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There has been some progress in the past:

Kastrup and Thiemann (NPB399, 211 (1993)) using the “old”
(complex) Ashtekar variables were able to quantize through a
series of gauge fixings. The resulting quantization has
waveforms W(M), with M being a Dirac observable. There is
no sense in which the singularity is “resolved”.

Kuchaf (PRD50, 3961 (1994)) through a series of canonical
transformation using the traditional metric variables

isolated the single degree of freedom of the

model (the ADM mass). Results similar to Kastrup and Thiemann’s

Campiglia, Gambini and JP (CQG24, 3649 (2007)) using modern
Ashtekar variables gauge fixed the diffeomorphism constraint
and rescaled the Hamiltonian constraint to make it Abelian.

The quantization ends up being equivalent to those of Kastrup,
Thiemann and Kuchar.
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Various authors (Modesto, Boehmer and Vandersloot,
Ashtekar and Bojowald, Campiglia, Gambini, JP) studied
the quantization of the interior of a black hole using the
isometry to Kantowski-Sachs and treating it as a LQC.
The singularity is resolved.

Gambini and JP (PRL101, 161301 (2008)) studied the
semiclassical theory for the complete space-time of a
black hole. The singularity is replaced by a region

of high curvature that tunnels into another region

of space-time.
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Summary:

The main point today: one can rescale the Hamiltonian
without gauge fixing the diffeomorphism constraint. The
resulting constraint algebra is a Lie algebra.

[D,D]=D, [D,H]=H, [H,H]=0

The Dirac quantization using loop quantum gravity
techniques can be completed in exact form, finding
the space of physical states Hohys:
The metric can be represented as an operator corresponding
to an evolving constant of the motion on H_,.. and the
singularity is resolved

phys
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We use the variables adapted to spherical symmetry developed
by Bojowald and Swiderski (CQG23, 2129 (2006)). One ends
up with two canonical pairs, EX, E?, K, K ,,.

9z (IIJ go0 = |E7|,
Kee = —sign(E7) 220 K, Koy = —TEFT e
gn( E7) B e 5
E*¢ — E¥K?* (E*))*
Hy = N _ - 2K VE*K, 8 B, sl A
2V E" ' 2VE* 8VETE¥
E*(E*Y(E¢ Ex(E*)'E* _ : . . .
\/ ' \/ | —— +N, [-(E*)YK, + E¥(K,)].
2(E¥)? 2E ¢

Rescaling the lapse and shift:

j\r’(.)l(l s Nll.l(‘w — 9N old [\(II‘V.P)"" (lll(l N()l(l N new [') 1
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Yields the constraints with the Lie algebra structure:

' — ” E)! : Er
Hyp = / dx ! N' ( VE? (14+ K2) + (( l )I) \{ { 2(?.\/)
. ' ' 4(E¥)°

N, [—(E")' K, A IC*‘(!\")’]]

To proceed to quantize we again follow Bojowald and
Swiderski and define suitable one-dimensional “spin networks”

My Mo
k., ‘ k ‘R
(Ko K,) = (K. K, | >
[ i+1

['i-!- ji

— H i‘_\;IJ (l’\'l; / l\'_r [-F “f'".) H l1‘\-“ (:’)/!JA' I\-r I:"l-" ])
eiEqQ e )

vieg
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Yields the constraints with the Lie algebra structure:

i — N ey : Er
Hyp = / dx ! N' ( VE* (14 K2)+ (( 1()1) \{ { 2({.\/)
' \ y 1(E¥)

F N [-(E") K, 4 zc»‘u\‘,)']]

To proceed to quantize we again follow Bojowald and
Swiderski and define suitable one-dimensional “spin networks”

— H exp (-I)A.-’ / K, (x l-’f--") H exXp (;/!JH' Ky (v; ])
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On such states the triads are well defined

E* )T, ¢ i(Ka  Ky) o anck Ki (@) g2 (Kay Ky),

iRy Ky) €61 anck Z o(r — ()i 2 (Ka, Ky),

vi€g

E¥(x)T
g

And we proceed to polymerize and factor order the rescaled
Hamiltonian constraint,

H(N) /.'fr Viz) | 2 E\f’!z" L+ . (N‘\') 2GM % E¥ — VE? (f'-")f .
: \ P
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Yields the constraints with the Lie algebra structure:

4 —— N E) : Er
Hpr = / dx ! -N' ( VE? (1+ K7) + (( 1 )I) \{ { 2(?.\/)
. ' ' 4(E¥)°

+ N[ (E®)' K, - la‘f(fg)']]

To proceed to quantize we again follow Bojowald and
Swiderski and define suitable one-dimensional “spin networks”
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And its action is well defined on the spin network states,

)3 . i [ sin (o, (v;) WM,
![‘:'\.)IILIJJJI\"[\ # / '\.I"-’][;'I’{i'|.ml]\’ ' ’i\fl f L _w' : 1. 02 'r|'l.|||1]~“f
i€y J F V'f"ll'l.uu k

(ki = ki—1) Epranc j_J U ip(Ka Ky).

And one can exactly solve it,

~|’(A,.1\',.u.ﬂ.‘-) ‘I'HIJl-xp(f(/\'.{/.lf)) 1, e, exp (.’Jf.', / f\,l_,-m-).

f 2 =5 AK mF (sin (pK ,(vj),im;)),
with AKX K,(vj) K,vj-1),
f g : 2 .
m J ,J\/ I ',(' ‘!/" V‘/‘.,"‘|'l.|t|l k
v P 1/2 " T . . y .
F(¢,m) = J, (1 =m*sin”t) dt the Jacobi elliptic function of the first kind.

