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spin-foam
A reincarnation of Regge's idea, due to J.Barrett and L.Crane,
based on discretizing the first order action: Sy = | JUAF
space-time gets sliced, each slice subdivided in 4-simplices.

Fis replaced by the product of g € SL(2,C) along the face
dual to the triangle t.

J € sl(2,C) for each triangle t is a combination of the area
tensor S and its dual *S¥ = é('”KLStKL by a real parameter
~ or an angle #:

e

TR .
J,‘_U::"‘Sr — S;U; N = —]

The area tensors S} are constrained to be 'simple’, and to
give closed tetrahedra: >°,.. S = 0.
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successful? so far, mostly in words. Somewhat unimaginative.
The technical difficulties seem to have attracted most of the
attention. Some brilliant ideas, e.g. imposing constraints a la
Gupta-Bleurer. But more needed to make the theory ‘practical’
(competive?).

Difficulties: for large quantum numbers, ~ cos(arca x angle)

instead of exp(iarea x angle). | think this is serious, because it
spoils causality (cfr. Livine-Oriti, gr-qc/0210064).

Almost all work on space-like tetrahedra. But can a triangulation
be without time-like tetrahedra? | think NO. But the idea of

specifying which are time-like and which space-like is ridicolous.
Time-like tetrahedra are tricky (cfr. F. Conrady, arXiv:1003.5652).

The competition: CDT is technically easier to set up, which has

allowed vast simulations (none so far in SF). All CDT tetrahedra
are time-like, sides d? = —a/?, violating Courant's criterium,
related to causality;

this violation disturbs me (but nobody else).
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meant to show Courant's criterium
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simplicity
The triangles t.s.... forming a tetrahedron 7 must be ‘simple’,
meaning that e.g. SMY = a'b! — a/b!, SH =alc! —alc! or:

SH*Suy =0, S7*Sg; =0

or still, that for each tetrahedron there is a normal V!, such that:

¢
2
for example, in two limit cases:

if  VI=(v20,00): Li+iKi=L+iKo=L3+1K3=0
if V' =(0,0,0,V3): L1 —yKi=Lo—1Ko = L3+ 1K3=0

can one forget the difference, and treat them together?

V,_MStM" = —sin

From an identity for ¢//KL:

MJ xcMl
*SU . Vl’ VM *St VM St
‘o vz V2
N! normal to the triangle, such that: Ny V! = N, S/ =0

v/ = VIN/ — VIN!

(eig VTMJ;_'\'TI -+ e,;f;f V,—M_fﬁ’) =0 Vter.
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spinors

cfr. M. Dupuis, L.Freidel, E.Livine, S.Speziale, arXiv:1107.5274)
two 2-spinors (uy, ty) for each triangle, with {t,,us3} = —id, 3
JL = 2tlou = (Lo + iKs)  JR = Luloate = 3(Ls + iKs)

2

Under SL(2,C) transformations u — gu,t — g/~ 1t

Closure constraints: » . ltaGaastes = 0 implies

Zrér ﬂf“tf”’ . %ZTET(UIVI-[)(SM‘? .= Cre’.ﬂl‘rdnn‘

Simplicity constraints: to go from + to L, R use: (6, = (1,0,))
FVmIM =iz Vo, b 5V IM = —io, R 5 V! to get:

0 _ib ~
e'25) V0o, (tlou) — e 2o, (uloate) 5 V! =0

'second class', but implying a relation between t, and u,:

- ()
Lt — Kt e'2 Tlas V! ugp = 0

(k¢ = 1 or any real number) a set of ‘first class' constraints.
This is just like R. Penrose's twistor equation (so what?).
They do not Poisson-commute with their complex conjugate.
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Quite smart. As a consequence:
U

o ujtr = kee'2 u r'f,\/Jr U = e’”tfut =2 (u t) = C; e'z

for two triangles: trn€nstss + Kekpe'? \/ﬁ_2 Ut €anlsy = 0
(the "holomorphic simplicity constraints’ of DFLS).

For non degenerate, non light-like tetrahedra, using
V! o,V = V2 the normal to a tetrahedron is given by:

E f.ruIFT’ut

ter

7

For the normal to the triangle

(}/ V— *S{LWI e

&N/ V0o (tlou) =

u[( 5 \/" Vfrfﬂ)ur)

For time-like tetrahedra, the x; cannot be all of same sign.

