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Motivation

@ The usual approaches of phenomenology of QG, including
noncommutative field theories or DSR have always until now
explicitly broken Lorentz invariance:

e in dispersion relation; or
e In addition rule for momenta
@ Is it possible to have in 3+1 dimensions a (non-local) deformation
preserving full Lorentz Invariance, as in 2+1 QG?
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Review of Relative Locality

@ Relative Locality is postulated as a limit of QG in which & — 0 and

Gy — 0, but their ratio \/Ciw — mp is fixed.

@ Fundamental measurements are those of momenta and energies
of particles, so it is natural to describe physics in momentum

space, which does not have to be a priori flat.
@ Take momentum space as a manifold. Have to define a notion of

composition of momenta
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Action of RL

The action for a point particle in Relative Locality is given by
S = Z/ds xfj’p,, + N (02 )) Zz"

Equations of motion are
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Lorentz Symmetry in RL and deSitter

We want to construct a momentum manifold M equipped with
@ metric g
@ additionrule & : M x M — M
@ action of Lorentz group p—A(p), A € SO(1.3) preserving g and &

@ ga(p)(dpA(X). dpA(Y)) = gp(X. Y). Ap & q) = N(p) & A(Q)
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Lorentz Symmetry in RL and deSitter

We want to construct a momentum manifold M equipped with
@ metric g
@ additionrule & : M x M — M
@ action of Lorentz group p— A(p), A € SO(1.3) preserving g and &

@ ga(p)(dp\(X). dpA(Y)) = gu(X. Y). Alp < q) = A(p) = A(Q)
The second condition excludes ~-Poincaré, in which we have

ANp®q) = A(p)EN,(q)

with A}, depending on p.
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Lorentz Symmetry in RL and deSitter

We want to construct a momentum manifold M equipped with
@ metric g
@ additionrule & : M x M — M
@ action of Lorentz group p— A(p), A € SO(1.3) preserving g and &

@ ga(p)(dpA(X). dpA(Y)) = go(X. Y). Ap < q) = A(p) = A(Q)
The second condition excludes ~-Poincaré, in which we have

AP+ q) = AN(p)5A,(q)

with A}, depending on p.
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Finding the manifold M

@ The compatibility condition for addition can be written as
ALA™" = La(p)

@ Let / be the identity of the addition <, then A(/) = 1.

@ Consider the group of all left multiplications and their inverses
L={Ly Ly p € M}.

@ Also consider the subgroup of £ which leaves the identity invariant
G={Le L|L(1)=1}. This group is left invariant by the adjoint
action of the Lorentz group AGA~' = G.
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Finding the manifold M

@ The compatibility condition for addition can be written as
ALA™" = Lap)

@ Let / be the identity of the addition <, then A(/) = 1.

@ Consider the group of all left multiplications and their inverses
L={Lg Ly p e M}

@ Also consider the subgroup of £ which leaves the identity invariant
G=1{Le L|L(1)=1}. This group is left invariant by the adjoint
action of the Lorentz group AGA~' = G.

@ The manifold M = L/G

The simplest solution is homogenous with G = SO(1.3), £ = SO(1.4).
hence M = SO(1.4)/SO(1.3), which is the de Sitter space.
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Constructing the addition rule

Let us work in embedding coordinates —PZ + P? + P5 + P35 + P? = 1.
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Constructing the addition rule

Let us work in embedding coordinates —PZ + P? + P5 + P35 + P? = 1.

@ We know that Lp € SO(1.4). Requiring Lorentz invariance tells us
that Lp has to be a tensor that depends only on P4 and /4 = 0%

(Lp)& = 08 + aPaP® + blal® + cPal® + diyPP.

where a. b. ¢ and d must be functions of the invariants P- P, | - |
and P - [.
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Constructing the addition rule

Let us work in embedding coordinates —PZ + P? + P5 + P35 + P? = 1.

@ We know that Lp € SO(1.4). Requiring Lorentz invariance tells us
that Lp has to be a tensor that depends only on P4 and /4 = 0%

(Lp)& = 08 + aPaP® + blal® + cPal® + diyPP.

where a. b. ¢ and d must be functions of the invariants P- P, | - |
and P - /.

@ We can solve this to get

(P 0)4 =2P,Q4 — P- Q.
Qs +2PsQs — P-Q

(P'5'Q),u :O/f+Pl‘ 1+ P,
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Properties of the addition

e Can show that P, = coshmand P,P" = —sinh? m.
(P & Q)4 = cosh mp cosh mqg + sinh mp sinh mqg cosh n."