The diffeomorphism constraint is solved by traditional group averaging. | ’ ”)°
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The model has quantum observables without classical
counterparts.

Since the basis of the physical space H,, s have a well
defined number of vertices, one can construct a Dirac
observable operator V with eigenvalue V, the number of
vertices.

EXis not well defined on H,;, s as an operator, since it is

not invariant under diffeomorphisms. However, since it must
be a monotonous function of x, there is a portion of it that
can be isolated as diffeo invariant.

One starts by noticing that the sequence k is well defined in
H

phys
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One defines a Dirac observable O(z) z in [0,1]

~

()(::) Z }>])hys = p[)l(m( kklnl |]" q)pln /89

And in terms of it and an arbitrary function from the real
line to [0 1] z(x) one can define an action for EXin H ,

|]‘ (]>|)h\,s S () ~ - |]‘ (]>|)11\,s
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One defines a Dirac observable O(z) z in [0,1]

A,

()(:) ]? }>l)h\" — pl)l(m( kkllll |]" (]>pln Sy

And in terms of it and an arbitrary function from the real
line to [0 1] z(x) one can define an action for EX in H

|]‘ q)pln,s — () ,_, - |]‘ (]>|)11\s

phys’
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Recalling the form of the space-time metric, e.g., gy,
(E*) K,
2\/E'\/1+I\ 26

One can straightforwardly write it as an evolving constant
of motion acting on Hphys parameterized by the functional
parameters K¢ and z(x).

Ytz — .q.r..“\ r —

In order to be a self-adjoint operator the radical should be
Positive. This imposes limitations on the values of f .
The limitations imply that the metric is not singular where
the classical singularity should be.
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What kind of space-time emerges? It depends on the state.

If one wants a semi-classical space-time, one will have to
choose W(M) peaked around some value of the mass, and
one will need small jumps between k; and k,, ;. The resulting
geometry is distributional since Ex is only non-vanishing at
vertices. One would be approximating a smooth function
with

Dirac deltas.
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Summary

Rescaling the Hamiltonian constraint leads
to a Lie algebra of constraints without the
need to gauge fix.

The Dirac quantization can be completed
and the physical space of states found
exactly.

New quantum observables appear without
classical counterpart.

The metric can be realized on the space of physical
states as an evolving constant of the motion.

It is non-singular in the black hole interior and the space-
time can be extended.

It may open new possibilities for the “firewall” problem
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Falling into a black hole: the light from above

Matteo Smerlak

Max-Planck-Institut fiir Gravitationsphysik
(Albert-Einstein-Institut)

Loops 13
July 22, 2013
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A very brief history of Hawking radiation

- black holes as black bodies

“Any black hole will create and emit particles [...] at just
the rate that one would expect if the black hole was a
body with a temperature of k/27."”

. response of infalling detectors

“A geodesic detector near the horizon will not see the
Hawking flux of particles”

. firewall argument

“Perhaps the most conservative resolution is that the
infalling observer burns up at the horizon.”

Matteo Smerlak Falling into a black hole: the light from above
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Back to semiclassical Hawking radiation, and surprises

In this talk | wish to

» reconsider the semiclassics, a la Hawking and Unruh
» study non-asymptotic, non-stationary trajectories

» in particular, geodesics with orbital parameters (E, L)

| will show that

» geodesic detectors near the horizon do see Hawking radiation
(actually more than at in infinity)

» in the E — 0 limit, horizon radiation is both hot and intense

» the vacuum energy density does not have a definite sign

Matteo Smerlak Falling into a black hole: the light from above
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Collapse geometry and structure of the in-vacuum
Vacuum temperature

srgy density and flux

Schwarzschild

Matteo Smerlak

Setup and approximations
Collapse geometry
Structure of the vacuum

» Spacetime

» spherically symmetric
» no charge
» flat in the past

» Field

» massless

» scalar

» spherically symmetric
(s-wave sector)

» Detector

» point-like
» monopole
» weak coupling

Falling into a black hole: the light from above
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Collapse geometry and structure of the in-vacuum Setup and approximations
\ emperature Collapse geometry

nergy density and flux Structure of the vacuum

Collapse geometry: Vaidya ingoing shell

» Eddington-Finkelstein:

ds?® = — (1 — EE(9(\/)) dv?+2dvdr
r

» Null coordinates:
ds® = —C(vy,v_)dv,dv_

constant v4: incoming fronts
constant v_: outgoing fronts
vy = 0: shell

v = —2rs. horizon

» Vacuum state (in the s-wave
sector):

G(x,y) o« In ((Av+_—i0)(Av_—f0))

Matteo Smerlak Falling into a black hole: the light from above
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Collapse geometry and structure of the in-vacuum Setup and approximations
Vacuum temperature Co”lpll‘.om.try

Structure of the vacuum
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Collapse geometry and structure of the in-vacuum Setup and approximations
Vacuum temperature Collapse geometry
ensity and flux Structure of the vacuum

Structure of outgoing fronts |: the v_ coordinate

Setting 0 = r/rs — 1,

v—2r for v <0
v_(v,r) =

~2r[14 W (5e) | for v >0,

Matteo Smerlak Falling into a black hole: the light from above
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Collapse geometry and structure of the in-vacuum Setup and approximations
Vacuum temperature Collapse geometry
Vacuum energy density and flux Structure of the vacuum

Structure of outgoing fronts |l: portrait of the vacuum

Hawking region

r/M

Figure: Level curves of v_(v,r).

