Title: Black Holes in Asymptotically Safe Gravity

Date: Jul 23, 2013 11:45 AM

URL: http://pirsa.org/13070050

Abstract: In this talk, I will briefly review the main ingredients of the gravitational asymptotic safety program before focusing on the phenomenological consequences originating from the scale-dependent couplings characteristic for the theory. In particular, I will discuss recent unexpected developments in unveiling the structure of microscopic black holes within Asymptotic Safety: in the asymptotic UV the structure of the quantum solutions is universal and given by the classical Schwarzschild-de Sitter solution, entailing a self-similarity between the classical and quantum regime. As a consequence asymptotically safe black holes evaporate completely and no Planck-size remnants are formed. The relation of these results to previous criticism that Asymptotic Safety does not reproduce the state-count of a conformal field theory will be addressed.

Pirsa: 13070050 Page 1/67

Black Holes in Asymptotically Safe Gravity

Frank Saueressig

Research Institute for Mathematics, Astrophysics and Particle Physics
Radboud University Nijmegen

M. Reuter and F. S., Lect. Notes Phys. 863 (2013) 185, arXiv:1205.5431B. Koch and F. S., arXiv:1306.1546

Loops 13, Perimeter Institute, July 23rd, 2013

n 1/3

Pirsa: 13070050 Page 2/67

Pirsa: 13070050 Page 3/67

Outline

- black holes as inspiration for quantum gravity
- Asymptotic Safety in a nutshell
- physics from the effective average action
- black holes in Asymptotic Safety
- the HL-CDT-AS connection
- 3 take-away messages

Pirsa: 13070050

Outline

- black holes as inspiration for quantum gravity
- Asymptotic Safety in a nutshell
- physics from the effective average action
- black holes in Asymptotic Safety
- the HL-CDT-AS connection
- 3 take-away messages

Pirsa: 13070050 Page 5/67

Classical black holes

vacuum solution of Einstein's equations

$$ds^2 = -\left(1 - rac{2GM}{r}
ight)dt^2 + \left(1 - rac{2GM}{r}
ight)^{-1}dr^2 + r^2d\Omega_2^2$$

observed in Nature

AGN's: power most energetic processes in the universe

- n 4/35

- uniqueness theorems:
 - \circ black holes are characterized by small number of parameters M, J, q
- curvature singularity at origin
 - General Relativity predicts its own breakdown
- horizons:

$$r_{\rm SH} = 2\,G\,M$$

semi-classical: thermodynamics associated with horizon

$$T_{
m SH} = rac{1}{8\pi GM} \qquad , \qquad S_{
m SH} = rac{A}{4G}$$

- black holes emit black body radiation
- origin of the horizon entropy?

E 10 E

Pirsa: 13070050 Page 8/67

- uniqueness theorems:
 - \circ black holes are characterized by small number of parameters M, J, q
- curvature singularity at origin
 - General Relativity predicts its own breakdown
- horizons:

$$r_{\rm SH} = 2\,G\,M$$

semi-classical: thermodynamics associated with horizon

$$T_{
m SH} = rac{1}{8\pi GM} \qquad , \qquad S_{
m SH} = rac{A}{4G}$$

- black holes emit black body radiation
- origin of the horizon entropy?

5/35

information-loss problem

Pirsa: 13070050 Page 10/67

information-loss problem

questions should find answers within

Quantum Gravity

-n - 6/3

Pirsa: 13070050 Page 11/67

Pirsa: 13070050 Page 12/67

Perturbative quantization of General Relativity

Dynamics of General Relativity governed by Einstein-Hilbert action

$$S^{
m EH} = rac{1}{16\pi G_N} \int d^d x \sqrt{g} \left\{ -R + 2\Lambda
ight\}$$

• Newtons constant G_N has negative mass-dimension

Pirsa: 13070050 Page 13/67

Perturbative quantization of General Relativity

Dynamics of General Relativity governed by Einstein-Hilbert action

$$S^{
m EH} = rac{1}{16\pi G_N} \int d^d x \sqrt{g} \left\{ -R + 2\Lambda
ight\}$$

• Newtons constant G_N has negative mass-dimension

Wilsonian picture of perturbative renormalization:

- ⇒ dimensionless coupling constant attracted to GFP (free theory) in UV
- introduce dimensionless coupling constants

$$g_k = k^{d-2}G_N$$
, $\lambda_k \equiv \Lambda k^{-2}$

GFP: flow governed by mass-dimension:

$$k\partial_k g_k = (d-2)g + \mathcal{O}(g^2)$$

$$k\partial_k \lambda_k = -2\lambda + \mathcal{O}(q)$$

n 8/35

Perturbative quantization of General Relativity

Dynamics of General Relativity governed by Einstein-Hilbert action

$$S^{
m EH} = rac{1}{16\pi {m G_N}} \int d^d x \sqrt{g} \left\{ -R + 2\Lambda
ight\}$$

• Newtons constant G_N has negative mass-dimension

Wilsonian picture of perturbative renormalization:

- ⇒ dimensionless coupling constant attracted to GFP (free theory) in UV
- introduce dimensionless coupling constants

$$g_k = k^{d-2}G_N$$
, $\lambda_k \equiv \Lambda k^{-2}$

GFP: flow governed by mass-dimension:

$$k\partial_k g_k = (d-2)g + \mathcal{O}(g^2)$$

$$k\partial_k \lambda_k = -2\lambda + \mathcal{O}(q)$$

General Relativity is perturbatively non-renormalizable

0.00.0

Requirements:

- a) non-Gaussian fixed point (NGFP)
 - controls the UV-behavior of the RG-trajectory
 - ensures the absence of UV-divergences

Pirsa: 13070050 Page 16/67

Requirements:

- a) non-Gaussian fixed point (NGFP)
 - controls the UV-behavior of the RG-trajectory
 - ensures the absence of UV-divergences

Pirsa: 13070050 Page 17/67

Requirements:

- a) non-Gaussian fixed point (NGFP)
 - controls the UV-behavior of the RG-trajectory
 - ensures the absence of UV-divergences
- b) finite-dimensional UV-critical surface $\mathcal{S}_{\mathrm{UV}}$
 - ensures predictivity
 - $^{\circ}$ fixing the position of a RG-trajectory in $\mathcal{S}_{\mathrm{UV}}$
 - ⇔ experimental determination of relevant parameters

Pirsa: 13070050 Page 18/67

Requirements:

- a) non-Gaussian fixed point (NGFP)
 - controls the UV-behavior of the RG-trajectory
 - ensures the absence of UV-divergences
- b) finite-dimensional UV-critical surface $\mathcal{S}_{\mathrm{UV}}$
 - ensures predictivity
 - \circ fixing the position of a RG-trajectory in $\mathcal{S}_{\mathrm{UV}}$
 - ⇔ experimental determination of relevant parameters
- c) classical limit:
 - RG-trajectories have part where GR is good approximation
 - recover gravitational physics captured by General Relativity:
 (perihelion shift, gravitational lensing, nucleo-synthesis, ...)

Pirsa: 13070050 Page 19/67

Requirements:

- a) non-Gaussian fixed point (NGFP)
 - controls the UV-behavior of the RG-trajectory
 - ensures the absence of UV-divergences
- b) finite-dimensional UV-critical surface $\mathcal{S}_{\mathrm{UV}}$
 - ensures predictivity
 - of fixing the position of a RG-trajectory in S_{UV}
 - ⇔ experimental determination of relevant parameters
- c) classical limit:
 - RG-trajectories have part where GR is good approximation
 - recover gravitational physics captured by General Relativity:
 (perihelion shift, gravitational lensing, nucleo-synthesis, ...)

Pirsa: 13070050 Page 20/67

Requirements:

- a) non-Gaussian fixed point (NGFP)
 - controls the UV-behavior of the RG-trajectory
 - ensures the absence of UV-divergences
- b) finite-dimensional UV-critical surface $\mathcal{S}_{\mathrm{UV}}$
 - ensures predictivity
 - $^{\circ}$ $\,$ fixing the position of a RG-trajectory in $\mathcal{S}_{\mathrm{UV}}$
 - ⇔ experimental determination of relevant parameters
- c) classical limit:
 - RG-trajectories have part where GR is good approximation
 - recover gravitational physics captured by General Relativity:
 (perihelion shift, gravitational lensing, nucleo-synthesis, ...)