¢ - rapidity of boost needed for changing rest frames from P to Q.
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Properties of the addition

@ Can show that P, = coshmand P,P" = —sinh? m.

(P & Q)4 = cosh mp cosh mqg + sinh mp sinh mg cosh n."

¢ - rapidity of boost needed for changing rest frames from P to Q.
o Rewrite addition: (P& Q), = Q, + P, — P, (%, + 1%, ) @

e For collinear vectors (n,n" = —1) we have

sinh an, ¢ sinh bn, = sinh (a+ b) n,
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@ Can show that P, = coshm and P, P** = — sinh® m.

(P& Q)4 = cosh mp cosh mq + sinh mp sinh mq cosh 6.™

¢ - rapidity of boost needed for changing rest frames from P to Q.
® Rewrite addition: (P& Q) = Qu + P — P (125 + 25 ) @
e For collinear vectors (n,n" = —1) we have

sinh an, & sinh bn,, = sinh (a+ b) n,

o =(P= Q)= (=P)= (=Q), so unlike group inverse

Snyder Momantum Space in RL
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Properties of the addition

e Can show that P, = coshmand P,P" = — sinh? m.

(P & Q)4 = cosh mp cosh mqg + sinh mp sinh mg cosh n."

¢ - rapidity of boost needed for changing rest frames from P to Q.
o Rewrite addition: (P & Q), = Q, + P, — P, (%, + 1%, ) @

e For collinear vectors (n,n" = —1) we have
sinh an,, & sinh bn, = sinh(a+ b)n,

o &(P& Q)= (=P)s (2Q), so unlike group inverse
e Non-associative - related to curvature of de Sitter
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Properties of the addition

@ Can show that P, = coshmand P,P" = — sinh® m.

(P & Q)4 = cosh mp cosh mqg + sinh mp sinh mg cosh n."

¢ - rapidity of boost needed for changing rest frames from P to Q.
o Rewrite addition: (P & Q), = Q, + P, — P, (%, + 1%, ) @

e For collinear vectors (n,n" = —1) we have
sinh an, ¢ sinh bn, = sinh (a+ b) n,
o =(P% Q) =(=P) & (2Q), so unlike group inverse

e Non-associative - related to curvature of de Sitter
9 L,;1 — [~ p but F?P1 + R-p

A.Banburski, L.Freidel (Perimeter Institute) Snyder Momentum Space in RL

Page 25/126



Properties of the addition

@ Can show that P, = coshmand P,P" = —sinh? m.

(P & Q)4 = cosh mp cosh mqg + sinh mp sinh mg cosh n."

¢ - rapidity of boost needed for changing rest frames from P to Q.
o Rewrite addition: (P& Q), = Q, + P, — P, (%, + 1%, ) @

e For collinear vectors (n,n" = —1) we have
sinh an,, & sinh bn, = sinh(a+ b)n,

(P& Q) = (2P) & (2Q), so unlike group inverse
Non-associative - related to curvature of de Sitter

L,;1 — L-p but 9,51 £ R-p

In limit of small momenta, reduces to addition on Minkowski space
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Geometric understanding of the addition

One can also show that P& Q = exppo U,’;, o exp[1 Q.

- P@Q
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Geometric understanding of the addition

One can also show that P& Q = exppo U,’;, 0 exp[1 Q.

- P@Q
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Emergence of Snyder spacetime

@ Can change to 4d coordinates by using frame fields €,(p) = 0/ Pa
@ Convenient to work in P, = p,, with metric g = """ + p'p"” /P2
@ Using {p,. X"} = 0" and XA = e/lx we get
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Emergence of Snyder spacetime

@ Can change to 4d coordinates by using frame fields €,(p) = 0/ Pa
@ Convenient to work in P, = p,, with metric g = """ + p'p" /P2
@ Using {p,. X"} = o" and XA = e/lx" we get

{Pa. X8} =08 — PaPB. {XA X5} = S48

classical version of CRs of Snyder quantum spacetime: to include
minimal length scale, while preserving Lorentz invariance,

" 1 ) o)
promote x/ to a hermitian operator x/' = it (P4 ap, — P ,‘,P‘;)
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Emergence of Snyder spacetime

@ Can change to 4d coordinates by using frame fields €,(p) = 0/ P
@ Convenient to work in P, = p,, with metric g = " + p''p"” /P2
@ Using {p,. X"} = " and XA = e/lx we get

{Pa. X8} =08 — PaPB. {XA X5} = S4B

classical version of CRs of Snyder quantum spacetime: to include
minimal length scale, while preserving Lorentz invariance,
promote x/ to a hermitian operator x/* = it (P4 5 — P ,‘,",;4)
1
@ In RL framework can get same Poisson brackets for interaction
coordinates z if we consider tree processes of the form

K=0>_Q)sP.
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Loop processes

When we consider loop processes in RL with this framework, it seems

Impossible to avoid "x-dependence". This is due to the curvature of the
momentum space.

