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Introduction

The states and operators of LQG can be developed from
phase spaces [ associated to graphs I

These phase spaces represent the kinematics of gravity, so
we seek to understand them as spatial geometries.

Three such representations are twisted geometries?!,
flat-cell geometries® and singular geometries®.

For gravity we would like a geometry which possesses a
continuous frame field and connection.

To this end we introduce spinning geometries.

L. Freidel and S. Speziale (2010)
2L. Freidel, M. Geiller, and JZ (2012)

Jonathan Ziprick Spinning geometries = Twisted geometries

Pirsa: 13070057 Page 2/98



Pirsa: 13070057

Q Review twisted and flat-cell geometries.
@ Introduce angular momentum variables on edges.

© Reduce the ambiguity in the flat-cell edge shapes.

Q Show that the resulting edge shapes are compatible with
the gluing maps.

@ Discuss the results.

Jonathan Ziprick Spinning geometries = Twisted geometries

Page 3/98



Twisted geometry

@ Composed of polyhedra
‘glued’ together at faces.

@ On each face we have:
Xypesu(2), hyeSU2).

Fluxes on each cell obey a closure relation: ), X; = 0.
Cells are glued along faces using: X oo = —h 1 Xowheo.

This geometry admits a torsionless connection® but is
discontinuous.

3H. M. Haggard, C. Rovelli, W. Wieland and F. Vidotto (2013)

Jonathan Ziprick Spinning geometries = Twisted geometries
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Flat-cell geometry

@ A collection of three-dimensional cells ¢, each
diffeomorphic to a polyhedron.

@ [here exist invertible gluing maps for each face f:

.fc‘("r —"} .f_lc"r"

Jonathan Ziprick Spinning geometries = Twisted geometries
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Flat-cell geometry

@ Each cell possesses a coordinate function:

which defines a flat metric (¢°),, = J,2° - 9, z°.

@ Coordinate functions between cells are related by:
:I'.r(h‘(.‘,.f(.l')) = /!:E(:‘(!J -+ (l,...f)/l,.(‘r. \V(.!' - _}F‘.‘.f.

@ This geometry is isomorphic to a twisted geometry®. It is
continuous but may have torsion.

2L. Freidel, M. Geiller, and JZ (2012)
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Flat-cell geometry

@ Each cell possesses a coordinate function:

which defines a flat metric (¢°),, = J,2¢ - 9, z°.

e Coordinate functions between cells are related by:
:"r(.s'(.f.;(.r)) = /fr__f_f(:“(.r') + Qo ) 1 Vi € _}F‘.‘.x.

@ This geometry is isomorphic to a twisted geometry®. It is
continuous but may have torsion.

2L. Freidel, M. Geiller, and JZ (2012)

Jonathan Ziprick Spinning geometries = Twisted geometries

Pirsa: 13070057 Page 7/98



Pirsa: 13070057

Flat, torsionless spaces

@ T[here are two interesting subclasses of the flat-cell
geometry:
o Regge geometry: torsion vanishes everywhere and the
induced metric on all of the faces is flat.

e Spinning geometry: torsion is non-zero on edges (and
only on edges), and the cell faces are generally curved.

@ The Regge geometry cells are polyhedra, but at this point
the spinning geometry cell shapes are ambiguous.

@ Let us now reduce the ambiguity in the shape of spinning
geometry cells.

Jonathan Ziprick Spinning geometries = Twisted geometries

Page 8/98



Pirsa: 13070057

Angular Momentum

@ One can define fluxes associated to faces:

L [ , .,
e / [:t LdzCl.
2 JOf. . l

@ Fluxes are associated with angular momentum due to
their Poisson algebra.

@ [he Gauss law allows for a new relationship with angular
momentum:

X, = Z JE.

(€df...

e Each link momentum .J; is the angular momentum for a
point particle integrated along the world line (.

Jonathan Ziprick Spinning geometries = Twisted geometries
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Deformation of links

@ A flux can be defined in terms of link momenta: the
choice of face is irrelevant.

@ Any deformation of the links which keeps the link
momenta fixed will not change the fluxes.

@ Each edge of a Regge geometry is the shortest path
between the endpoints.

Jonathan Ziprick Spinning geometries = Twisted geometries
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Deformation of links

@ A flux can be defined in terms of link momenta: the
choice of face is irrelevant.

@ Any deformation of the links which keeps the link
momenta fixed will not change the fluxes.

@ Each edge of a Regge geometry is the shortest path
between the endpoints.

= Let us minimize link lengths while keeping momenta fixed.