Pirsa: 13070045 Page 8/69



For the classical theory this is all very nice, and takes care of J;.
NOT much use for quantization, unless done replacing classical

variable with operators, etc... That needs extension to F
(Livine-Speziale-Tambornino arXiv1108.0369 7)

Not what is usually done.

In a J A F theory one would sum over all rep.s of SL(2,C).
The idea of Barrett&Crane, Engle-Pereira-Rovelli-Livine, ... is to
use the constraints to limit the choice of rep.s.
Example: representations of SL(2,C) are indexed by (n, p),
n integer, p real, and have Casimirs:

B2 =Lnh—ip)? -1 (IR =L(n+ip)?-1

the 'diagonal constraint’ requires (ignoring %):

- 2 . \2

e?(JEY?2 = e~ 0(JR)2 (n+ip)” _ aio _ (1+17)

t ‘ (n—ip)? (1 — i)

two solutions: V€2 = +e® or p=nv, or p = — 1.

Spinors and all the previous discussion add nothing.
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Unitary representations (n, p) of SL(2,C) act on Hilbert space
H("P): in various subgroups are reduced to direct sum of
representations. Constraints imposed on states a la Gupta-Bleuler:
For space-like tetrahedra use 'injected’ SU(2) states,

ljm >— |(n, p)jm >, the canonical basis of H("?);

VI=(Vv°,0,0, 0) < (n, p)jm|Ls + 1K3|(n p)ym’ >= 0 gives
\,, = ~j,n=2j| The rest follows: Ly + 1Ky = £[L3 + 1 K3, L4].

In agreement wih area quantization of LQG area; = .\/j(J +1).
For time-like tetrahedra: SU(1,1) states (cfr. Conrady&Hnybida)
the Casimir Q = L5 — K7 — K3 has a discrete spectrum Q > 0 and
a continous @ < 0. If V! =(0,0,0,V3): < .|L3 + _1—'K3|. >=

the rest follows, by K4 — }I_i = [L3 + 1K3. Ki+| = 0. But then:

e space-like triangles: the discrete spectrum gives ‘/) = j

and (areay) = v/ Q =~ \/JU -1).

e time-like triangles: the continous spectrum needs p = —2 |

5 = —\/52 + 31, (areay) = YV —Q = A \/52 + }1 = =7
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Unitary representations (n, p) of SL(2,C) act on Hilbert space
H(™P): in various subgroups are reduced to direct sum of
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For space-like tetrahedra use 'injected’ SU(2) states,
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the Casimir Q = L5 — K7 — K3 has a discrete spectrum Q > 0 and
a continous @ < 0. If V! =(0,0,0,V3): < .|L3 + _1—'K3|. >=

the rest follows, by Ky — }I_i = (L3 + 1K3. K+| = 0. But then:

e space-like triangles: the discrete spectrum gives ‘/) = j
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e time-like triangles: the continous spectrum needs p = —” |
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said , the trouble with this is:

it only applies to space-like tetrahedra.

in the limit n — o0 ~ cos(area x angle) instead of
~ exp(iarea x angle).

Important? YES.
It implies that there is no causality built in the model, and that it
applies only for very peculiar triangulations, if any.

So it should be modified/generalized, keeping only the
~ exp(iarca x angle) (holomorphic?) part. How?
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alternatives?

This was a sketch/caricature of the state of the art. But if one
finds absurd the a priori assignemt of space-like/time-like character
to the tetrahedra of a triangulation, then one needs an approach
that ignores this distinction.

e use the spinor formulation developed before, write group
elements and Haar measure on SL(2,C) in terms of spinors
(LST). (not attempted (yet)).

e use eigenstates of (L3, K3), i.e. the abelian subgroup they

generate, and give up using states of definite areas,
eigenstates of L3 and of the Casimir of SU(2) or SU(1,1).

Very reluctant to abandon area quantization. Physically less clear:
for a Rindler horizon K3 is the 'Hamiltonian’

E.Bianchi, arXiv1204.5122, Frodden-Ghosh-Perez, arXiv1110.4055.
The matrix to go from the canonical to the (L3, K3) basis has been
calculated (Bianchi, Huszar).
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H("P) as space of functions of light-like P = uté'u.

Lomont-Moses 1962, Smorodinskii-Huszar, 1970, E.Bianchi.