Fal

il + i k” {Uk} +Tmm” {U,’n} = Xj A{Uk} 10— HU" ~ curvature
‘ loop
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Loop processes

When we consider loop processes in RL with this framework, it seems

iImpossible to avoid "x-dependence”. This is due to the curvature of the
momentum space.

M+ ik {Uk} +TmMm” {U,’ny = X} 4 [Uk} 1 —]] U ~ curvature
. loop

Because every loop depends on specific x, we cannot universally
synchronize more than 2 clocks in a single process.
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Loop processes

When we consider loop processes in RL with this framework, it seems

impossible to avoid "x-dependence". This is due to the curvature of the
momentum space.

M+ 7K {Uk} +TmMm” {U,’ny = X} 4 [Uk} 1 —]] U ~ curvature
. loop

Because every loop depends on specific x, we cannot universally
synchronize more than 2 clocks in a single process.
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Summary

@ We have constructed the first example of 3+1 defomration of
Relativity preserving full Lorentz invariance.

@ [t turnes out to be related to the first ever studied quantum
spacetime - Snyder.

@ This provides a new (hopefully fruitful) model for QG
phenomenology.
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Summary

@ We have constructed the first example of 3+1 defomration of
Relativity preserving full Lorentz invariance.

@ [t turnes out to be related to the first ever studied quantum
spacetime - Snyder.

@ This provides a new (hopefully fruitful) model for QG
phenomenology.

@ Qutlook

e Understand the x-dependence and find more phenomenological
predictions
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Summary

@ We have constructed the first example of 3+1 defomration of
Relativity preserving full Lorentz invariance.

@ [t turnes out to be related to the first ever studied quantum
spacetime - Snyder.

@ This provides a new (hopefully fruitful) model for QG
phenomenology.

@ QOutlook

e Understand the x-dependence and find more phenomenological
predictions
e |s this a unique construction?
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Introduction

Motivation

e Relative locality was originally formulated in the “classical

non eravitational™ limit:

h.GN — 0 keeping my, = /h/GN constant

e First step towards “turning h back on”
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Introduction

Motivation
e Relative locality was originally formulated in the “classical

non eravitational™ limit:

h.GN — 0 keeping my, = \/h/GN constant

e First step towards “turning h back on”

Set-up
e Nomentum space is a non-linear manifold M
@ Spacetime emerges as the cotangent planes 77 M to points in momentum
space — Trivial geometry
Phase space is the cotangent bundle 7™ M
Spacetime is no longer absolute. each observer constructs their own

spacetime as momentim dependent slices of phase space
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Combination of Momenta,

To describe interactions we need a method for combining momenta. Define a
rule, &, given by

S Mx M- M
(p.q)— pBq

(1)
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Significance of Combination Rule

We can use the combination rule to define a connection on momentuim space

Jd J 7
-y
AP g,

e Clovariant derivatives are defined in terms of this connection

e In general this connection differs from the standard metric compatible one
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Significance of Combination Rule
We can use the combination rule to define a connection on momentuim space

[ 77 (0))

P

e Clovariant derivatives are defined in terms of this connection
@ In general this connection differs from the standard metric compatible one

[t turns out that the torsion measures the failure of the combination rule to
cotnLnite

I (0) = I'I",”"{H) - PpEq—qbp),

Trevor Rempel QFT in Curved Momentum Space
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Defining Mass

[t is assumed that the metric on momentum. ¢, (p). is known. Given a path
v (7) connecting points pg. pp in momentum space. the distance between these

points 1s

d~,, d~,
L dr

Dy (po-p1) AT dr
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Defining Mass

[t is assumed that the metric on momentum. ¢, (p). is known. Given a path
v (7) connecting points pg. pp in momentum space. the distance between these

points 1s

d~,, d~,
L (/T
T l/i'

@ A ccodesic is a curve which extremizes this distance
o If 7 is a geodesic we write Do (po.p1) = D(po.py)

Given a particle with momentum p. we define its mass to be the geodesic

distance from the origin:

‘)

D?(p.0) = D*(p)
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Modified Feynman Rules

Rule 4)  Inteerate over all momenta
e Introduce a measure on momentum space — dpu(p).