Matteo Smerlak Falling into a black hole: the light from above
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Collapse geometry and structure of the in-vacuum Setup and approximations
Vacuum temperature Collapse geometry
Vacuum energy density and flux Stl‘l.lctl.lf. of the vacuum

Structure of outgoing fronts |l: portrait of the vacuum

Hawking region

r/M

Figure: Level curves of v_(v,r).
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aind structure of the in-vacuurn The Uanh-DBWitt model
Vacuum temperature Quasi-temperature formalism
Vacuum energy density and flux Schwarzschild geodesics

Outline

Vacuum temperature

Matteo Smerlak Falling into a black hole: the light from above
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icture of tl Vi The Unruh-DeWitt model
Vacuum temperature Quasi-temperature formalism
energy density and flux Schwarzschild geodesics

Unruh-DeWitt response function

The response of an Unruh-DeWitt detector at time 7 reads

o0 O

ds x,(u—s)e " G (y(u),v(u

R(r,2) = 2Re /

du x-(u) /

—00 J0O
where
» v(s) is a timelike trajectory
» 2 is the energy gap (frequency) of the detector

» Y- a non-negative switching function such that

/dsx.r( )=1 and xr(s) =0 for s>

Matteo Smerlak Falling into a black hole: the light from above
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icture of th Vi The Unruh-DeWitt model
Vacuum temperature Quasi-temperature formalism
ergy density and flux Schwarzschild geodesics

Decoupling of incoming and outgoing

The splitting of the Wightman function

G(x,y) o In ((Av* — i0)(Av- — 1'0)) = In (Aw — 1'0) + In (Av — iO)

implies

R(r,Q) = R (7, Q) + R_(r, Q).

Incoming and outgoing modes decouple.

Matteo Smerlak Falling into a black hole: the light from above
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‘ The Unruh-DeWitt model
Vacuum temparature Quasi-temperature formalism
Schwarzschild geodesics

Thermal and quasi-thermal spectra

A stationary spectrum is thermal if the detailed balance relation holds:

R(—-Q) = e TR(Q) for any Q.

| call a non-stationary spectrum quasi-thermal if

R(r,—Q) ~ €Y/ TIR(7,Q) for 2] > T (7).

In this case | call T the quasi-temperature of the spectrum; it becomes a
proper temperature in the adiabatic limit

‘<<1

=

Matteo Smerlak Falling into a black hole: the light from above
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) The Unruh-DeWitt model
Vacuum temperature Quasi-temperature formalism
[ ( Schwarzschild geodesics

Sufficient condition for thermality

Since

/ ds cos(f2s)In(s — i0) =0 for Q >0,
0

the first relevant term in In(Avy — i0) is the second-order derivative of
Avy wrt s. In fact, when

1 V4
7 or Vi

is constant, so that v4.(7) is exponential in 7, the spectrum
w .
f ds e ¥ log(Avy — i0) =0
0

is thermal, at temperature T..

Matteo Smerlak Falling into a black hole: the light from
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n The Unruh-DeWitt model
Vacuum temperature Quasi-temperature formalism
[ it ( Schwarzschild geodesics

Thermality for static observers

This is what happens with static trajectories outside the hole, where

r
0 = — — 1 = constant > 0.
Is

Indeed, from

v—(v,r) = —2r; [1 + W (6 ) ] o~ —~2rs[1 4 5e5*’w]

we see that

This gives the standard results

TH

v

Matteo Smerlak Falling into a black hole: the light from
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ructure of 1@ In-vacuurr The Unruh-DeWitt model
Vacuum temperature Quasi-temperature formalism
1 energy density and flux Schwarzschild geodesics

Quasi-temperature formalism

For a more general, non-static trajectory, the quantities

Te(r) 1 ’ vy (7) ’

T2l (7)

are the quasi-temperatures of incoming and outgoing modes. The
corresponding adiabaticity parameters are

n+(7) = %

Advantages of this approach:
» easy to compute: just evaluate vy and vi along the trajectory

» straightforward interpretation: ultraviolet decay rate of detector
spectra R4.(7,)

Matteo Smerlak Falling into a black hole: the light from above
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Quasi-temperature formalism

For a more general, non-static trajectory, the quantities

Te(r) 1 ’ v (7) ’

T ol (7)

are the quasi-temperatures of incoming and outgoing modes. The
corresponding adiabaticity parameters are

n+(7) = %

Advantages of this approach:
» easy to compute: just evaluate vy and v, along the trajectory

» straightforward interpretation: ultraviolet decay rate of detector
spectra R4 (7, )

Matteo Smerlak Falling into a black hole: the light from above
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ture of the in-vacuun The Unruh-DeWitt model
Vacuum temperature Quasi-temperature formalism

m energy density and flu Schwarzschild geodesics

T 146 1/2
circular a i ) 1/2

static
Temperature of outgoing
modes higher than on the

static trajectory, although
a=>0.