P'P =0, PP = —ulu, VIPy = Hre*"gu:‘ te;
V2 Kt Sin ,',' i

VI= 28 S itPli NEPy = Zip2ef(uft:)?

F(e®P)=el'27NF(P), < F|G >= | F*G‘;ﬁ’

space-like (SU(2)): u = e2(cos ge_' % . sin ge"'éﬂ).

P; = e®(1,sinf cos p,sin #siny, cos )

I

|(np)jm >+ \JJ(."")(H. 0, p) = cje("g_l)“e"(f “”)*’dj_m{:(ﬁ)

Jjm

time-like (SU(1,1)): v = e2(cosh ;e_'-"’:;,sinh ;ef{{)’
P; = e”(cosh 3, sinh 3 cos ¢, sinh Fsinp, 1)
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The alternative is to choose:

B—=1p

2 ), Py = e“(cosh /3, cos ¢, sin ¢, sinh 3):

) o) )
Ky — —j— . pl =2 — =2
2 )] dP! da

n n n n
states such that: LsW\) — mu(mP). koylme) — pylne)

n X (n g
\UL”’,’)((I . O, : > e!(l Fm)y olvB

The program then would be to start from these to construct
coherent states (minimal uncertainty states) and vertex functions.
Some time.
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thank vou for the attention

Pirsa: 13070045 Page 17/69



Quantum Twisted Geometry
A new coherent and discrete basis of intertwiners

Jeff Hnybida in collaboration with Laurent Freidel

Loops, 2013
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Spinors and Twistors in LQG

harmonic oscillators in LQG (Livine, Girelli)

coherent intertwiners (Livine, Speziale)

twisted geometry (Friedel, Speziale)

U(N) intertwiners (Freidel, Livine)

holomorphic simplicity constraints (Livine, Dupuis)
generating functionals (Bonzom, Livine)

spinors in LQG (Dupuis, Livine, Tambornino, Weiland)
gluing conditions (Dittrich, Ryan)

spin connection in twisted geometry (Haggard, Rovelli,

Vidotto, Wieland)

and more...
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Holomorphic representation of SU(2)

A new basis of intertwiners

4-simplex Amplitude

Asymptotics

Classical action for Twisted Geometry
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The Holomorphic Representation of SU(2)

Spinors

(")

Bargmann-Fock inner product

(flg) = / f z)dyu(z)

Orthonormal Basis

oJtmpgi—m

VU +m)l(G—m)!

(z|j m) =
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Intertwiners
Spin j subspace
VI =span{|jm) :m=—j.....j}

Intertwiners are invariant tensors

anJ

Pirsa: 13070045 Page 22/69



Pirsa: 13070045

A New Basis of Intertwiners

Suppose we have n spinors

s Zn
There are n(n — 1)/2 holomorphic invariants
(2ilzj) = @ilj — ;5
New basis of intertwiners

H[Z,"Zj)kﬂ" k,‘j = kj'j (3 N
i<j

having spins

> ki =2ji

J#EI
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The 3-valent case
Unique solution of Z#f kij = 2jj for i =1.2,3

kio=j1+j2—J3 Kiz=j1—jo+j3 kaz=—j1+j2+/3

Just the Wigner 3j symbol

3

ki o h 2 .
H[Zr"Zf} 7 X Z ( my m,  ms ) H(Zl Ui mi)
i<

mymoms =1

Combine to form an orthonormal basis of 4-valent
intertwiners (as usual)
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The 4-valent case

Non-unique solution of > ., kjj = 2ji

= hJtR—5S ka=j3tja—95
= p+p—T  ka=jp+ja—T
= htja—-U  kz=p+j3-U

Since S+ T + U = J parameterize k;j; = k;j(ji. S. T)

(zi|S, T) H[z,\z kij(Jin5.T)

This basis is overcomplete. Nevertheless

5.7)(5. 71 . (J+1)
23 IS, T = s
S.T

[1i<; ki
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The 4-valent case

Non-unique solution of > ., kjj = 2ji

= p+je—3S kas =jz3+ja— S
= p+tj3—T  ka=j+tja—T
= htja—-U  kz=p+j3-U

Since S+ T + U = J parameterize kj; = k;j(ji. S. T)

(zi|S, T) H[z,\z kij(Jin5.T)

This basis is overcomplete. Nevertheless

5.7)(5. 71 . (J+ 1)
23 Is. TIE = )
S.T

[1i; ki

Page 26/69



The 20j symbol

Contracting five |S, T) states

(8, T)

The 20j generates the 15j's

> {20j}s,.7, = {15/},

T

!

and similarly for the other four non-equivalent 15j
symbols
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The 20j symbol

Contracting five |S, T) states

(S,.T,)

The 20j generates the 15j's

> {20j}s,.7, = {15/} s,

T.