@ Define a delta function. o(p. q). which is compatible with du(p):

/://f{/:]ritp. q)f(p) = flq)

Rule 5)  Syvmmnetry Factor
e Requires no modification
Rule 1)  Factor associated with the propagator
e Propagator has a single simple pole when a particle goes on shell which

\ o ) |
SHe eSS

m* — /):l/:) - (9)
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Modified Feynman Rules

Rule 2)  Factor associated with external point
9 Hc‘qllil‘('s no modification
Rule 3)  Factor associated with vertex

e C'ombination rule & is not associative or commutative so p & g & b is
ambiguous

e Factor we write down should reflect statistics of the particles

@ Assume scalar fields still ulu'.\‘ Bose statistics Vertex factor should be
svimetric on interchange of momentum labels

e We denote the vertex factor l)_\'. ---_r/]'_(fﬁ.rj. k). where

l . : :
F(p.q. k) ('lr)[p_‘ (gEB k) +o(p.sShEBq))+0(qg.5
)

MNg.as(kEp))+ok.s(pEq))
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Momentum Space Action

The generating functional for this theory can be written as

- (f - . - ) ) A
Z(J) xexp | —- { li(q) | dp(k)F(p.q.k)- _ :
X l)( 1 /i/!(/!)./r/r q ‘/r/f( D.q n,/(;:)h./[r;)h./(/.-})

[ o gy =1
X (“\'[)(.) /r//![;;J./[/J}(/)'[/;J 4 m') J( ~/,-])

[nserting a path integral over the field 2(p) allows us to extract the

corresponding action. which is given by

]

/r//![/)) (/)3[/,} - m"]) 2lp)elep)

o
.,/1 /r//x(/;)d;f{r/)f//r(/r JF(p.q. k)p(Sp)p(S4)p(Sk)

D,

The fields commute so the factor F(p.q. k) collapses to the single term
S(p.S(q & k)
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Momentum Space Action

[ntegrating out the delta function and imposing the reality condition
2(Ep) = " (p) we find

L[ ) 2
—= / dy(p) ([)'(p} + m') 2(p)e™(p)

(/

3! / dp(p)dp(q)o(p e q)e™ (p)e™(q)
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Momentum Space Action

[Integrating out the delta function and imposing the reality condition
(6 2% (p) we find

T

I ' ‘) ‘)
—= /(//{(/il (D=(p)+m=) o(p)e™(p)

(

2 /‘//Hmf//m/mwi-'f/l;'tmr”{rn
5

e Want to explore the spacetime properties of this action. particularly
locality

@ Need to Fourier transform into spacetime
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World Function

[ntroduce Synge’s! world function
/
aip.p)

where Y (7T) 18 & ocodesic connecting p and p'.

L].L.Synge. “Relativity: The General Theory™
Trevor Rempel QFT in Curved Momentum Space
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World Function

[ntroduce Synge’s! world function
/
aip.p )
where 5, (7) is a geodesic connecting p and g

@ a(p.p') is a bi scalar

e Integrand in (11) is constant along a gecodesic so

I 5
(T[/J,/J’} _}/)'(/J./Jf)

-

Using the notation
vlmﬂ'(/l. ,r;f) rTu[/). /,"] and v!,: aip. /,"] T (. /,f]‘
we find that the world function satisfies the differential equation

:_)_rT(/J,/J’} rT”(;J_p’)(T"(/;,/J’}

L. L.Synge. “Relativity: The General Theory™
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Fourier Kernel

e . — / — M
Fix a point p" € M and let o € 17 M. then the kernel

CXp (i.r“’rrﬂf (p. ) ))

is covariant for all p.p € M.
e Dependence on p' persists even when momentum space is flat

Define R,(q) = q & p introduce the translated world function
fT“{‘H_‘U’} rT[l}”“r(/J},/i!]

which does have the correct flat momentuim space limit.

e Iake the Fourier kernel to be

. 4 ,f’ It !
exXp (/.:’ T PP J)
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Plane Waves and Transport Operator

Define a “covariant plane wave™ based at the point p/ € M as

A y1 /2 ! ‘0 <_,‘1’ I /
rl,f[/)..! ) 1/ [Hi"t/’]'/’ J € XP (—m IT‘”;[/J,/) ])_

where » € /I‘,\/f

o Plane waves are eigenfunctions of the Laplacian on 77, M

Ozey(p.2) = — D- | R, (p).p ey (p.a)

Trevor Rempel QFT in Curved Momentum Space
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Action in Spacetime

Recall our momentuim space action

I . D]
S = /r/;/(;:](/)“(p) =

Y
2 /r//.' () /f//i(/]
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Kinetic Term

We would like to use that

/)"}{_p_}r olpoa) = F],,.( olp.a)
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Kinetic Term

We would like to use that
/):U’.}fuf/)- )= —=U,.eq(p.x)

e Need to translate the e, appearing the Fourier transform of o(p) to e.

use the above relation and then translate the result back to p/.

