO given by evaluation of coh spinnet at I
i W(zi, wi) = ¥yz,wi(I) = ({ewi}{z})
given by Bessel function: W =3, 554y J+1 (det_. 1) [wi])?

@ Hamiltonian constraint as diff operator in the z's:

Ho X0 (2BRESR + Fabf + FgtBRt) —2(E+ N - 1)?

Sum of holonomy ops up to area factors ~ discretization
of LQG Hamiltonian constraint on 2-vertex graph

Isotropic ansatz by requiring inv under U(N): z equal to
w; up to global phase ¢ conjugate to total area A

Reduction to single complex variable z = v/\e'®

with amplitude W(z) o h(2?)/2?

and effective classical Hamiltonian H o A2sin? ¢
Obtain flat A = 0 FRW LQC without matter. ..
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Spinor Tools for Spinfoam Amplitudes

Spinfoams in terms of Spinors: effective Hamiltonian

Compute spinfoam amplitudes for coherent spin network . ..

@ Gives quantum transition amplitude Ase[{zin}, {Zout }| for classical
spinor networks and twisted geometries on the canonical boundary

@ From this, we extract the effective dynamics and Hamiltonian for
spinor networks as prescribed by a spinfoam model:

< Hamiltonian constraints as diff ops in the z's satisfied by
amplitude Ase[{zin}, {Zout }], expressing inv under certain
deformations of the boundary (diffeo inv?)

Exact results possible because of spinor variables and simple
structure of coherent spin network wave-functions!
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Spinor Tools for Spinfoam Amplitudes

Spinfoams in terms of Spinors

And can we express the whole spinfoam amplitudes as a path
integral over spinor space with spinors in the bulk?

Look at SU(2) BF theory as a start . ..
In 3d, Tetrahedra glued together by their triangles

©Q Representation on edges

@ Intertwiners on triangles glued by identity

s y on intertwiner space.

Works the same in 4d: 4-simplices glued by intertwiner I on tetrahedra

Instead of using spin basis, use decomposition of identity in terms of
coherent intertwiners ~~ spinfoam as history of coherent spinnet slices

See it directly at the algebraic level by decomposing 6(g) on a loop

z|z) — 2,
5(g):Z(2j+1)xj(g) — & ):/ ((z|z) —1)d

- o(zlg=112)
2
j C
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Spinor Tools for Spinfoam Amplitudes

Spinfoams in terms of Spinors

And can we express the whole spinfoam amplitudes as a path
integral over spinor space with spinors in the bulk?

Look at SU(2) BF theory as a start . ..
In 3d, Tetrahedra glued together by their triangles

©Q Representation on edges
@ Intertwiners on triangles glued by identity
on intertwiner space.
Works the same in 4d: 4-simplices glued by intertwiner I on tetrahedra

Instead of using spin basis, use decomposition of identity in terms of
coherent intertwiners ~~ spinfoam as history of coherent spinnet slices

See it directly at the algebraic level by decomposing 6(g) on a loop

e<z|g_1|z)

z|z) — 2,
5(g):Z(2j+l)xj(g) — ):/ ((z|z) —1)d

2
2 '
F C
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Spinor Tools for Spinfoam Amplitudes

Spinfoams in terms of Spinors: Exact Evaluations

We obtain as basic vertex amplitudes a coherent version of the {3n/}
symbols. ..~ {2 x 3nz} symbols defined as evaluation of coherent
spinnet at [

{2 x 3nz}r = w{z /[dh ]eZ (250 hL ey |22

Can map [ over SU(2) to [ over spinors:

{2x3nz}{E) = i, (1) = f (] eSel22 10w ) (w4 1w O D12l

@ Fixed points corresponds to twisted geometry

@ Can compute Gaussian integrals exactly

@ Evaluation of Coherent Spinnet are not only semi-classical versions
of the {3nj} symbols but also Generating Functions for the {3nj}'s

< Here modification from v to {E similar to

v +yx — = —y24y°x
fdye - \/l—x Z22n(nl /dye
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Spinor Tools for Spinfoam Amplitudes

Spinfoams in terms of Spinors: a Word on Spinfoam Asymptotics

The generating function (behavior under poles) contain the
information about the asymptotics of spinfoam amplitudes.

But why are those asymptotics important?. ..

For large spins or large spinor norm, Spinfoam amplitudes are
related to the exp or cos of Regge action with modifications

A SF ~Y e iSRegge

Jslz|—o0

~ This provides a geometrical interpretation of spinfoam as
discrete space-time !

At least it works for sure on a single 4-simplex. . .
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Spfnor Tools for Spinfoam Amplitudes

Spinfoams in terms of Spinors: Generating Functions and Dynamics

Thus Coherent SpinNets are Generating functions useful to study
large spin asymptotics and compute {3nj} symbols. ..

But they also have physical interpretation as semi-classical
amplitudes!
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Twistor Networks and Simplicity Constraints

Spinfoams in terms of Twistors: Going beyond SU(2)

To go beyond SU(2) and investigate models like EPRL-FK and the

role of simplicity constraints at the quantum level, have to move
on to bi-sipnors or .. .twistors !

Three (selected) papers with “everything”:
@ Holomorphic Lorentzian Simplicity Constraints
© Twistor Networks and Covariant Twisted Geometries

© Twistorial Structure of LG transtition amplitudes
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Twistor Networks and Simplicity Constraints

Twistor Networks and Spinfoams

We use twistor networks, instead of spinor networks, as classical
phase space for SL(2,C) holonomy & flux.

@ Twistor as left plus right spinors [tY), |uY) on each edge around a
vertex

Define Twistor networks with complex area matching and closure
constraints
Introduce the simplicity constraints and solve them:
tY) = e’ AV |uY) with pure boost AV and Imm angle e/ = ﬁ%
Effectively reduces twistors to spinors. . .

... but with non-trivial embedding
Can quantize the whole thing...and write the EPRL-FK amplitude
as path integrals over twistor space

~» Can also investigate alternative quantization schemes of
simplicity constraints based on this phase space
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Twistor Networks and Simplicity Constraints

An idea that | like. ..

Coarse-graining spin(or) networks and relaxing the closure
constraints. . .

...or why we need to go from spinors to twistors
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Twistor Networks and Simplicity Constraints

Conclusion: “Little” Projects for the Future. ..

In Progress:
@ Large N limit, refinement limit, superposition of N's?
@ More on the asymptotics and geometry of {2 x 3nz} symbols
@ g-deformation, A # 0, hyperbolic discrete geometry
Hopefully:
Exact evaluations of twistor integrals for spinfoam amplitudes?
Flow and fate of simplicity constraints under coarse-graining?

Recursion relations, diff equations and symmetries for
non-topological spinfoams, application to cosmology?

Which twisted geometry for which physical context? Coherent spin
network states for cosmology? for BHs?

Relation to matrix models, Look at dynamics of bounded regions of
SpinNets, a CFT description of LQG boundary dynamics?

Link with twistorial methods used in other approaches to QG?
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