Matteo Smerlak Falling into a black hole: the light from above
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e in-vacuum The Unruh-DeWitt model

Vacuum temperature Quasi-temperature formalism
Jensity and flux Schwarzschild geodesics

uum energy

Schwarzschild geodesics |l: infalling trajectories

T(7)
Ty

4

L T Y]

200 400 600 800 1000 1200 1400
Observe that ingoing modes couple near the horizon.

Matteo Smerlak Falling into a black hole: the light from above
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icture of th ac The Unruh-DeWitt model
Vacuum temperature Quasi-temperature formalism
erg [& | X

y density and flu Schwarzschild geodesics

Schwarzschild geodesics |ll: radial trajectories

At horizon-crossing, we find

TASYmP Thor  _ 4ET
TH

Thor Thnr
* 2E

Thor
together with

n""(E)

?’]}*mr ( E)

Large quasi-temperature for highly bound states (E < 1).

» Never actually thermal.

Matteo Smerlak Falling into a black hole: the light from above
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: b Flux
Vacuum energy density and flux Energy density

QOutline

Vacuum energy density and flux

Matteo Smerlak Falling into a black hole: the light from
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Vacuum energy densit.y.lancli flux Energy density

Flux

The high intensity of Hawking radation as perceived by E — 0 observers
is confirmed by a flux computation:

F(E) = —(Tap) u’n”

where u? geodesic 4-velocity and n? unit normal to v?.

12 F(E)
nT? At horizon-crossing,

i Fror(E) = n T3 (262 + oy )

48E?

100 -, hor

80

Large ingoing flux in the E — 0
limit.

60

Matteo Smerlak Falling into a black hole: the light from above
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Flux
Energy density

Vacuum energy density and flux

Energy density

We can also compute the energy density measured by infalling observers:
p(E) = (Top) u"u®
It does not have a definite sign.

p(E)

003

asymp
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Flux
Energy density

Vacuum temperature
Vacuum energy density and flux

Energy density

We can also compute the energy density measured by infalling observers:
p(E) = (Top) u"u®
It does not have a definite sign.

p(E)

003

asymp

hor
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] H' " = Flux
Vacuu empe o Energy density

Vacuum energy densit.y”an& flux

Punchlines

» For highly bound trajectories, Hawking radiation is dominated by
iIngoing modes and becomes arbitrarily hot as E — 0

In this E — 0 limit,
» the outgoing flux goes to positive infinity

» the energy density goes to negative infinity

But not all observers measure a negative energy density close to the
horizon. Observers rushing into the hole at high velocity see a high
positive energy density.

This is a purely semiclassical effect. No conceptual connection with
any “firewall” argument whatsoever.

Thank you!

Matteo Smerlak Falling into a black hole: the light from above
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Fluid-Gravityv Dualitv
for a General Screen

Kyoto University
Yuki Yokokura

(with Laurent Freidel, Perimeter Institute)

In Loops13 @ Perimer Institute



Is oravitv thermodvnamic?

irsa: 13070046 Page 61/114



Dynamical “object”

r Described by curved spacetime

Is gravity thermodynamic?
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Dynamical “object”

r Described by curved spacetime

Is gravity thermodynamic?

1st law

2nd law
Temperature
Entropy
Pressure....

irsa: 13070046 Page 63/114



“object”

r Described by curved spacetime

Is gravity ?

L’Flst law

= 2nd law
Temperature
Entropy

Pressure....
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From macroscopic viewpoint

‘Does spacetime follow fluid dynamics, that is,
the Navier-Stokes eq, the 1st law and ,mass
conservation? (= Today’s topic)

‘Dose 2nd law hold for spacetime?
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Is spacetime a fluid?
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diffeomorphism invariant

rdescribed by General relativity

Is spacetime a 9uid?

follows

fluid dynamics

= thermodynamics

+ local equilibrium
+ Newton mechanics

irsa: 13070046 Page 67/114



diffeomorphism invariant

rdescribed by General relativity

Is spacetime a fluid?

follows

fluid dynamics

= thermodynamics
+ local equilibrium

+ Newton mechanics
based on

a preferred time t and
a laboratory frame
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Review of Fliiid Dvnamics 1

Mass conservation law
0tp + 05 (pv®) =0
Momentum conservation law momentum
= the Navier-Stokes equation n® = pv*
p(atva + vbabva) = —d,p + 9,772,
Internal energy balance law

=1st law of thermodynamaics
d.€ + vP0,€e + €0, v’ = —pd, v’ + t*Pa, v, — 0, q"°
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Review of Fliiid Dvnamics 1

Mass conservation law
0tp + 0 (pv®) =0
Momentum conservation law momentum
= the Navier-Stokes equation n® = pv*
p(atva + vbabva) = —0,p + 0,T°
Internal energy balance law

=1st law of thermodynamaics
d.€ + vP0,€e + €0, v’ = —pd,v? + t*Pd,v, — 0, q°
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Review of Fliiid Dvnamics ?2

There are two kinds of observers in fluid dynamics:
Comoving observers ( ¥ ff)who

follow a fluid particle at the fluid velocity and

measure purely thermodynamic quantities.
Laboratory observers(° , who

are at rest with respect to the laboratory and
measure velocity of the fluid.

trajectory of a fluid particl/ :
velocity vector

Q Q \
e
\ /
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What corresnponds to this
s1tuiiation 1N ceneral relativitv?