Performing this computation we obtain
(DT,‘);,’[J'] /I'//l’(.i'f}'/;,’.“[-".N}D,‘.r.‘()[ff].

IKinetic term can be written as

/f//:(/;)[)'](_p)r‘(;)]r“[/)) ~ / dp(x) (@ o (HP)y) ().
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INTRODUCING LATESHIFT

NiccoLO LORET
[arXiv:1305.5062]

WITH: GIOVANNI AMELINO-CAMELIA, LEONARDO BARCAROLI AND GIULIA GUBITOSI

LOOPS 13 CONFERENCE

PERIMETER INSTITUTE JULY 22-26, 2013
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*WE CALL LATESHIFT A RELATIVE-LOCALITY EFFECT SUCH THAT

AN OBSERVER (BOB) MEASURES DIFFERENT
TIME-OF-ARRIVAL FOR TWO PHOTONS WITH
DIFFERENT ENERGIES EMITTED SIMULTANEOUSLY
BY THE EMITTER (ALICE).

I p

i / P Ubustration: Duvid Pile, Jenathan Cranot

c~1+
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VIOLATION

DEFORMATION
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o VIOLATION
[l‘” l:‘r\ D

) 1 "r\+]
IJ/! IJIJ

‘) )

) )
E<=p~+m~+ NP~
DEFORMATION

IF WE WANT TO PRESERVE LORENTZ INVARIANCE WE SHOULD THINK TO
DEFORM POINCARE ALGEBRA, FOR EXAMPLE:

C = P§ — P? +¢PyP?
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UNDEFORMED RULES OF BOOST TRANSFORMATION FOR THE COORDINATES OF
THE EMISSION POINTS OF PARTICLES, BUT DEFORMED BOOST TRANSFORMATIONS
FOR THEIR VELOCITIES.

SUCH CRITERIA OF "SELECTIVE APPLICABILITY" OF DEFORMED
BOOSTS CANNOT PRODUCE A CONSISTENTLY RELATIVISTIC
PICTURE.
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NONLOCALITIES STILL EXIST BUT ONLY FOR DISTANT
OBSERVERS.

Bob

Alice |~ ’

> Alice

WE FORMALIZE THAT AS

1
A CURVATURE OF D(p.0) = / \/\““/3/,['},,
MOMENTUM-SPACE J 0

*THIS INTERPRETATION DESCRIBES NONLOCALITIES AS A DUAL
REDSHIFT EFFECT ON MOMENTUM SPACE.
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E]; _ ng —Ha"

DE SITTER SPACETIME

(/:-»‘2 _ ((/J,{l)j . 2Hx ((/‘!.l):}
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E]; _ ng —Ha"

DE SITTER SPACETIME

‘ . . 0 .
(/.s"z — (r/.z'“ }‘2 — ¢ 2Ha ((/.!'l )'2
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))
*GENERALIZED TRANSLATION !
OPERATORS CHARGES: D1
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—
)() [Io =po— Hur'p
*GENERALIZED TRANSLATION ; " 0 = /o 1
OPERATORS CHARGES: D1 ]‘[L =
*WORDLINES vi[cH™
.“
I — ( —Ha Bob | -

0 .

H

*COORDINATE TRANSFORMATIONS

pB = pAe—a’H

]
1 ‘HHII A a1 -
B '

Pirsa: 13070056 Page 76/126



WE DESCRIBE THE TIME DELAY EFFECT AS A PROPERTY OF SPACETIME
TRANSLATIONS IN THEORIES WITH DE SITTER-LIKE CURVED MOMENTUM SPACE

WITH ALGEBRA (p1.po} =0

{\’ Pot = p1. {,\‘ D1 } _
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WE DESCRIBE THE TIME DELAY EFFECT AS A PROPERTY OF SPACETIME
TRANSLATIONS IN THEORIES WITH DE SITTER-LIKE CURVED MOMENTUM SPACE

{/)1'/)“} — ()

{(N.po} =p1. {N.p1} =

WITH ALGEBRA

AND CASIMIR OPERATOR

C,

. )

— | — sinh

(

pPripo) =
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WE USE THIS CONDITION OF Iy H
p IX° = ‘1 {C I }
ONSHELNESS AS HAMILTONIAN dr — \ €y X
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WE TAKE INSPIRATION FROM
K-MINKOWSKI NONCOMMUTATIVE
RELATION BETWEEN COORDINATES
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WE TAKE INSPIRATION FROM (WO = 0!
K-MINKOWSKI NONCOMMUTATIVE
RELATION BETWEEN COORDINATES / \

W0 =4 1 S

K-MINKOWSKI DEFORMED SYMPLECTIC SECTOR

{/)1.\1}:*4. {/)1,\“}:f/)1.
{/’n-\l}:”- {M,.\”}:_l.
MEANWILE IN DE SITTER SPACETIME..