Jonathan Ziprick Spinning geometries = Twisted geometries
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Equations of motion

e Consider the action [ = >, I, where:

= /|~""If1-~+w?7' (’ —
JA

e We obtain an equation of
motion for each link:

v ~ "
:('J = & X :f’»'
i ]

Jonathan Ziprick Spinning geometries = Twisted geometries
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Equations of motion

o Consider the action [ = >, I; where:

[{ - /’Zl s + u); ' (.]; -5 /(Z; X Z; )(lh) !
JA = JI

@ We obtain an equation of
motion for each link:

. . .
Zy =W X Zy4.

{!

@ [ he solution is a helix:

Zyp =C+ Now + ry.

Jonathan Ziprick Spinning geometries = Twisted geometries

Pirsa: 13070057 Page 13/98



Analysis of a single link

@ Let us define a helix basis o, = (w. 9. w X 1y).

@ The displacement vector between nodes can be written as:
D =zp — 20 = 2K poo + 2rsin po,.
@ One finds that the link momentum contains two parts:

.] L+S L:._:”XD.

- ) » -
v 2 9. .
b / f;()() ~+ 21 ]\ rj‘].;(’ .

@

$/2, o, = (—sinpoy + cos pos) and:

'+

— COS Y Sl Y,

Jonathan Ziprick Spinning geometries = Twisted geometries
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Flat-cell geometry

@ A collection of three-dimensional cells ¢, each
diffeomorphic to a polyhedron.

@ [here exist invertible gluing maps for each face f:

.fc‘("r “_—} .f_;"r"
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Analysis of a single link

@ Let us define a helix basis o, = (w. 9. w X 19).

@ The displacement vector between nodes can be written as:
D =zp — 20 = 2K poo + 2rsin po,.
@ One finds that the link momentum contains two parts:

.] L+S L:._:”XD.

- ) » - -
N 2 9. N
b / _fY-U() ~+ 21 ]\ rj‘].);(’ .

@

$/2, o, = (—sinpoy + cos pos) and:

+

— COS Y SI Y,

Jonathan Ziprick Spinning geometries = Twisted geometries
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A helix for any (D, S)?

@ We have a map:
(zo.7. N, p.0¢) = (z0. D, S).

@ |s there a helix for any (D, S) data, i.e. can we invert
this map?

Jonathan Ziprick Spinning geometries = Twisted geometries

Pirsa: 13070057 Page 17/98



A helix for any (D, S)?

@ We have a map:
(zo.7. N, p.0¢) = (z0. D, S).

@ |s there a helix for any (D, S) data, i.e. can we invert
this map?

o If we take (D.S) as given, we can find (i, A. ;) in
terms of this data and ».

@ [he problem boils down to solving the equation:

2(/'?. [\',_r\ o) fo 4 20451 p) — S.-D =0,

Jonathan Ziprick Spinning geometries = Twisted geometries
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Many helices for a given (D, S)!

e A typical plot for S- D/|D|® = |S x D|/|D|® = 1.

1=

0.5

I ISYAWAVAYA S
/ I s \,/ Y 15 20

/
Lo

@ We checked numerically for solutions over the range

S x D)

—1000 < =2 < 1000, 0 < 55

|/)|"‘
@ Thereis a helix for any (D. S)!

< 1000,

Jonathan Ziprick Spinning geometries = Twisted geometries
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Analysis over a cell

o Given (D,.S;), we can find a helix for each edge of a
single cell.

@ [here are many choices of (D,. S,) for a given set of
fluxes.

@ Each choice leads to different helices in boundary.

@ Under what conditions for (D;.S;) can we consistently
glue cells together?

Jonathan Ziprick Spinning geometries = Twisted geometries
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Analysis around an edge

@ Consider a single link at the intersection of a number of
cells.

@ Recall the relation between the coordinate functions of
neighbouring cells:

::"f(x(.f_f(_r)) — /1;_5 (z°(r) + @per ) N1, Vi € .}‘T‘_‘.f.
@ Repeatedly using this to go completely around the edge:

H'z(r)H' + AL Vo € (.

Jonathan Ziprick Spinning geometries = Twisted geometries
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A helix again!

@ This equation is solved by
a helix!

@ w is the axis of rotation
defined by H'.

@ [he translation is
Al = KNo'w.

Jonathan Ziprick Spinning geometries = Twisted geometries

Pirsa: 13070057 Page 22/98



A helix again!

@ This equation is solved by
a helix!

@ w is the axis of rotation
defined by H’.

@ [he translation is
Al = KNo'w.