!

and similarly for the other four non-equivalent 15j
symbols
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Asymptotics of the 15) symbol

. . . . SIY(S!
Inserting the resolution of identity 1 = ) o %‘{*

SIS. T
(20j}s,7 Z{l@'}s;H<|'|'T,>

CH /
!

2 it ]l <S"'HTSI;|H55 s

S/, T! j

and using (S". T'|S, T) ~ ||S. T||?d5.5:01 7/
|5 T 2
{20j}s,. 7. ~ {15/}s H | ‘

Can we find the asymptotics of {20/}s, 7.7
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Asymptotics of the 20j symbol

The contraction as an integral

{20/}s,.7, :./'

with the action

S=YlZ7lz) +>_ ) kjnlz|z])
— —

a

has saddle points with solutions describing oriented,

framed tetrahedra, i.e. satisfying closure

| A
PEREHE 51 a=1..5

with a U(1)* x Z, symmetry for each tetrahedron.
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Geometrical Interpretation

Penrose null flag interpretation of the spinor
zi)(zi| — |zi][zi] = AilN; - o

|Z,'>[Z,'| = I'A,' (Ff T fN,' X F,') el

where N; - N, = F;-Ff=1and N;- F; = 0.

Define edge vectors Lj; = A;jA;(N; x N;) and angles

N,‘ ' Nj = COS UU F,‘ : LU — flj,:
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Gauge Invariant Data

Gauge transformation of frame vector (change of phase

of spinor)

al al cal
rlj- —>(|j- -+ O

Gauge invariant variables

- ab _ _ ba
Shape matching a7’ = o

Page 32/69
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Summary:

il A new way to do SU(2) recoupling
spinors, Gaussian integration, generating functionals
"B A new basis of n-valent intertwiners

discrete: labelled by a set of spins

coherent: peaked on closed bounded tetrahedra

a bridge between coherent and orthonormal intertwiners
closely related to U(N) intertwiners

A new {20j} symbol
generates all five {15/} symbols
gives asymptotics of {15/} for the first time
Racah formula

Asymptotics
simple generalization of Regge action
twisted geometric interpretation
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Introduction

Is there a classical theory behind spinfoam gravity? Do we get general
relativity (GR)? What is the relation to the canonical approach?

Two possible strategies to explore these questions:
m Start from the quantum theory, and study its semi-classical limit.

m Here: Start from the classical theory, canonically quantise and
compare the resulting transition amplitudes with what we know from
the spinfoam approach.

E Continuum action for spinfoam gravity

B Equations of motion: Hamiltonian formulation and relation to Regge
calculus

El Quantum theory: Inner product and transition amplitudes

Within the reduced setting of a fixed discretisation of space-time, | can show,
that spinfoam gravity comes from a classical theory. This is a version of
first-order Regge calculus, with spinors as the fundamental configuration
variables.
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1.1 Constrained BF-theory

Spinfoam gravity starts from a Holst-type

\" ‘]: / lh 7—+.—|:I“/\}\H{1l+ (1)

3
am e o

201 4 p3

Adding the simplicit nsti implies geometricity and brings us break
to GR. These are:

A
)

YapANEcpy =0, Re(EapAE =0, YapAXep=0. (2)

Peforming a 3+1 split we obtain the symplectic structure, e.g.:

h 341, a 4 AB (A (B) ca .
Il_mzf( T 513 Yap  {Uen® A7 h(q)} = 00005 0p0(p.q). (3)
p” 2

I1 ‘“” isan si(2, C)-valued vector density (a 2-form).

A . is the selfdual (Ashtekar-Sen) SL (2. C) connection.

A, B,C,.-. =0,1arespinorindices, the complex conjugate representation carries a
macron A, B, C,--. = 0,1, and all indices are moved by ¢ 43, ¢*?, .. ..