{ﬂ(,..i'“}: ] . {H(]..f'l} —_— _H!l
{Hl..!'”}:“. {Hl.,!'l}: [ .

{Iy. 114 } = HII,
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ACCORDING TO ALICE ACCORDING TO BoB

)
‘A
L)
XA

BOB OBSERVES THE SAME PHYSICAL EFFECT WITH BOTH
COORDINATES
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ACCORDING TO ALICE ACCORDING TO BoB

)
‘A
L)
XA

BOB OBSERVES THE SAME PHYSICAL EFFECT WITH BOTH
COORDINATES
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*SAME ENERGY
*DIFFERENT EMISSION TIMES

SPACETIME
CURVATURE
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—a"H

/_’tl — Pof
0 \%
2

() |

(a .a)
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WHAT'S THE ROLE OF THE PLANCK-SCALE-CURVED GEOMETRY OF MOMENTUM SPACE IN THE
CORRELATIONS BETWEEN EMISSION AND DETECTION TIMES, THE TRAVEL TIMES BETWEEN A GIVEN
EMITTER (ALICE) AND A GIVEN DETECTOR (BoB)?

WE HAVE SHOWN THAT THESE PLANCK-SCALE CORRECTIONS TO TRAVEL TIMES CAN BE EXACTLY
DESCRIBED, UNDER A RELATIVE LOCALITY PERSPECTIVE, AS A DUAL REDSHIFT EFFECT OR LATESHIFT.
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WHAT'S THE ROLE OF THE PLANCK-SCALE-CURVED GEOMETRY OF MOMENTUM SPACE IN THE
CORRELATIONS BETWEEN EMISSION AND DETECTION TIMES, THE TRAVEL TIMES BETWEEN A GIVEN
EMITTER (ALICE) AND A GIVEN DETECTOR (BoB)?

WE HAVE SHOWN THAT THESE PLANCK-SCALE CORRECTIONS TO TRAVEL TIMES CAN BE EXACTLY
DESCRIBED, UNDER A RELATIVE LOCALITY PERSPECTIVE, AS A DUAL REDSHIFT EFFECT OR LATESHIFT.

THEY ARE MANIFESTATIONS OF MOMENTUM-SPACE CURVATURE OF EXACTLY THE SAME TYPE (UP TO
EVERY DETAIL OF THE TECHNICAL DERIVATION) ALREADY KNOWN FOR ORDINARY REDSHIFT
PRODUCED BY SPACETIME CURVATURE.

WE CAN IDENTIFY THE NOVEL NOTION OF RELATIVE MOMENTUM-SPACE LOCALITY AS A KNOWN BUT
UNDER-APPRECIATED FEATURE ASSOCIATED TO ORDINARY REDSHIFT PRODUCED BY SPACETIME

CURVATURE, AND THIS CAN BE DESCRIBED IN COMPLETE ANALOGY WITH THE RELATIVE SPACETIME
LOCALITY.
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Semidualisation in 3d gravity |

Bernd Schroers, Heriot-Watt University, Edinburgh

Loops 13 @ PI, July 2013

based on Prince Osei and Bernd Schroers, On the semiduals of
local isometry groups in 3d gravity, |. Math. Phys. 53 (2012)
and (mainly)
Classical r-matrices via semidualisation, 201 3, to appear
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Motivation

Rotation(Boost)-Momentum-Position algebra

(IPX)

/. . '/;‘4‘ Eabe l' ['/u- /.n'r Eabe /V—- I'/rl‘ ‘\.Fl: Eabe \' /:1 -\.h‘ ’\,,},.