Fluid velocity (=comoving observer)
= a timelike vector u

2-dim spatial fluid system u -

=A timelike surface (= “screen X”) |
t + ot ),‘_\
t |

;'/J Z
choice of laboratory and time ;
= choice of foliation t and frame on the screen
Laboratory observer

= timelike normal vector n « —dt
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The auestion 18 reduiced to. ..

Can we choose a timelike vector,
foliation, and frame on the screen
such that the vector follows the
Navier-Stokes eqation?

Page 73/114



[.et’s start construction of fliuid
dvnamics for shacetime!
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1 set 11 of Screen

Juv 18 given.

A timelike surface X (=screen ) 1is ¥
determined by the spacelike unit

vector s orthogonal to X. LS
hyy = guy — SuSy: 3-dim metric on X

Consider a time foliation t on X
The normal timelike unit vector 1s

given by n « —dt , which 1s the laboratory
observer.

The metric of 2-dim spacelike
“laboratory” S is given by

uv = NNy + hyy }

=n,ny, + 5,5y + Guv T
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2-1: Suirface Enerev-momentiim tensor

Use Israel’s junction condition for the
screen as 1n BH membrane paradigm,
and then obtain the surface energy-

| 1

~8aG \

(extrinsic curvature:H,, = huahvﬁ VaSp)

éSuv = Hyy — hu-vH)
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2-7: Suirface Enerev-momentuim tensor

Decompose S, by h,, = —n,n, +q,, as
Suy = en#nv + nunv +n,m, T l'Im,
Each quantity 1s measured by the laboratory
observer n.
Energy density: € = S,,n¥n"
Momentum density: 7, = —q,%Sg,n"

stress tensor: l'Im, = q,%9vPSapg = Pquy — Oy

1
87r

Guv e (q# QVB W quvqaﬁ) Vasﬂ
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3 Conservation laws for the screen

Consider the conservation laws

for the screen as the membrane Sk p
paradigm. _SBTBa
DpSP o = —sgTP, |
Y i
(D,: derivative on X)
For example,qA“DBSﬂa = —qA“sBTﬂa can become

Lyt + 03y = —dap + dg0°, - €dap)— Tiy

t = pn, ¥ = ps, (p:redshift factor)
d,: derivative on S, 6; = q*FV,t,
¢ = logp: Newton potential
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3 Conservation laws for the screen

Consider the conservation laws
for the screen as the membrane SB py
paradigm. —sp TE,

DgSP o = —sgTP , |

Y i
(D,: derivative on X)
For example,qA“DBSﬂa = —qA“sBTBa can become
[/fTIA + g’fT[A — _dAp -+ dB@BA e EdA(p e T’?‘A.

t = pn, ¥ = ps, (p:redshift factor)
d,: derivative on S, 6; = q*FV, i,
¢ = logp: Newton potential
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- 24+ decombosition of the Finstein ea

The equations can be derived directly from
the Einstein equation.

Decompose the Einstein equation by
Guy = —nuny + 5,8y + quy

2-dim 2-dim
For example,

| qatGuys’ = 8nGqu- T, s
=>LETL'A s G’fTEA = _dAp g dB@BA — EdA¢ o T‘f‘A '

—=The equations are the dynamical equation of
motion for the screen.
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5: T.et’s combpare these

with fluiid eauations
the Navier-Stokes eq (in another form)
dimy + Oy = —04p + 05154 — PO + [

9 9
de =5+ g 4 0 = 0,4, Ty = pvy, fy: external force

The Equation of motion for the screen |
| Limta + 0gts = —dap + d50° 4 — edad — Tiy |
Problems

(1)Fluid velocity v“ does not appear.

(2) p, ®8 4, € are not measured by comoving observer.
—='This equation 1s not the Navier-Stokes eq yet.
(Note: The eq of G, 1s also similar to 1st law.)
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How can we identifv the nhvsical

velocity of the screen fliiid?
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O6-1: Relativistic fluid picture

Use a condition for the velocity vector in

relativistic fluid dynamics:
n* ot 5. u"

velocity < energy flow |

This u can define the physical spatial
velocity v, in1+2 formalism with (N, V) 1n
the screen, as

n+v V
u= : V= —
V1 — p2 N

for a given foliation n.
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O6-2: Relativistic fluid picture

The u and v relate the quantities for the comoving
observers and those for the laboratory ones:

€' €'
l1—v 1—7v
I/
I - + Al
= 7,
T e Qa1
Here “’” 1s for the comoving observer, as

€ = Sagu“uﬁ, Ty =—q aSaBuﬂ Ty = q’ aq, ﬁS ap-
These relations are the same as ones for a usual
relativistic fluid. Especially, ', = 0.

—='Thus, the screen can be considered as a relativistic
fluid, except for entropy production.
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How can we obtain the exact
Navier-Stokes ea from here?

We still can use
diffeomorphism for the 2-dim spatial space S and
diffeomorphism for the “radial” direction, s, in 4-dim spacetime.

We have to consider a constituent equation, which relates
viscous stress tensor ©,, and deformation tensor d,vp,

to satisfy 2nd law.

The condition
0tquy =0
might correspond to the physical laboratory.

—=We are now trying this problem from the above point of view!
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Conchisions

For arbitrary timelike screen, we made
hydro-dynamic like equations from the
Einstein equation by using 2+2
decomposition formalism, or, by using
conservation laws for the screen.