Al Ko'w

Given this restriction, can a closed network of helices can be
constructed for any set of (X, /if)?

Jonathan Ziprick Spinning geometries = Twisted geometries
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A helix again!

@ This equation is solved by
a helix!

@ w is the axis of rotation
defined by H'.

@ [he translation is
Al = KNo'w.

Al Ko'w

Given this restriction, can a closed network of helices can be
constructed for any set of (X, /if)?

Jonathan Ziprick Spinning geometries = Twisted geometries
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Conclusions

Spinning geometries are isomorphic to twisted geometries,
and represent the loop gravity phase space.

They are continuous, and have torsion and curvature
supported on a closed network of helices.

The axes of the helices are defined by the holonomy data.

This is the most general cellular space with vanishing
curvature and torsion outside of edges.

Spinning geometries provide a means to define continuous
(A.e) fields from holonomy-flux data.

This opens a new door to dynamics, allowing us to draw
from the general relativistic equations of motion,

Jonathan Ziprick Spinning geometries = Twisted geometries
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Jonathan Ziprick Spinning geometries = Twisted geometries
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Introduction to Loop Groups Motivation Summary

Loop Groups and Properties

m A Loop Group,LG is the group of maps from the circle S’
into a topological group G.

m A new equivalence relation, the cobordism, is introduced
on a subgroup of this loop group. We denote the Loop
Group with the equivalence relation as Lo G.

m One can describe a Chas-Sullivan type product on the
cobordism.

m The composition o and an associated operator A make the
loop homology into a Batalin Vilkovisky algebra.

Madhavan Venkatesh
Loop Groups and Quantum Gravity
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Introduction to Loop Groups Motivation Summary

Loop Groups and Properties

m A Loop Group,LG is the group of maps from the circle S'
into a topological group G.

m A new equivalence relation, the cobordism, is introduced
on a subgroup of this loop group. We denote the Loop
Group with the equivalence relation as Lo G.

m One can describe a Chas-Sullivan type product on the
cobordism.

m The composition o and an associated operator A make the
loop homology into a Batalin Vilkovisky algebra.

Madhavan Venkatesh
Loop Groups and Quantum Gravity
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Introduction to Loop Groups Motivation Key ( S Summary

The Loop Products

m Vertical Composition

m Horizontal Composition

B =(aon)+(Bon).

m Total Product’

Madhavan Venkatesh
Loop Groups and Quantum Gravity
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Introduction to Loop Groups Motivation

Loop Products and Curvature

m - is the 'holonomy average’ of the two loops given by

~ = Pexp {% (?é hapax3dx? + 96 nabdy"dyb) } .
Ja J 3

m Connection:

Dab = PaPph — PpPg + ‘-"[ab]-

m Proposition:

do = / a® 3,
JOQG

Madhavan Venkatesh
Loop Groups and Quantum Gravity

Summary
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The Loop Products

m Vertical Composition

m Horizontal Composition

B=(aoy)+(307).

m Total Product’
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Introduction to Loop Groups Motivation

Loop Products and Curvature

m - is the 'holonomy average’ of the two loops given by

~ = Pexp {% (?é hapax3dx? + 96 nabdy"dyb) } .
Ja J 3

m Connection:

Dab = PaPph — Pphg + ‘-"[ab]-

m Proposition:

do = / a® 3,
JOQG
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Introduction to Loop Groups Motivation

Loop Products and Curvature

m - is the 'holonomy average’ of the two loops given by

~ = Pexp {% (?é hapax2dx? + 96 nabdy"dyb) } .
Ja J 3

m Connection:

Dab = PaPh — PpPg + ‘-"[a\b]-

m Proposition:

do = / a® 3,
JOQG

Madhavan Venkatesh

Loop Groups and Quantum Gravity
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Introduction to Loop Groups Motivation Summary

Concise, sketchy Proof

m This is proved by defining the inner product on the group
suitably.
(n. .)’> = (1+ A)s(fl ) .)’).

m We have the symplectic form on the loop space, due to the
Kéhler structure of QG as

w (v, )’):./S_;G(u..ﬂ.

m The (1 + A)® is trivial as the Sobolev Space parameter s
takes on the real value 1/2 for the loop space.