Quantum Einstein Gravity (QEG)

Pirsa: 13070050 Page 21/67

M. Reuter, F. S., Phys. Rev. D 65 (2002) 065016, hep-th/0110054

Pirsa: 13070050 Page 22/67

The RG trajectory realized in Nature

M. Reuter, H. Weyer, JCAP 0412 (2004) 001, hep-th/0410119

measurement of G_N , Λ in classical regime:

- originates at NGFP (quantum regime: $G(k)=k^{2-d}g_*, \Lambda(k)=k^2\lambda_*$)
- passing extremely close to the GFP
- long classical GR regime (classical regime: $G(k) = \text{const}, \Lambda(k) = \text{const}$)
- $\lambda \lesssim 1/2$: IR fixed point?

11/06

Pirsa: 13070050 Page 23/67

Charting the RG-flow of the R^2 -truncation

O. Lauscher, M. Reuter, Phys. Rev. D66 (2002) 025026, hep-th/0205062 S. Rechenberger, F.S., Phys. Rev. D86 (2012) 024018, arXiv:1206.0657

Extending Einstein-Hilbert truncation with higher-derivative couplings

$$\Gamma_k^{\rm grav}[g] = \int d^4x \sqrt{g} \left[\frac{1}{16\pi G_k} \left(-R + 2\Lambda_k \right) + \frac{1}{b_k} R^2 \right]$$

p. 12/35

Pirsa: 13070050 Page 24/67

Pirsa: 13070050 Page 25/67

Exploring the gravitational theory space

Some key results:

- evidence for asymptotic safety
 - ⇒ non-Gaussian fixed point provides UV completion of gravity
- low number of relevant parameter:
 - \Rightarrow dimensionality of UV-critical surface $\simeq 3$
- perturbative counterterms:
 - gravity + matter: asymptotic safety survives 1-loop counterterm

- p. 14/35

Pirsa: 13070050 Page 26/67

Exploring the gravitational theory space

Some key results:

- evidence for asymptotic safety
 - ⇒ non-Gaussian fixed point provides UV completion of gravity
- low number of relevant parameter:
 - \Rightarrow dimensionality of UV-critical surface $\simeq 3$
- perturbative counterterms:
 - gravity + matter: asymptotic safety survives 1-loop counterterm

Study black holes within Asymptotic Safety?

n 14/3

Pirsa: 13070050 Page 27/67

Effective average action Γ_k for gravity

M. Reuter, Phys. Rev. D 57 (1998) 971, hep-th/9605030

central idea: integrate out quantum fluctuations shell-by-shell in momentum-space

Pirsa: 13070050 Page 28/67

n 16/35

Effective average action Γ_k for gravity

M. Reuter, Phys. Rev. D 57 (1998) 971, hep-th/9605030

central idea: integrate out quantum fluctuations shell-by-shell in momentum-space

scale-dependence governed by functional renormalization group equation

$$k\partial_k\Gamma_k[\phi,\bar{\phi}] = \frac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)} + \mathcal{R}_k\right)^{-1}k\partial_k\mathcal{R}_k\right]$$

- $^{\circ}$ effective vertices in encorporate quantum-corrections with $p^2>k^2$
 - \Rightarrow Γ_k provides effective description for physics at scale k^2

100

Pirsa: 13070050 Page 29/67

Effective average action Γ_k for gravity

M. Reuter, Phys. Rev. D 57 (1998) 971, hep-th/9605030

central idea: integrate out quantum fluctuations shell-by-shell in momentum-space

scale-dependence governed by functional renormalization group equation

$$k\partial_k\Gamma_k[\phi,\bar{\phi}] = \frac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)} + \mathcal{R}_k\right)^{-1}k\partial_k\mathcal{R}_k\right]$$

- $^{\circ}$ effective vertices in encorporate quantum-corrections with $p^2>k^2$
 - \Rightarrow Γ_k provides effective description for physics at scale k^2

n 16/3

Pirsa: 13070050 Page 30/67

Classical vs. quantum space-times

classical space-times from general relativity

$$S^{
m EH} = rac{1}{16\pi G_N} \int d^d x \sqrt{g} \left(-R + 2\Lambda
ight)$$

Einstein equations

$$R_{\mu
u}=rac{2}{2-d}\,\Lambda\,g_{\mu
u}$$

- solutions are classical space-time metrics $g_{\mu\nu}$:
 - Friedman-Robertson-Walker cosmology
 - Schwarzschild black hole