N\

Spacetime isometry algebra Momentum space isometry algebra
JP) %)

./':_,/’r' ‘ufrr'l" .{”./,,n lmr”l’r.. ‘l),, l:,

A\ 4

A

Semiduality or Born reciprocity
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Motivation

Rotation(Boost)-Momentum-Position algebra

(IPX)

/. . '/b‘ Eabe l' ['/u- /:’r Eabe /JF-- I'/”' ‘\.fn: Eabe \' /:1 -\.h‘ r\”h_

N\

Spacetime isometry algebra Momentum space isometry algebra
JP) %)

./':_,/’r' ‘ufrr'l" .]”. /,f‘ l“,,r”l’r.. ‘l),, l;,

A\ 4

A

Semiduality or Born reciprocity
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Motivation

Rotation(Boost)-Momentum-Position algebra

(IPX)

/. . '/b‘ Eabe l' ['/u- /:’r Eabe /JF.- I'/rl‘ ‘\.Fl: Eabe \' /:1 -\.h‘ Ar]’a'

N\

Spacetime isometry algebra Momentum space isometry algebra
JP) %)

.l':_,]’r' l.“r”.I'. ./”./,,n !mr”l’r.. ‘l),, l;,

A\ 4

A

Semiduality or Born reciprocity
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Double cross sum decomposition

g isreal Liealgebra  [/..i] = [, /..

complexify with ¢ = -\ and ), = 4.J,.

o Ty Fo'dee Qo Ty = £, Qn Q4. (D A
look for (y —¢), + 1" J,  so that
'/”' '/'r'j A/;:ljll'/"‘ (v)r’i' '/": -/‘uh[l(k.):" f l‘-u{:"l‘ ! (-);(1' (-);a ”r:hll(-.),,"

double cross sum structure: g o<am

Condition on F:

F(X).F(Y) - F(X.F(Y)]+ [F(X).Y)) ANNY] VX Y eq.
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r-matrices from semiduality
Define dual generators P(Q,) = 0,
Semidual Lie brackets (/... = [, .. [P*. ) = f,,0P° (PP =0

...and co-commutators S(PY) = g P° @ PP

Theorem:

|. Semidual Lie bialgebra is co-boundary with = I, " A J,

2. Modified classical Yang-Baxter equation is equivalent to
factorisation condition for the map F
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r-matrices from semiduality
Define dual generators P(Q,) = 0,
Semidual Lie brackets (/.. = [, .. [P*. ) = f,,0P° (PP =0

...and co-commutators 5(P%) = g *P*® P°

Theorem:

|. Semidual Lie bialgebra is co-boundary with = I, " r J,

2. Modified classical Yang-Baxter equation is equivalent to
factorisation condition for the map F
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Solutions |l

F f\(\) oo ady . b e R. rIG{(l.l}. r|<\\> —A.

gives m=Rx R with action depending on &, 3, A:

N V] =0

/ \l — H_\-I + /),\--__;
[ A\-jj f“\-l '+- (/,\’-_1
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Solutions I

F f\<\> oo ady -, b € R. rIE{(l.l}. r|<\\> —A.

gives m=Rx R with action depending on &, 3, A:

X1 X =0

7. X,] = aX, + bX,
[ A\-jj f“\-[ +- (/,\’-_}
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Solutions |l

F f\(\) oo ady . b € R. rIE{(l.l}. r|<\\> —A.

gives m=Rx R with action depending on &, 3, A:

(X1, X] =0

/ \; — ”‘\-I -f— /),\--__}
[ A\-jj f“\-l +- (/,\’-_1
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Solutions |l

F ;\<\> oo ady . b € R. rIG{(l.l}. r|<\\> —A.

gives m=Rx R with action depending on &, 3, A:

X1 X =0

1. X,] = aX, + bX>
[ A\-jj f“\-l '+'- (/,\’-_1
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Solutions I

F f\<\> oo ady . b e R. rIE{(l.l}. r|<\\> —A.

gives m=Rx R with action depending on &, 3, A:

(X1, Xs] = 0

[T, X1] = aX| + bX>
[ A\-jj (“\-l '+- (/,\’-_}
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Solutions |l
F=3V(V.)+aady. b eR. aef{0.1}. a(V.V)=—\

action depending on «, B, A:

a=1,3=0 ) \ o Kappa-
: Poincare!
a=0.7#0
timelike spacelike lightlike
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Solutions I
F WV + aady. JeR., ae{0.1}, oV, V) ==\

action depending on &, B, A:

a=1,5=0 ) ! o Kappa-
: Poincare!
a=0.7#0
timelike spacelike lightlike
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Solutions |l
F WV + aady. eR. ae{0.1}. o(V.V) ==\

action depending on &, B, A:

a=1,=0 ) | o Kappa-
: Poincare!
a=0.7#0
timelike spacelike lightlike
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Solutions |l
Two special solutions: S not diagonalisable m=Ra& L(2)

Degenerate case of m =R x R*  with action

o IPy AJ,. or rey = BPN AN + VANQu ATy +€ PN,

Pirsa: 13070056 Page 105/126



Pirsa: 13070056

Conclusion

*Semiduality switches X non-commutativity for classical r-matrix
and P non-co-commutativity (momentum space curvature)