By 1dentifying the physical velocity, we
constructed the energy-momentum tensor
which takes relativistic-fluid-dynamic form.

These results strongly suggest that
spacetime itself behaves as a fluid!
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Correction to the area law for Loop Black holes

Kinjalk Lochan?, Cenalo Vaz?

®Tata Institute of Fundamental Research, Mumbai, India
bUniversity of Cincinnati, USA

22 July 2013

Phys. Rev. D 85 (2012) 104041
Phys. Rev. D 86 (2012) 044035
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Plan

@ Punctures as Quantum Hair

e Statistical analysis

@ Correction to the Area law

@ Discussion

2 Loops 2013, Perimeter Institute Correction to the area law for LQGBH
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|. Introduction

@ Black hole in LQG : Spacetime with inner boundary: Isolated horizon with
punctures.

@ Chern Simons theory on the horizon. Edges of spin network in the bulk thread
the horizon.

@ Punctures contribute area elements to the horizon and construct the microstates

JJ.h)

accounting for the entropy. }

@ Area of the horizon is an observable. Statistical analysis for area of the horizon.

3 Loops 2013, Perimeter Institute Correction to the area law for LQGBH
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|. Introduction

@ Microcanonical studies have been done ‘ , characterizing the
horizon as
A=8mylp Y Vir(ip + 1),
I)

Z mp = 0.

]J

and counting the number of such configurations

e A

2~ ,
VA

and 1
S~AA—- —logA.
2

@ However number of puctures can not be held fixed, horizon can exchange the
number of area quanta with the bulk.

@ Does this situation corresponds to entropy calculation of a photon gas?

4 Loops 2013, Perimeter Institute Correction to the area law for LQGBH
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|. Introduction

@ Microcanonical studies have been done ‘ , characterizing the
horizon as
A=8mylp Y Vir(ip + 1),
I)

Z mp = 0.

]J

and counting the number of such configurations

eAA

2~ ,
VA

and 1
S~ AA — 2 log A.

@ However number of puctures can not be held fixed, horizon can exchange the
number of area quanta with the bulk.

@ Does this situation corresponds to entropy calculation of a photon gas?
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|. Introduction: Punctures as Quantum hair

@ Major cis ' , Ghose and Perez
Punctures as a quantum hair.

@ Chemical Potential associated with a puncture.

@ Horizon as a gas of punctures.

@ Modified version of the first law.

dE =TdS + udN

@ Statistical analysis suggests Bekenstein-Hawking area law recovered at leading
order.

@ Implications for subleading corrections ?

5 Loops 2013, Perimeter Institute Correction to the area law for LQGBH
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@ Chemical Potential associated with a puncture.

@ Horizon as a gas of punctures.
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II. Canonical ensemble analysis

@ We first fix a graph I' and calculate the (canonical) partition function as first

step
r(8,N) 5;,,,() e
Z T

jm nj m;

-3 ZJ,”J Njm ; aj
)

;nr

N = E Mjm ;s and 2 E Njm,Mj = P.

Jym Jym

with

@ We use a suitable representation of the delta function to turn the partition
function into

27 .
Zr ([3 N Z dke2lk ZJ“‘_] n_jmj m; f:iﬁ Z.‘,imj Mjm ; @; '

Ty m ! 0
{TLJHII I—I?rn J

@ On simplification,

N
O (2ik Ba;)
Zr(B,N) = / dk e\“1trm;—pPaj
(B,N)= o | >
Jm;
@ If we work with Flux area operator |Barl swandowski, Vilse , the Unitary
representation of Area operator |Livine|, or the semiclassical |IlTlIt
aj =G +1) JjEN
6 Loops 2013, Perimeter Institute Correction to the area law for LQGBH
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Pirsa: 13070046

Canonical ensemble analysis

@ We first fix a graph I' and calculate the (canonica/) partition function as first

step
r(B, N)

Zn

J m

with

N — E TLJTH‘J y and

Jym;

51} ,U e

im nj m

2 E Njm,;Mj = P.

Jym

_-[" ZJ '”r..‘ ‘”'_j HfJ ”’J‘
b

@ We use a suitable representation of the delta function to turn the partition

function into

Zr(B,N) = 5— >

{nJ m 4

@ On simplification,

Zr(B,N) =

@ If we work with Flux area operator |Barl -
ine|, or the sem|c|355|ca| ||m|t

representation of Area operator |
aj = (j+1)

Loops 2013, Perimeter Institute

27 .
dkezlk Zj:nj njmj

I—I”n n]m.- 0

s O e
dk e(2ikm;—pa;)
2T -/U Z

Jm

heai | ewand

jEN

Correction to the area law for LQGBH

M- : '
mj e B8 Z_-,. m n-""”’.‘i a; '

, the Unitary
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lI. Canonical ensemble analysis

@ In this case

O L = o (i41) [ ik(14+2) _ —ikl N
Zp([)’,N)zQA dk Cm_lzeﬂ {etk(i+2) _ g—ikly

o I=1
1 /'” dk ( 2cosk —e™° )N
Con ). \e29 —2e% cosk + 1 ’

o = /l’ﬂ"\/i'f)ﬁ,

with

which might be evaluated in the thermodynamic limit N >> 1.