Madhavan Venkatesh

Loop Groups and Quantum Gravity
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Introduction to Loop Groups Motivation

Loop Products and Curvature

m - is the 'holonomy average’ of the two loops given by

~ = Pexp {% (?é hapax3dx? + 96 nabdy"dyb) } .
Ja J 3

m Connection:

Dab = PaPph — Pphg + ‘-"[a\b]-

m Proposition:

do = / a® 3,
JOQG
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Introduction to Loop Groups Motivation Summary

Concise, sketchy Proof

m This is proved by defining the inner product on the group
suitably.
(n. .)’> = (1+ A)s(u ) .)’).

m We have the symplectic form on the loop space, due to the
Kéhler structure of QG as

m The (1 + A)® is trivial as the Sobolev Space parameter s
takes on the real value 1/2 for the loop space.
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Introduction to Loop Groups Motivation
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Introduction to Loop Groups Motivation Key ( SN E

Link with GR

m Kahler structure of the Loop space and Ricci flathess
indicate Calabi-Yau.

m By the Campbell-Magaard embedding theorem, one can
embed n-dimensional spacetime into an n+1 dimensional
Ricci-flat manifold.

Madhavan Venkatesh
Loop Groups and Quantum Gravity
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Introduction to Loop Groups Motivation Key ( Summary

Link with QM

m Loop Groups can be thought of as groups of operators on
Hilbert Space. (See Pressley-Segal )

m Pllicker embedding.

Madhavan Venkatesh
Loop Groups and Quantum Gravity
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Introduction to Loop Groups Motivation Summary

Some definitions (- See Gambini and Pullin)

m The path variational :
da = of 0 dU 0 0. .,
m The Loop Derivative:
Dab (0§) = Dady (X) — Ipda (X) + [0 (X) .6 (X)]
m The Mandelstam Derivative:
Dac (0§) = dar (X) + i0a (X) 0 (X)

m [he connection functional :

jﬁ' Adx25 (y — X) Dap (aX) & (X)

Ay
NHh@ (X) a ]

Madhavan Venkatesh
Loop Groups and Quantum Gravity
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Introduction to Loop Groups Motivation Key Observations Summary

Action

m Due to the proof of the Proposition, one can write an
action:

S(a.9) = [{(a® )+ (a9} vadx

m Following, the action can be varied, with respect to the
loops, in order to obtain the equations of motion.

Madhavan Venkatesh
Loop Groups and Quantum Gravity
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Introduction to Loop Groups Motivation Key Observations Summary

Concise, sketchy Proof

m This is proved by defining the inner product on the group
suitably.
(n. .)’> =(1+ A)s(u ) .)’).

m We have the symplectic form on the loop space, due to the
Kéhler structure of QG as

m The (1 + A)® is trivial as the Sobolev Space parameter s
takes on the real value 1/2 for the loop space.
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Introduction to Loop Groups Motivation Key Observations Summary

Action

m Due to the proof of the Proposition, one can write an
action:

S(a.9) = [{(a® )+ (a9} vadx

m Following, the action can be varied, with respect to the
loops, in order to obtain the equations of motion.
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Introduction to Loop Groups Motivation Key ( SN E

Dynamics

m By varying the action and making use of the loop
techniques, we have the ‘'momenta’:

)}

Madhavan Venkatesh
Loop Groups and Quantum Gravity
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Introduction to Loop Groups Motivation Key ( Summary
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Introduction to Loop Groups Motivation Key Observations

m Now, we define a quantity called 'velocity” as:

Juffor

m Following this, we are enabled to define an ‘energy
function in terms of the momenta and velocity:

Q — / [ Ok
JQG

Madhavan Venkatesh
Loop Groups and Quantum Gravity
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Introduction to Loop Groups Motivation Key S Summary

The Loop Products

m Vertical Composition

m Horizontal Composition

B=(aoy)+(307).

m Total Product’
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Introduction to Loop Groups Motivation Key Observations

m Now, we define a quantity called 'velocity” as:

fuffos

m Following this, we are enabled to define an ‘energy’
function in terms of the momenta and velocity:

Q —— / [ Ok
JQG
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Introduction to Loop Groups

Outline

K] Key Observations
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Introduction to Loop Groups Motivation Key Observations Summary

Higher Dimensions

m Why?

m Definition of the Energy function.
m It has been proved that the 'momenta’ and 'velocity behave
as cobordant loops in dimension 5 and above.

m So, we can write down curvature in higher dimensions in
terms of the ‘'momenta’ and 'velocity’ in ordinary
dimensions.

m For example

Madhavan Venkatesh
Loop Groups and Quantum Gravity
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m Now, we define a quantity called 'velocity” as:

Juffor

m Following this, we are enabled to define an ‘energy’
function in terms of the momenta and velocity:

Q — / [ Ok
JQG
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Introduction to Loop Groups Motivation Key Observations Summary