p. 17735

Pirsa: 13070050 Page 31/67

Classical vs. quantum space-times

classical space-times from general relativity

$$S^{
m EH} = rac{1}{16\pi G_N} \int d^d x \sqrt{g} \left(-R + 2\Lambda
ight)$$

Einstein equations

$$R_{\mu
u}=rac{2}{2-d}\,\Lambda\,g_{\mu
u}$$

- solutions are classical space-time metrics $g_{\mu\nu}$:
 - Friedman-Robertson-Walker cosmology
 - Schwarzschild black hole

quantum theory: compute observables

$$\langle \mathcal{O}
angle \equiv \int \mathcal{D} \gamma \mathcal{D} C \mathcal{D} ar{C} \, \mathcal{O}[\gamma] \, e^{-S_{\mathrm{bare}}[\gamma,C,ar{C}]}$$

expectation values for curvatures, two-point correlators, . . .

Pirsa: 13070050 Page 32/67

Classical vs. quantum space-times

classical space-times from general relativity

$$S^{
m EH} = rac{1}{16\pi G_N} \int d^d x \sqrt{g} \left(-R + 2\Lambda
ight)$$

Einstein equations

$$R_{\mu
u} = rac{2}{2-d} \, \Lambda \, g_{\mu
u}$$

- solutions are classical space-time metrics $g_{\mu\nu}$:
 - Friedman-Robertson-Walker cosmology
 - Schwarzschild black hole

quantum theory: compute observables

$$\langle \mathcal{O}
angle \equiv \int \mathcal{D} \gamma \mathcal{D} C \mathcal{D} ar{C} \, \mathcal{O}[\gamma] \, e^{-S_{\mathrm{bare}}[\gamma,C,ar{C}]}$$

expectation values for curvatures, two-point correlators, . . .

Very hard!

n 17/3

Quantum physics from average action Γ_k

A. Bonanno, M. Reuter, Phys. Rev. D 60 (1999) 084011, gr-qc/9811026

essential: Γ_k provides effective description of physics at scale k:

- capture quantum effects by "RG-improvement" scheme:
 - exploit information contained in running couplings
- 1. transition: classical $S^{EH} \rightarrow$ average action $\Gamma_k[g]$
 - one-parameter family of effective actions valid at different scales
- 2. single-scale problem may allow for "cutoff-identification"
 - express RG-scale k through physical cutoff ξ
 - requires: physical intuition
- 3. obtain: modification of classical system by quantum effects

n 18/35

Pirsa: 13070050 Page 34/67

Quantum physics from average action Γ_k

A. Bonanno, M. Reuter, Phys. Rev. D 60 (1999) 084011, gr-qc/9811026

essential: Γ_k provides effective description of physics at scale k:

- capture quantum effects by "RG-improvement" scheme:
 - exploit information contained in running couplings
- 1. transition: classical $S^{\mathrm{EH}} \to \text{average action } \Gamma_k[g]$
 - one-parameter family of effective actions valid at different scales
- 2. single-scale problem may allow for "cutoff-identification"
 - express RG-scale k through physical cutoff ξ
 - requires: physical intuition
- 3. obtain: modification of classical system by quantum effects

Pirsa: 13070050 Page 35/67

Quantum physics from average action Γ_k

A. Bonanno, M. Reuter, Phys. Rev. D 60 (1999) 084011, gr-qc/9811026

essential: Γ_k provides effective description of physics at scale k:

- capture quantum effects by "RG-improvement" scheme:
 - exploit information contained in running couplings
- 1. transition: classical $S^{\mathrm{EH}} \to \text{average action } \Gamma_k[g]$
 - one-parameter family of effective actions valid at different scales
- 2. single-scale problem may allow for "cutoff-identification"
 - express RG-scale k through physical cutoff ξ
 - requires: physical intuition
- 3. obtain: modification of classical system by quantum effects

Pirsa: 13070050 Page 36/67

Pirsa: 13070050 Page 37/67

Practical RG-improvement schemes

given: physically motivated cutoff-identification $k = k(\xi)$

- 1. improved classical solutions
 - solve classical equations of motion
 - o solutions: replace $G_N \longrightarrow G(k(\xi))$