@ With a transformation
k = 2tan™'(z/2)

@ the partition function

. 1 ( 2cosk(z) —e™? )N

r(8, N) /._OO ‘ I’Z'rr(l + 22 /4) \ e?° — 2e% cosk(z) + 1

7 Loops 2013, Perimeter Institute Correction to the area law for LQGBH
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lI. Canonical ensemble analysis

@ Partition unction is a unimodal symmetric distribution

N=1000

@ We would like it to approximate as accurately as possible.

8 Loops 2013, Perimeter Institute Correction to the area law for L(
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ll. Canonical ensemble analysis: Approximation schemes

@ Moment generating function for a (Non-normalized) Gaussian with a zero mean
00 1 .112
C/ dre 2%

is given by
2,2 [O0 1 (z—to?)?
M(t) = Ce 2 f dre 2 o2 |

-0

@ With the substitution z — to? = z’ we have

NAY

242 [0 1) i
M(t) = Ce 2 f dz'e 2 o2 = Af(ioc“t),

— 00

1 x2
where f(x) = Ce™ 202 and A = V2ro?2.

@ In a non-normalized gaussian distribution (with zero mean), the n — th moment

is given by
1 @2
leom drxxz"e 2 o2
Hn = 1 2
C [20 dze™ 242
9 Loops 2013, Perimeter Institute Correction to the area law for LQGBH
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lI. Canonical ensemble analysis: Approximation schemes

@ Now,
o0 1 @?
M(t) = Cf drel®e” 2 o2
— 00
eo 2 n @2
= Cf dz(l + tz + (tz) + ..+ (tz) +___)e_‘-len2_
- 00 ' n!
Thus,
_ M™(#)o
" M(t)|o
@ Now,

M™ (t)|o = A(ie®)™ £ (i0?t)|o = A(i0®)" £(™(0),

Therefore the n — th moment is

(ig2)™ £(™)(0)
u —
" f(0)
@ Variance
R AY)
g =- )
f"(0)
10 Loops 2013, Perimeter Institute Correction to the area law for L
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II. Canonical ensemble analysis: Approximation schemes

Qo rtosis

Ku
The 4-th moment is again obtained as

(io?)4 (1) (0)
J(0)

pa =

Therefore the kurtosis is given by

5 1 _ HOFD(0)
o (f(0))% °

@ The kurtosis for the distribution becomes

pa  f(@)of P (2)lo _

& [f"(z)|o)?

6[(1 — 2e%)%(e% — 1) 4 8e39(—1 + 2e7 + €37 — e27)N + 8¢%9 N?|
[-1+e°(4+€e°(—5+€?(2+ 4N)))]?

11 Loops 2013, Perimeter Institute Correction to the area law for LQGBH
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Il.Canonical ensemble analysis: Approximation schemes

@ The "excess kurtosis” in the thermodynamic limit vanishes

. Ha
lim

— —-3-0,
N =00 (7’1

enabling us to approximate the distribution as gaussian and evaluate the
partition function as

N
2log4 2—e"°
Zr(B,N) ~ |e™? - .
r(f,N) |:( \/ N :| (((3"’ - 1_)2)

@ Corresponding canonical entropy
1
S=InZr + BA = N|lnz(e) + oq| — 3 In N + const.,

with ¢ = —0dlog 2 /0o
The entropy is extremized w.r.t. the number of constituents [photon gas] to get

A 1 A
S =~ U(QU), In
4yl 2

-+ const.
4ry12qo )

12 Loops 2013, Perimeter Institute Correction to the area law for LQGBH
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Il.Canonical ensemble analysis: Approximation schemes

@ The "excess kurtosis” in the thermodynamic limit vanishes

. H4
lim

— —-3-0,
N—=o0 (7’1

enabling us to approximate the distribution as gaussian and evaluate the
partition function as

N
2log4 2—e"°
Zr(B,N) ~ |e™° - .
r(f,N) |:( \/ N :| (((3"’ - 1_)2)

@ Corresponding canonical entropy
1
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-+ const.
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II. Canonical ensemble analysis

@ We recover the B-H area law for the leading order if we take v = 0.258

_ Analysis | v |
Ghosh et. al. -~ Microcanonical LQG | 0.274 |
Ling, Zhang . N=1 SUSY LQG | 0.247 |
KL, CV | | Canonical LQG | 0.258 |

@ Recent proposals suggest fixation of Immirizi parameter is not core to obtaining
the area-law when the problem is posed in terms of local observers

@ We also obtain sub-leading logarithmic corrections with a negative signature.

@ Next we allow the number of punctures to vary.

13 Loops 2013, Perimeter Institute Correction to the area law for LQGBH
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lIl. Grand-canonical ensemble analysis

@ The corresponding grand-canonical treatment gives

oo
E(B,(I Z Z ﬁ__;L_J__ H(2J+l n —(8nyBa;—a)n;
J

N=0n;

The average quantities will be given by

O — Az

OlnZ= AZ
(N === =3 ng) = <
J

dln = L 01
A:—d,n _ ’() ln(l—/\z):—Nd,nz,
op op op

where A(a) = e® is the fugacity, and

1) = a4 e

14 Loops 2013, Perimeter Institute Correction to the area law for LQGBH
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lIl. Grand-canonical ensemble analysis

@ Using the relation
i Z ZN(,QN
N

and using the canonical partition function we get

=( ) 1 /'ﬂ dk
=lo,a) = ) sin k !
27 J_y 1 — AMa) Z;":I 2 (o) ( MHI))

sin k

with z(¢) = e~ ?(+1) and A(a) = e®.
@ Again, the partition function can be approximated (saddle-point) in the
thermodynamic limit

1

E(o,a) ~ V2rf(0)5 = ;
(0,2) f(0) V{1 = Xz(o) {1 + Ab(0)}

where

< 2 1
b(o) = ZZI(U) [‘}l‘i + 212 + '35 -1].
. { .