Higher Dimensions

m Why?

m Definition of the Energy function.
m It has been proved that the 'momenta’ and 'velocity behave
as cobordant loops in dimension 5 and above.

m So, we can write down curvature in higher dimensions in
terms of the ‘'momenta’ and 'velocity’ in ordinary
dimensions.

m For example

Madhavan Venkatesh
Loop Groups and Quantum Gravity
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Introduction to Loop Groups Motivation Key Observations Summary

Kahler (Calabi-Yau) Structure of the Loop Group

m The Loop Space QG has a manifest Kahler Structure. This
combined with Ricci flatness leads to Calabi-Yau
properties.

m The scalar curvature on it is given by:

v v
R T 4 7
— mw T me .
. .

m And the 'averaged scalar curvature’:

ﬁ?—/ﬁ'*:‘:.

Madhavan Venkatesh
Loop Groups and Quantum Gravity
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Introduction to Loop Groups Motivation Key Observations Summary

Calabi-Yau

m The Calabi energy is given by:

' A\ 2
C:.QG(H—F:’) w.

m This corresponds to the energy operator, that the Loop
Group is equipped with, given by:

Madhavan Venkatesh
Loop Groups and Quantum Gravity
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Introduction to Loop Groups Key Observations Summary

Quantizability and the Projective Hilbert Space

m The connection is quantization compatible.

m A holomorphic embedding can be constructed from the
Loop Space to the Projective Hilbert Space:

m: QG — P(H).

m For a Hilbert Space H with polarization H = H, ¢ H_.
m Pllicker embedding of the resultant Grassmannian.
m The Pllcker co-ordinates define a holomorphic embedding.

m Cobordism invariant knots can be constructed.(See
Turaev)

m This is necessary to make void the effect of the group
equivalence relation of the loops (ie. cobordism).

Madhavan Venkatesh
Loop Groups and Quantum Gravity

Pirsa: 13070057 Page 57/98



Introduction to Loop Groups Motivation Key Observations Summary

Quantizability and the Projective Hilbert Space

m The connection is quantization compatible.

m A holomorphic embedding can be constructed from the
Loop Space to the Projective Hilbert Space:

m: QG — P(H).

m For a Hilbert Space H with polarization H = H, ¢ H_.
m Pllicker embedding of the resultant Grassmannian.
m The Pllcker co-ordinates define a holomorphic embedding.

m Cobordism invariant knots can be constructed.(See
Turaev)

m This is necessary to make void the effect of the group
equivalence relation of the loops (ie. cobordism).
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Introduction to Loop Groups Motivation

Main Messages

m LGQG Loop Groups as a means for Quantum Gravity

m Consistency of quantum with classical Prospect for
Quantization: Berezin-Toeplitz

m Basis An Overcomplete basis can be sidestepped.
m Possible Questions

m |s the classical loop theory really GR?
m Uniqueness in cobordance between loops.

Madhavan Venkatesh
Loop Groups and Quantum Gravity
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Introduction to Loop Groups Motivation Key Observations

Thank You for your Attention.
PS: The Fredholm index is cobordism invariant!!!

Madhavan Venkatesh
Loop Groups and Quantum Gravity
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Motivations: Why deforming the phase space of Loop Quantum
Gravity?

o M.D and F. Girelli: ¢4,(su(2)) spinnetworks = quantization of
hyperbolic discrete geometries. [Phys.Rev.D.87.121502(R)]

@ Poisson Lie group symmetries = classical analogues of
quantum group symmetries.

J

How to deform the phase space of Loop Quantum Gravity?

@ Symplectic structure constructed on
SL(2,C) =~ SU(2) x SB(2.C) parametrized by n € R.

= Symmetries are SU(2) Poisson-Lie group symmetries,

& after quantization a {{,(su(2)) gauge symmetry.

Maité Dupuis Deformed Phase Space for Hyperbolic Surfaces
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€ Canonical phase space for LQG

© Deformed phase space

© Constraints and geometrical insights

Maité Dupuis Deformed Phase Space for Hyperbolic Surfaces

Pirsa: 13070057 Page 64/98



Canonical phase space for LQG

Loop Quantum Gravity

o For a given graph I with E edges, Hr = L>(SU(2)E.dfg), is
the quantization of the classical space [T*SU(2)]E.

e For a given edge, e, phase space: 7 'SU/(2) =~ S < 51(2)
parametrized by (ge. Xe = Xe - 7).