Pirsa: 13070050 Page 38/67

p. 19/35

Practical RG-improvement schemes

given: physically motivated cutoff-identification $k = k(\xi)$

- 1. improved classical solutions
 - solve classical equations of motion
 - \circ solutions: replace $G_N \longrightarrow G(k(\xi))$
- 2. improved classical equations of motion
 - compute equations of motion from classical action
 - \circ equations of motion: replace $G_N \longrightarrow G(k(\xi))$
 - solve RG-improved equations of motion

Pirsa: 13070050 Page 39/67

Practical RG-improvement schemes

given: physically motivated cutoff-identification $k = k(\xi)$

- 1. improved classical solutions
 - solve classical equations of motion
 - \circ solutions: replace $G_N \longrightarrow G(k(\xi))$
- 2. improved classical equations of motion
 - compute equations of motion from classical action
 - \circ equations of motion: replace $G_N \longrightarrow G(k(\xi))$
 - solve RG-improved equations of motion
- 3. improved average action
 - $\quad \quad \Gamma_k \text{: replace } G_N \longrightarrow G(k(\xi))$ $k^2 \propto R \longrightarrow \text{Einstein-Hilbert action} \mapsto f(R) \text{-gravity theory}$
 - compute modified equations of motion
 - solve modified equations of motion

19/35

Pirsa: 13070050 Page 40/67

Pirsa: 13070050 Page 41/67

Everybody knows: Asymptotic Safety is wrong...

A. Shomer, arXiv:0709.3555

state-count of a d-dimensional CFT implies

$$\frac{S}{R^{d-1}} \propto \left(\frac{E}{R^{d-1}}\right)^{\nu_{\text{CFT}}} , \qquad \nu_{\text{CFT}} = \frac{d-1}{d}$$

Pirsa: 13070050 Page 42/67

p. 21/35

Everybody knows: Asymptotic Safety is wrong...

A. Shomer, arXiv:0709.3555

state-count of a d-dimensional CFT implies

$$rac{S}{R^{d-1}} \propto \left(rac{E}{R^{d-1}}
ight)^{
u_{
m CFT}} \qquad , \qquad
u_{
m CFT} = rac{d-1}{d}$$

• "everybody knows": grav. dof at high energies are black holes

$$S \propto G_N^{-1} R^{d-2} \qquad , \qquad E \propto G_N^{-1} R^{d-3}$$

implies

$$S \propto G_N^{1/d-3} \, E^{
u_{
m BH}} \qquad , \qquad
u_{
m BH} = rac{d-2}{d-3}$$

thus gravity has the wrong state-count for a CFT

$$\nu_{\rm BH} \neq \nu_{\rm CFT}$$

Classical black hole solutions with cosmological constant

spherical symmetric, static solutions of Einstein's equations

$$ds^{2} = -f(r)dt^{2} + f(r)^{-1}dr^{2} + r^{2}d\Omega_{2}^{2}$$

with

$$f(r) = 1 - \frac{2GM}{r} - \frac{1}{3}\Lambda r^2$$

p. 22/35

Pirsa: 13070050 Page 44/67

Classical black hole solutions with cosmological constant

spherical symmetric, static solutions of Einstein's equations

$$ds^{2} = -f(r)dt^{2} + f(r)^{-1}dr^{2} + r^{2}d\Omega_{2}^{2}$$

with

$$f(r) = 1 - \frac{2GM}{r} - \frac{1}{3}\Lambda r^2$$

horizons

• $\Lambda \leq 0$: black hole horizon $r_{
m bh}$

• $\Lambda > 0, M < (3G\sqrt{\Lambda})^{-1}$: black hole + cosmological horizon $r_{
m bh} < r_{
m cosmo}$

 $\Lambda > 0, M \ge (3G\sqrt{\Lambda})^{-1}$: naked singularity

horizon temperature

$$T = \frac{1}{4\pi} \left. \frac{\partial f(r)}{\partial r} \right|_{r=r_{
m horizon}}$$

Cutoff identification for black holes

[A. Bonanno, M. Reuter, gr-qc/9811026] [A. Bonanno, M. Reuter, hep-th/0002196] [K. Falls, D. F. Litim, A. Raghuraman, arXiv:1002.0260]

requirements for cutoff-identification k = k(physical scale)

- invariance under coordinate transformations
- respect symmetries of solution
- "reasonable" asymptotic behavior