* In 3d get a complete list of non-trivial’' r-matrices and a
correspondence between r-matrices and the Bianchi classification

of 3d Lie algebras

* Theoretical framework for studying '|PX algebra’ in any
dimension in a unified language
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Solutions ||

F ;\<\> oo ady . b e R. rIG{(l.l}. r|<\\> —A.

gives m=Rx R with action depending on &, 3, A:

X1 X = 0

/ \l — ”-\-I + /),\--__}
[ A\-jj f“\-l '+- (/,\’-_1

Pirsa: 13070056 Page 107/126



Pirsa: 13070056

Semidualisation in 3d gravity

Prince K. Osel

AIMS-Ghana, Biriwa & University of Ghana, Legon

LOOPS 13, P!
July, 2013

based on work with B. J Schroers
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Semidualisation in 3d gravity I

Prince K. Osel

AIMS-Ghana, Biriwa & University of Ghana, Legon

LOOPS 13, P!
July, 2013

based on work with B. J Schroers
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Model spacetimes

» In 3d every solution of Einstein equations is locally
Isometric to a model spacetime

Determined by signature and sign ( or vanishing) of the
cosmological constant A
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Model spacetimes

SRR AR e
Y e

w
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Isometry groups of 3d gravity

Isometry groups of the local model spacetimes play a
fundamental role in 3d gravity:

» Construction of globally non-trivial solutions of the Einstein
equations on a general 3-manifold:;

» In the Chern-Simons formulation of 3d gravity, they play
the role of gauge groups.
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Isometry groups of 3d gravity

A Euclidean sig.(¢® < 0) Lorentzian sig.(c? > 0)
AN=0 ISO(3) = SU(2)=<R3 | 1SO(2.1) = SU(1.1)<R?

A>0 | SO(4)= BU&XSUR) | 50(3,1) = SL(2.C)/Z;

AN<0 SO(3,1) =~ SL2C) SO(2.2) = (SL2.R)xSL(2.R))

&ap /o)
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Lie algebras local isometry groups

The Lie algebras, denoted by g,, are the six-dimensional Lie
algebra with generators J, and P,. a = 0. 1.2 with Lie brackets

[Ja- Ja] = 'achC- [J? Pb] 'abcPC [P'a Pb] = A 'achC-

where
\ = —C?A.
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Quantum picture

» |s based on the application of the combinatorial
quantisation program (CQP) to the Chern-Simons
formulation of 3d gravity

» provides a systematic way of studying the role of quantum
groups and non-commutative geometry in 3d gravity.
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Quantum picture

» A QIG is found via a classical r-matrix which is required to
be compatible with the Cherns-Simons action in a certain
sense

» The CQP does not uniquely define a QIG, but defines an
equivalent class of quantum groups
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Semiduals of local isometry groups

» Consider some factorisations of the local isometry groups
arising in 3D gravity

» use them to construct associated bicrossproduct quantum
groups via semidualisation.
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Factorisation of local isometry groups

Euclidean signature Lorentzian signature \

SL(2,R)><SL(2,R)

A>0| SO@W) =SU2)p<SU(2) | SO(2,2) —{ SL(2 R)a. AN(2)

L . ; SL(2,R)<R*
— - (9 B! R
A Ham Qiaheh s { SL(2,R)s, AN (2)

A< 0|SL(2,C)=SU@QAN(2) | SL(2,C) = SL(2,R)=xAN(2) |
|
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Factorisation of local isometry groups

Euclidean signature Lorentzian signature \

SL(2,R)p<SL(2,R)

A> 0| SOW) =SUQ2)p<SU2) | SO(2,2) —{ SL(2 RIa.AN(2)

) - | . SL(2,R)<R?
_ 7. = SU(2 . 3=
A=0 E; = SU(2)<R Py { SL(2,R)bAN(2)

A< 0|SL(2C)=SU@2AN(2) | SL(2,C) = SL(2,R)=xAN(2) |
|
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Semiduals of local Isometry groups

A >0
A=0
A< 0

Euclidean signature

D(U(su(2)))

(R*)3>aU(su(2.R))

C(AN(2))paU(su(2))

Lorentzian signature

(R*)3>aU(sl(2. R))
C(AN(2))p U(s1(2. R))

C(AN(2))pU(s1(2. R))
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Conclusion
Interpretation of semiduality

» The interpretation of semiduality proposed by ( B. J
Schroers , S. Majid) as the exchange of the cosmological
length scale and the Planck mass in the context of 3D
quantum gravity is confirmed and elaborated.

Original regime | Semidual regime

Cosmological _. oC
time scale

Planck mass ~C 1
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THANK YOU!!!
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