® {gu.gxi} =0
(X1, XI} = el XK,
(X" g} =—0'gy.

e Symmetries:
e — hs(e)gehg((la)- /?5(9). hr(e) S :‘NU(Q)
e Constraints:
o Gauss constraint, C = Z,N:l X;: implements the SU(2)
invariance at each vertex.
e Vectorial and Hamiltonian constraints... Or in (24+1)D gravity:
flatness constraint.

Maité Dupuis Deformed Phase Space for Hyperbolic Surfaces
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‘ ) I
Deformed phase space

An alternative Hamiltonian formulation?

We modify
e the phase space

T*SU(2) — SL(2,0C),
e the nature of the symmetries

SU(2) SU(2)
Standard transformations Poisson Lie group symmetries.
e new Gauss constraint

@ Vectorial and Hamiltonian constraints 77 For (2+1)D
gravity= new flatness constraint...

— gravity with a cosmological constant?

Maité Dupuis Deformed Phase Space for Hyperbolic Surfaces
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Deformed phase space

The deformed phase space

We focus on one oriented edge, e, 2o
of a network. /Ny

@ Phase space = S1.(2.C) ~ SU(2) » HI’,(EA.H(S'Q‘A)
e lwasawa decomposition: G = (v with v € SU(2),
( € SB(2,C),

—3 p
”:(“f K )EH['(Q)_ {:(\ \(31){HH(Q.C).A{IRL.Z%(.

0\ Z

@ Non trivial quadratic Poisson structure for G € SL(2.C)
(Marmo, Simoni, Stern, '93]:
—rG1Go—G1Gor! with Gy = G2, Gy =146, r = r(w).
o Deformation of the Poisson brackets on T*(SU(2)) for LQG:
ko —0in ( = e"X'Ti, r(n).
o Switching orientation of the edge: G~% = (~1~1
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Deformed phase space

The Poisson-Lie group symmetries

@ Rotations by SU(2) group elements:

_ . ( () = v, (/1
G:HI—VLGVRlz- for Vi { &

u —

v'u
@ Generator of a left SU(2) rotation,

v =T+i-d=T+i(V—3t(V)),

i.e. SU(2) rotations
-1, (V”'i) oM = —,\_z{h‘_lll‘( Vi), (},  generated by the Poisson
,1. l‘ - - 3y f :
du=—N"2{x" (VM) u},  brackets with

the Hermitian matrix (/1
e Translations by multiplication by triangular matrices

G — mGmg";

translations generated by Poisson brackets with wu.

Maité Dupuis Deformed Phase Space for Hyperbolic Surfaces

Page 68/98



Pirsa: 13070057

Deformed pha.sel space

The Poisson-Lie group symmetries

e Rotations by SU(2) group elements:

_ . ( () = v, (/1
G:HI—VLGVRlz- for Vi { .

u —

viu
@ Generator of a left SU(2) rotation,

v =T+i-d=T+i(V - 3t(V)),

i.e. SU(2) rotations
-1, (V”';) )M = —,\_2{1.‘_111‘( Vi), 0}, generated by the Poisson
A I p— . " : )
du=—N"2{x" (VM) u}.  brackets with

the Hermitian matrix (¢1
e Translations by multiplication by triangular matrices

G — mGmg";

translations generated by Poisson brackets with wu.
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Constraints and geometrical insights

The Gauss constraint

constraints

Gyr =1y =1 }  first-class

G_=h-Iy=1

Geometrical interpretation (3D Euclidean gravity with A < 0)
@ Cartan decomposition,
P B = cosh(b)I — sinh(b)b - & € SL(2.C).
(u= (Bh™")u. with { he SU).
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Constraints and geometrical insights

The Gauss constraint and the hyperbolic cosine law

@ N=3, Gauss law, B-1 y
'{

(10503 =1 Ehl_lh,_,_lth:hlihl ‘hythit)

B1B;' = HB;
83/:’83H_i = BlH_l
BB ! = ByH
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Constraints and geometrical insights

e Hyperbolic triangle, totally specified by three angles.

e 3 different ways ((1), (2), (3)) to write the Gauss law — 3
angles; e.g. using (1):

BB, = HB; = tr(B1B; 1 (BB 1)) = tr(Bs(Bs3)")

cosh(2by) cosh(2b,) — sinh(2b1)sinh(2bg)131 :

cosh(2b3).
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Constraints and geometrical insights

e Hyperbolic triangle, totally specified by three angles.

e 3 different ways ((1), (2), (3)) to write the Gauss law — 3
angles; e.g. using (1):

BB, = HB; = tr(B1B; 1 (BB; 1)) = tr(Bs(Bs3)")

cosh(2by) cosh(2b,) — sinh(2b1)sinh(2bg)131 :

cosh(2b3).
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Constraints and geomeltric.aj insights
The flatness constraint

@ A proposition: uy...uy = I : first-class constraint and SU(2)
gauge invariant,

@ Gluing of triangles
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Constraints and geometrical insights

Conclusion

Some preliminary results,
@ New phase space parametrized by » (related to A),
@ Propositions for the constraints,

e Some geometrical insights; characterization of some
hyperbolic geometries.