= —¢ apXap + cc.isthe Plebanski 2-form e, A eg.
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1.3 Spinors for holonomies and fluxes

Spinors can diagonalise the flux. In the frame of the initial point:

|
“.H::*jx(.xfmv (6)

The parallel transport maps the spinors into the frame of the final point:
=htpr?, Wt = ht et (7)

1

Reversing the logic, we can start from spinors (7. w?, 7. w™) and get

the holonomy:

""TH - A v
h'p == e (8)
VAL VAL
This parametrisation is not unique, there is a discrete symmetry and a
continuous gauge transformation. We also need constraints to recover

flux and holonomy: These are T w” # 0, and the

rean ning constraint : ' =T,

~
(

We introduce SL(2.C) invariant Poisson brackets:

I3 I3 13 B i3 I3
(ra WPy =08 = ~{za.0"),  {ma,0")} =08 = —~{ma.&"),

*L. Freidel and S, Speziale, f , Phys. Rev, D 82 (2010), arxiv:1001,2748
"WWwW., i ) t f ,Class. Quant. Grav. 29 (2012), arXiv:1107.5002.
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1.3 Spinors for holonomies and fluxes

Spinors can diagonalise the flux. In the frame of the initial point:

|
II.\HZ*:#'(.\J'_H;- (6)

The parallel transport maps the spinors into the frame of the final point:
= h‘l“ﬂ—”, w‘l — h‘\”;‘_“. (7)

1

Reversing the logic, we can start from spinors (7, w?, 7. w™) and get

the holonomy:

'-"\Ti-.’ — 74 v
h'p == e (8)
VALV §5
This parametrisation is not unique, there is a discrete symmetry and a
continuous gauge transformation. We also need constraints to recover

flux and holonomy: These are T w” # 0, and the

rean INg Col int: ¢ =,

~
(

We introduce SL(2.C) invariant Poisson brackets:

I3 I3 13 B i3 B
(ra, WPy =08 = ~{za.0"),  {ma,0")} =08 = —{m4.0"),

*L. Freidel and S, Speziale, f , Phys. Rev, D 82 (2010), arxiv:1001,2748
“WWwW., i t f , Class. Quant. Grav, 29 (2012), arXiv:1107.5002.

Pirsa: 13070045 Page 37/69



Pirsa: 13070045

4 The topological action discretised

Let us now look at the four-dimensional discretisation.

B

“Eimple Y -

lt ? f _‘.Pq\-,(nnhq
.’p f * face

4ekvoakhedron 7 g S:'E,‘,J

!
verdex o "'Ja'

\.l"“‘

- "'; i-{wru)

P
‘; CJ3¢
We write the discretised topological action as a sum over wedges:

, . " ' lh 7 41 . AB
Stop YAl = / = — Y Aap AF" + cc,
) ' A bps 0

W

211 5o 3

-1 pABY,

I ‘ AB '
T (Wanlrul PP (] + Han(rs A T

u‘:\\"-l]‘.;w-

| . o o L
71 Z (“.”g_r,,‘“!'”i_UH'J + “‘”;_T”. l]h“”[:‘)”‘ I_) + ce. = Z .'3,‘11,.
wiwedges

u‘:\\‘t'f]'_'va
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1.5 Partial continuum limit

m The first step is to write all configuration <\
variables in terms of spinors (74.w"), and /
additional bulk holonomies g € SL(2.C). v(

m Splitting every wedge into N auxiliary % ,““ff{
wedges, we can take a continuum limit wn .
N = oc. s

We end up with the following action on a wedge:

| [ D] (D]
-__\]7_ /t“(.,u\—fl"l+Z’,\mw“)+t‘t'. (12)

‘)

i

m Pt =7t 4 A% g (e)r” is the sl(2, C) covariant derivative into the

direction of the edge.

m To get the full action we sum over all wedges, and impose boundary
conditions such that all fluxes are continuous.
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4 The topological action discretised

Let us now look at the four-dimensional discretisation.