Pirsa: 13070050 Page 46/67

n 23/35

Cutoff identification for black holes

[A. Bonanno, M. Reuter, gr-qc/9811026] [A. Bonanno, M. Reuter, hep-th/0002196] [K. Falls, D. F. Litim, A. Raghuraman, arXiv:1002.0260]

requirements for cutoff-identification k = k(physical scale)

- invariance under coordinate transformations
- respect symmetries of solution
- "reasonable" asymptotic behavior

proposal

$$k(P) = \frac{\xi}{d(P)} \,, \qquad d(P) = \int_{\mathcal{C}_r} \sqrt{|ds^2|} \,$$

results compatible with improved e.o.m and action scheme

short distance behavior

$$k(r) = \frac{3\xi}{2} \sqrt{2GM} \, r^{-3/2} \, \left(1 + \mathcal{O}(r) \right)$$

• full function k(r) can be found numerically

Pirsa: 13070050 Page 47/67

Cutoff identification for black holes

[A. Bonanno, M. Reuter, gr-qc/9811026] [A. Bonanno, M. Reuter, hep-th/0002196] [K. Falls, D. F. Litim, A. Raghuraman, arXiv:1002.0260]

requirements for cutoff-identification k = k(physical scale)

- invariance under coordinate transformations
- respect symmetries of solution
- "reasonable" asymptotic behavior

proposal

$$k(P) = \frac{\xi}{d(P)} \,, \qquad d(P) = \int_{\mathcal{C}_r} \sqrt{|ds^2|} \,$$

results compatible with improved e.o.m and action scheme

short distance behavior

$$k(r) = \frac{3\xi}{2} \sqrt{2GM} \, r^{-3/2} \, \left(1 + \mathcal{O}(r) \right)$$

• full function k(r) can be found numerically

Pirsa: 13070050 Page 48/67

classical line element

$$f(r) = 1 - rac{2\,G_0\,M}{r} - rac{1}{3}\,\Lambda_0\,r^2$$

Pirsa: 13070050 Page 49/67

classical line element

$$f(r) = 1 - rac{2\,G_0\,M}{r} - rac{1}{3}\,\Lambda_0\,r^2$$

• Quantum-improved black hole at NGFP:

$$f_*(r) = 1 - \frac{2 M G_0}{r} \left(\frac{3}{4} \lambda_* \xi^2\right) - \frac{1}{3} \left(\frac{4g_*}{3G_0 \xi^2}\right) r^2$$

Pirsa: 13070050 Page 50/67

classical line element

$$f(r) = 1 - rac{2\,G_0\,M}{r} - rac{1}{3}\,\Lambda_0\,r^2$$

• Quantum-improved black hole at NGFP:

$$f_*(r) = 1 - \frac{2 M G_0}{r} \left(\frac{3}{4} \lambda_* \xi^2\right) - \frac{1}{3} \left(\frac{4g_*}{3G_0 \xi^2}\right) r^2$$

Consequences from including a running cosmological constant $\lambda_* \neq 0$:

- RG-improved line-element: Schwarzschild-de Sitter black hole
- counterintuitive: short-distance behavior determined by Λ_k
- horizon entropy fulfills Cardy-Verlinde formula
- maximal black hole: entropy agrees with state-counting property of Γ_k

$$ilde{S}_{ ext{max}} = rac{\pi}{g_* \lambda_*}$$

25/35

classical line element

$$f(r) = 1 - rac{2\,G_0\,M}{r} - rac{1}{3}\,\Lambda_0\,r^2$$

• Quantum-improved black hole at NGFP:

$$f_*(r) = 1 - \frac{2 M G_0}{r} \left(\frac{3}{4} \lambda_* \xi^2\right) - \frac{1}{3} \left(\frac{4g_*}{3G_0 \xi^2}\right) r^2$$

Consequences from including a running cosmological constant $\lambda_* \neq 0$:

- RG-improved line-element: Schwarzschild-de Sitter black hole
- counterintuitive: short-distance behavior determined by Λ_k
- horizon entropy fulfills Cardy-Verlinde formula
- maximal black hole: entropy agrees with state-counting property of Γ_k

$$ilde{S}_{ ext{max}} = rac{\pi}{g_* \lambda_*}$$

0 25/35

Temperature of RG-improved Schwarzschild black holes

• Λ_k crucially influences structure of light black holes

Inclusion of Λ_k prevents remnant formation

n 26/3

Pirsa: 13070050 Page 53/67

Temperature of asymptotic (Anti-) de Sitter black holes

- non-Gaussian fixed point guarantees universal short-distance properties
- black holes evaporate completely