To explore further,
e Continuum limit,
@ Gauss + flatness constraints: solutions for a given topology?,
Spinor variables,

Quantization,

To compare with the combinatorial quantization formalism,
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Spinor approach to LQG

The so-called spinor approach is a way to treat Loop Quantum
Gravity with gauge group SU(2) using tensor operators, in particular
spinor ones, either explicitly or implicitly through the
Jordan-Schwinger construction. (cf. Livine plenary talk)
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Spinor approach to LQG

The so-called spinor approach is a way to treat Loop Quantum
Gravity with gauge group SU(2) using tensor operators, in particular
spinor ones, either explicitly or implicitly through the
Jordan-Schwinger construction. (cf. Livine plenary talk)

Some advantages of this approach:

o Closed algebra for the generators of observables (Freidel, Girelli,
Livine)
e Construction of Hamiltonian constraint in 3D (Bonzom, Freidel)

e Treatment of LQG with cosmological constant, i.e. gauge group
Uy(SU(2)) (Dupuis, Girelli)
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Spinor approach to LQG

The Lie algebra su(2) has generators

(Jo Je] = £Jy, [Ty, J_] = 2J,.
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Spinor approach to LQG

The Lie algebra su(2) has generators
Wi b= S W A | =N

They can be rewritten in the Schwinger—Jordan representation
introducing two uncoupled harmonic oscillators

a,a'] = b, = 1,

so that

1
Jp=a'b, J_=bla, J,= ﬁ(aTa — b'b)
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Spinor approach to LQG

Considering a single intertwiner with NV legs, one can introduce a
couple of harmonic oscillator (a;, b;) for the leg (7). All of the
observables can be generated by the operators

Ei; = ala; + blb;;

the diagonal ones F; = F;; give the area associated to the leg (7),
with the total area given by

The action of E;; on the intertwiner is to take quanta of area from
leg (7) to leg (), without changing the total area. They generate
the closed algebra u(NV).
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s there a spinor approach in the (3D)
Lorentzian case?
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Representations of SL(2, R)

The gauge group for 3D Lorentzian LQG is the non-compact
SL(2,IR). Its Lie algebra is generated by

[JOJ J:i:] — :I:J:i:a [J-l-a J—] = _2']01

with Casimir

Q=J3-J=-J§+3(J_Jy + J4.J-).
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Representations of SL(2, R)

The gauge group for 3D Lorentzian LQG is the non-compact
SL(2,R). Its Lie algebra is generated by

[JOJ J:i:] — :I:le:a [J-l-a J—] = _2']01

with Casimir

Q=J3-T=-J§+3(J_Jy + J4.J-).

It acts on its representations as

Jol|jem) =m|jem)
Ji|jem) = Ci(j,m)|jem 1)
Qljem) =—j(+1)|jem)

with Cy (j,m) = /= Fm)(j £ m + 1).
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Representations of SL(2, R)

The irreducible representations are classified as
e Discrete positive (negative) series 'D;.t:
(= —%,0, %, ... j=¢€(mod.1) m==x(j41),x(j+2),...
o Continuous series C7:
jJEC-Z/2 €=0,5 me€e+7Z
e Finite dimensional series V,:

7:0,%,1,_“ vy=c¢e(mod.1) |u| <7~
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Representations of SL(2, R)

The irreducible representations are classified as
e Discrete positive (negative) series 'D;.t:
= —%,0, %, ... j=e€e(mod.1) m==x(j+41),£(+2),...
o Continuous series C7:
jJEC-Z/2 €=0,5 me€e+7Z
e Finite dimensional series V,:
v=0,5,1,... y=¢e(mod.1) |u|<7y

Spin networks only carry the ones appearing in the Plancherel

decomposition, i.e. D;-t with 7 > 0 and Cj with j = —% +is, s > 0,

which are unitary.
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Tensor operators

Tensor operators are a particular type of operators acting between
two (possibily different) representations, which transform as
covectors in a finite-dimensional representation. A rank ~y irreducible
tensor operator T transforms as covectors in V, (which is
non-unitary), and its components satisfy