15 Loops 2013, Perimeter Institute Correction to the area law for LQGBH
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lIl. Grand-canonical ensemble analysis

@ Using the relation
= Z ZNeaN
N

and using the canonical partition function we get

=(o,a) = — 3in ’
2m Jm 1 - Ma) T2, 21(0) (H2ALD)

with z(0) = e~ ?(+1) and A(a) = e?.
@ Again, the partition function can be approximated (saddle-point) in the
thermodynamic limit

1
V{1l = Az(o) {1 + Mb(o)}

Z(o,a) & V2rf(0)F =

where
o0
2(0) =Y a(@)(1+1)
{=1
— 2 1
b(o) = B+ +-1-1].
@)= (@ E -
15 Loops 2013, Perimeter Institute Correction to the area law for LI
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lIl. Grand-canonical ensemble analysis

16

Large N limit is given by

Az =1

In this limit the ratio A/N depends on the chemical potential and is constant
for isothermal cases : Good intensive variable to use.

Legendre transform of In =, which is the entropy, becomes
S(A)N) =InE4+pA—aN = (N+1)In(N+1)-NIn N+ Nac(a)+ N In z(a)
and simplifies, in the limit of large N, to

_o(a) A

S(A,N)~ InN + Nlao(a) + In2(a)] = + NInz(a) + InN.

my 43

At some fixed value of the temperature, op, or of the chemical potential, o,
we find that a(og) = ap then

B A
N 4myl2ao

can be used to eliminate N

1 1 A A
S(A) ~ I:C"U + nz(ao)} 5 +1In — + const.,
Ty ao 415 al5

Loops 2013, Perimeter Institute Correction to the area law for LI
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lIl. Grand-canonical ensemble analysis

17

2

Input:

Inclusion of the projection constraint and the fluctuation in N, in large N limit
gives

- + const.

lnz(ao)] A 1
)

1
G {UU a0 a2z 2 " al

Therefore for isothermal case B-H law is obtained upto fixing the Immirizi
parameter.

The logarithmic correction now becomes of positive signature and differs from
microcanonical results.

Holds true for “photon-gas sceario” as well.

Difference of ensembles related to taking thermodynamic limits ? Introduction
of quantum hair N does not seem helping.

For zero chemical potential we reocver the same Immirizi parameter. In general
it is chemical potential dependent.

Loops 2013, Perimeter Institute Correction to the area law for LQGBH
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lIl. Grand-canonical ensemble analysis

17

2

Inclusion of the projection constraint and the fluctuation in N, in large N limit
gives

1 1 A 1 A
Lg(A) —_— o0 -+ rlZ(a.O) 2 4 b0 2. + const.
™y ag 4y 2 413

Therefore for isothermal case B-H law is obtained upto fixing the Immirizi
parameter.

The logarithmic correction now becomes of positive signature and differs from
microcanonical results.

Holds true for “photon-gas sceario” as well.

Difference of ensembles related to taking thermodynamic limits ? Introduction
of quantum hair N does not seem helping.

For zero chemical potential we reocver the same Immirizi parameter. In general
it is chemical potential dependent.

Loops 2013, Perimeter Institute Correction to the area law for LQGBH
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lIl. Grand-canonical ensemble analysis

@ Inclusion of the projection constraint and the fluctuation in N, in large N limit
gives

1 1 A 1 A
;S(A) — - |oo -+ rlZ(a._()) ~ 2 4 — In 2 + const.
™y ag 4y 2 413

@ Therefore for isothermal case B-H law is obtained upto fixing the Immirizi
parameter.

@ The logarithmic correction now becomes of positive signature and differs from
microcanonical results.

@ Holds true for “photon-gas sceario” as well.

@ Difference of ensembles related to taking thermodynamic limits ? Introduction
of quantum hair N does not seem helping.

@ For zero chemical potential we reocver the same Immirizi parameter. In general
it is chemical potential dependent.
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Discussions

The B-H area relation can be achieved for isothermal cases in LQG.

In general, the Immirizi parameter is a function of the temperature/chemical
potential.

@ Canonical/grand-canonical analysis suggests correction to area law, logarithmic
in nature but with opposite signatures.

@ Differs from microcanonical analysis

Signature of the sub-leading term is crucial for stability.

Energy ensemble in terms of local observers will make the analysis thermal.
Implications for stability (and vice versa 7).

Thank you for your attention !

18 Loops 2013, Perimeter Institute Correction to the area law for LQGBH
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Discussions

The B-H area relation can be achieved for isothermal cases in LQG.

In general, the Immirizi parameter is a function of the temperature/chemical
potential,

Canonical/grand-canonical analysis suggests correction to area law, logarithmic
in nature but with opposite signatures.

Differs from microcanonical analysis
Barbero, Vilasenor, Class. Quant. Grav. (2011).

Signature of the sub-leading term is crucial for stability.

@ Energy ensemble in terms of local observers will make the analysis thermal.
Implications for stability (and vice versa 7).

Thank you for your attention !
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