B

“Eimple -

lt ? f _‘.th,(n-‘n
.’p f * face

4ekvoakhedron . ﬁ S:'E,‘,J

!
verdex o "'J.“'

\.l"“‘

- "'; f-{wru)

‘; CJ3¢
We write the discretised topological action as a sum over wedges:

, A . ' lh 7 41 . AB
Stop Y. Al = / = — Y Aap AF" + cc,
) ' A bps 0

W

211 4

—11 pABY,

I - AB '
T (Wanlrl PP (] + Han(r A

W Wed 1‘_'-“-

wiwedges

| ! e . i
1 Z (lI.H:_T”lh'm_r'?u"l+1l‘m_r,,_.']h"'”[(m'_'_)+c-<-_z Z .H‘,’j,p,

H‘:\\‘l-t]'_’vh
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1.6 Adding the simplicity constraints to the theory

With spinors the linear constraints ¥r € T : n®(T)X,5(7] = 0 turn into the
following:
D= ——7maw® +ce. =0, (13a)
D 41

Fn = N‘H,-'._\_u_.l = H'L‘.'H“_‘ = (. (13b)
D =0is fi lass, and guarantees that the area is real.

[, =0is ) lass, and generates an additional su(2) algebra.
Introducing Lagrange multipliers we get the constrained wedge-action:

w o L[ D D
'H(nll.-\ f_\-k&.-.‘: ...4 oy / ‘]!{W‘\_:I —+_ :1_W.\+
] 2 Jo dt dt

(14)
—_ '._".i"u(”(?«'.u:.“] - AD (7w, w) +cc.|.

Where n“(t) € R* is implicitly defined by parallel translation:
I) (8 « OX \ X ..JJ.
locally: " (ty=n"(t)+ A" zyn"(t) = 0.
(

The full action is the sum over all wedges.
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Collecting all contributions coming from a given tetrahedron, we get the
. (A tetrahedron is the dual of an edge.)

i
t“ w — T -+ T
LA dt (1)

=2z Fa(may,wy) = Ay D(many, wny) | + ce. (16)

[ty ooxl
edge m Variation of the multipliers
Veabedno, :
|7 Adchabodve, A (1), Ay and =, gives
Gaul¥'s law and the simplicity

constraints.

m The evolution equations come
from dw and or.

- nstraints: The rotational part of Gaul¥'s law (generating
HI (2) rotanns) and the -constraint for each triangle (generating
conformdl transformations of the spinors).
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2.2 Dirac analysis of the constraints

We can write the equations of motion for a single triangle in a
Hamiltonian form:

[) A
{l!W

With the prii / Hamiltonian:

[)
— gt AN ~A gt AN
— .I/ e | (“.“ —_— l I!’ g I I

\(

(
5 ] D(m,w) + cc.

!I’ = :[.f]l“,,(p](:.w'} -+

Time evolution preserves the constraints (Gaul3's law, simplicity
constraints and area matching) provided = = 0.

This gives the secondary Hamiltonian:

H' = X)) D(7.w).
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2.3 Boundary conditions and flatness problem

Twisted boundary conditions can avoid the flatness problem*

Take all fluxes to be continuous, but allow for gentle discontinuities in the
spinors. These are those discontinuities that we can absorb into an SU/(2)
transformation of the whole tetrahedron:

3o € [0,47) : (7(0),w?(0)) = ('T 7

*Frank Hellmann and Wojciech Kaminski,
arXiv:1210.5276
*Frank Hellmann and Wojciech Kaminski,
arXiv: 1307, 1679

*Claudio Perini, ) (2012), arXiv:1211.4807v1,
*alentin Bonzom, I rof 1

ns (2012),

, Phys. Rev D. 80 (2009), arXiv: 0906, 1501,
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*Frank Hellmann and Wojciech Kaminski,

arXiv:1307.1679

*Claudio Perini, ) (2012), arXiv:1211.4807v1,
*alentin Bonzom, f ror 1

ns (2012),

, Phys. Rev D. 80 (2009), arXiv: 0905, 1501,
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2.4 |s this discretised gravity?

ndication comes from the analysis of Barrett et al*. The
equations of motion imply that around each vertex there is a unique
4-simplex with “bones” (“(ij) € R* bounding all triangles, e.g.:

Yaa[m12, ] = (o (31)5(15). (21)

The length of a bone ((ij)? = —(,(ij)(“(ij) is the same from whatever
four-simplex we look at it.

lindication is the presence of curvature in the model.

D,

iy
dt

(22a)

Tiver) {

(22h)

wap LTS

1 / AN, (220)

I‘-‘!clﬁc e
With the “good” boundary conditions we get the Regge holonomy:

bl
"If.'n—(‘ "‘F'IT".L‘,';). (23)

*). W, Barrett et al., u itotics, Class, Quantum Grav, 27 (2010),
arXiv:0907.2440
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ndication is the presence of curvature in the model.