[Jo, Tl =T, [Je,T)]=Cs(v,1) T 5y, |l <.
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Tensor operators

Tensor operators are a particular type of operators acting between
two (possibily different) representations, which transform as
covectors in a finite-dimensional representation. A rank ~y irreducible
tensor operator T transforms as covectors in V, (which is
non-unitary), and its components satisfy

[Jo, Tl = T, [Je,T)]=Cs(v,1) T 5y, |l <.
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Tensor operators

Tensor operators are a particular type of operators acting between
two (possibily different) representations, which transform as
covectors in a finite-dimensional representation. A rank ~y irreducible
tensor operator T transforms as covectors in V, (which is
non-unitary), and its components satisfy

[Jo, Tl =T, [Je,T)]=Cs(v,1) T 5y, |l <.

The Lie algebra generators form a rank 1 tensor operator (vector
operator)

Ty = Jo, ﬂfh%g.

Moreover, observables in LQG are in 1-to-1 correspondence with
(hermitian) rank O tensor operators (scalar operators).
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Tensor operators

Two tensor operators can be combined to get another one using the

Clebsch—Gordan coefficients of V., ® V.,,, which are the same as the
SU(2) ones. Explicitly, the quantity

> (v pln vz po) TRTY

1,42

is the p-th component of a rank ~y tensor operator.
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Tensor operators

Two tensor operators can be combined to get another one using the
Clebsch—Gordan coefficients of V., ® V,,, which are the same as the
SU(2) ones. Explicitly, the quantity

> (v pln vz po) TRT
1,42

is the u-th component of a rank ~y tensor operator.

In the spinor approach to LQG, we look for two % operators (spinor

operators) which can be combined to construct the J operators. For
SU(2) this is achieved through the Jordan—Schwinger representation.
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Tensor operators

Two tensor operators can be combined to get another one using the
Clebsch—Gordan coefficients of V,, ® V,,, which are the same as the
SU(2) ones. Explicitly, the quantity

> (sl vz po) THRT
1,42

is the p-th component of a rank ~y tensor operator.

In the spinor approach to LQG, we look for two % operators (spinor

operators) which can be combined to construct the J operators. For
SU(2) this is achieved through the Jordan—Schwinger representation.
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Tensor operators

Two tensor operators can be combined to get another one using the
Clebsch—Gordan coefficients of V,, ® V,,, which are the same as the
SU(2) ones. Explicitly, the quantity

> (sl vz po) TRT
1,42

is the pu-th component of a rank ~y tensor operator.

In the spinor approach to LQG, we look for two % operators (spinor

operators) which can be combined to construct the J operators. For
SU(2) this is achieved through the Jordan—Schwinger representation.

For SL(2,R), one can construct a Jordan—Schwinger representation
for both the discrete series (Schwinger 1952), but until now an
analogous construction for the continuous series was unknown. We
will fill this gap with the aid of the Wigner—Eckart theorem.
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Wigner—Eckart theorem

Tensor operators have particularly simple matrix elements. For the
continuous series, one can prove that, as long as j & 7Z/2, the matrix
elements of a tensor operator TJ are given by

(7'’ m/|T|jem) = B(j'e' m'|ypjem) (5 I T7||j €),

where (j''||T7||j €) is a quantity which does not depend on m, m’
and p.

B(j" e’ m!|y ujem) is the inverse Clebsch—Gordan coefficient of the
coupling V., ® C¢, which satisfy the selection rules

j—v<ji<ji+y, m=m+p.

Remark: half integral operators always take us out of the Plancherel
decomposition.
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Spinor approach for the continuous series

Using the Wigner—Eckart theorem, we can prove that the generators
can be constructed, in the continuous series, as

Jy=A"B, J_=ABT, Jo=1(ATA+BB"),

[A,AT]=[B,B"] =1.
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Spinor approach for the continuous series

Using the Wigner—Eckart theorem, we can prove that the generators
can be constructed, in the continuous series, as

Jy=A"B, J_=AB', Jo=1(ATA+BB"),
[A,AT]=[B,B"] =1.

Observables are generated by the scalar operators

1 il

which incidentally still form a u(/V) algebra. The same is true if we
also include the discrete series in the picture.
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Further points to investigate:

e First-order polynomials in the E;; can be observables in the
SU(2) case, while in the Lorentzian case they must be at least
second order. Why?

e Can the Hamiltonian constraint be implemented in 3D
Lorentzian LQG with the spinor approach?
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