27/26

Pirsa: 13070050 Page 54/67

Temperature of asymptotic (Anti-) de Sitter black holes

- non-Gaussian fixed point guarantees universal short-distance properties
- black holes evaporate completely

22/26

Pirsa: 13070050 Page 55/67

Pirsa: 13070050 Page 56/67

Hořava-Lifshitz gravity in a nutshell

P. Hořava, Phys. Rev. D79 (2009) 084008, arXiv:0901.3775

central idea: find a perturbatively renormalizable quantum theory of gravity

fundamental fields: $\{N(\tau), N_i(\tau, x), \sigma_{ij}(\tau, x)\}$

symmetry: $\mathsf{Diff}(\mathcal{M},\Sigma)\subset\mathsf{Diff}(\mathcal{M})$

breaks Lorentz-invariance at high energies

Pirsa: 13070050 Page 57/67

Hořava-Lifshitz gravity in a nutshell

P. Hořava, Phys. Rev. D79 (2009) 084008, arXiv:0901.3775

central idea: find a perturbatively renormalizable quantum theory of gravity

fundamental fields: $\{N(\tau), N_i(\tau, x), \sigma_{ij}(\tau, x)\}$

symmetry: $\mathsf{Diff}(\mathcal{M},\Sigma)\subset\mathsf{Diff}(\mathcal{M})$

breaks Lorentz-invariance at high energies

Can construct the effective average action for projective HL-gravity

S. Rechenberger and F.S., JHEP 03 (2013) 010, arXiv:1212.5114

scale-dependence governed by functional renormalization group equation

$$k\partial_k\Gamma_k[\phi,ar{\phi}]=rac{1}{2}\mathrm{STr}\left[\left(\Gamma_k^{(2)}+\mathcal{R}_k
ight)^{-1}k\partial_k\mathcal{R}_k
ight]$$

29/35

Pirsa: 13070050 Page 59/67

RG-flows of HL-gravity in the IR

A. Contillo, S. Rechenberger, F.S., to appear

RG-flow of anisotropic Einstein-Hilbert truncation

$$\Gamma_k^{
m grav}[N,N_i,\sigma_{ij}] = rac{1}{16\pi G_k} \int d au d^3x N \sqrt{g} \left[K_{ij} K^{ij} - rac{m{\lambda_k}}{m{k}} K^2 - ^{(3)}R + 2\Lambda_k
ight]$$

Pirsa: 13070050 Page 60/67

Scale-dependence of dimensionful couplings

Pirsa: 13070050 Page 61/67

Scale-dependence of dimensionful couplings

GFP governs IR-behavior of HL-gravity small value of cosmological constant makes λ compatible with experiments

Pirsa: 13070050 Page 62/67

Pirsa: 13070050 Page 63/67

Summay

Asymptotic Safety Program

- strong evidence for a non-Gaussian fixed point:
 - predictive: finite number of relevant parameters
 - connected to classical general relativity in the IR

Asymptotically Safe black holes

- microscopic black holes are Schwarzschild-de Sitter
 - no formation of black hole remnants
 - entropy compatible with CFT

n 34/3

Pirsa: 13070050 Page 64/67

Summay

Asymptotic Safety Program

- strong evidence for a non-Gaussian fixed point:
 - predictive: finite number of relevant parameters
 - connected to classical general relativity in the IR

Asymptotically Safe black holes

- microscopic black holes are Schwarzschild-de Sitter
 - no formation of black hole remnants
 - entropy compatible with CFT

Why is General Relativity so successful?

- emerges as a cross-over phenomenon
- holds for Asymptotic Safety and Hořava-Lifshitz gravity

n 34/3

Pirsa: 13070050 Page 65/67

More on Asymptotic Safety: parallel sessions

From fixed points to fixed functionals:

• RG-flows of f(R)-gravity

D. Benedetti, T. Morris, K. Falls

scale-dependent vertex functions

A. Codello, M. Amber

momentum-dependence of propagators

A. Rodigast

phenomenological applications

quantifying the structure of spacetime

A. Eichhorn

cosmology

A. Contillo

35/35

Pirsa: 13070050 Page 66/67

Pirsa: 13070050 Page 67/67