D,

T 4 0= FAB £, (22a)
ct

Tiver) {

—n"()na(i + 1), (22b)

way LS

O
= /uu,\. (220)

B2 + 1

I‘-‘!clﬁc e
With the “good” boundary conditions we get the Regge holonomy:

+ ek
"If.';:—(‘ "‘F'IT".L‘,';). (23)

*). W, Barrett et al., { itotics, Class, Quantum Grav, 27 (2010),
arXiv:0907.2440
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3.1 Schrédinger quantisation

The primary phase space on a half link is C* @ C* 3 (7, w?), we take a

C
position representation and define the auxiliary Hilbert space

‘}{:m,\( = I-'z(l‘:-‘z-‘llv‘v'} — / | ‘]IJZ'}{;‘.A” (24)
/R ke

. " (p. k
We use the canonical basis {f,""’

[im ) simultaneously diagonalising the
Casimirs LK, L* — K? of SL(2.C) together with ? and Ls.
The first-class constraint 1) = 0 is diagonal:

(p k) 2h (p.k)

f)-’.jm - ;_3 + l (fj_ )J[I' N l)),,i;m

The second-class constraints F,, = 0 act like step operators for su(2):

v S k) } /7 . a R )
Fro fi00 = —%\ru — k) (j + k+ D) [y, (26a)

Fa.lin = -Vt k)(j =k + 1) ;50541 (26b)
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3.2 Solution space and finite inner product

- [)-constraintis first-class, we can impose it strongly, with the solution
space spanned by functions

Hp = .~w[:;1||{‘/'('M*”'A‘I ko jomy. (27)

am

FUEEEDE gre distributions in €2, but they are orthogonal and properly

Jim

normalised with respect to the inner product on the orbits:

ez /  Xpadie S < (28)
JC2/D

- [-constraint is second-class. We search for Heimpr € Haux sSuch that:
FHeimpr = 0, but F"Hmp L Hampr. The resulting Hilbert space is:

Heimpt = span{ fPU+I) (29)

I,,r'.m'

The rotational part of the Gault constraint is first-class, the other half
holds already because of I' = 0 = ). Imposing it strongly reveals the
physical Hilbert space (of a quantised tetrahedron):

l
W (wiiye . wiay) € Hohys = |..\-,k.,-u..( X Heimp! )
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space spanned by functions

Hp = .~w[:;1||{‘/'('M*”'A‘I ko jomy. (27)

am

FUEREDE gre distributions in €2, but they are orthogonal and properly
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normalised with respect to the inner product on the orbits:

IR /  Xpadie [ < (28)
JC2/D

he ['-constraint is second-class. We search for Himp C Haux Such that:
FHeimpr = 0, but F"Hmp L Hampr- The resulting Hilbert space is:

‘}{.\imp] :h]m“{./-ln'u+ll-ﬂl (29)

I,,r'.m'

The rotational part of the Gaul? constraint is first-class, the other half
holds already because of I' = 0 = ). Imposing it strongly reveals the
physical Hilbert space (of a quantised tetrahedron):

1
"l"[.,a.'( A IREEE u.'[ l)} = ‘}'{I'IW-‘ — III\"q;'t-_g-.( ®’}{.~i|up] ) .
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3.3 Transition amplitudes on a spinfoam face

m The area matching constraint glues the tetrahedra together,
revealing the usual space of spin-network functions.

m What about the dynamics?

Time evolution along an edge is governed by the Hamilton equations:

EJMZIL“WHJMW+HJ+AUHHML (31)
i \ J

In quantum theory this becomes the Schrodinger equation on an edge:

”’(ll/"" = (A ()T awp + he )y + M) Dy, (32)

(

m The D-constraint annihilates H..u.p1, therefore only the first term
survives when acting on a physical state.

m The first term acts as an infinitesimal Lorentz generator, and
matches Bianchi's* boundary Hamiltonian.

*E. Bianchi, 1 i (2012),arXiv:1204.6122
*S. Carlip and C, Teitelboim, , Class. Quant, Grav, 12(1995),arXiv:gr-qc/9312002
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Conclusion

EB The EPRL proposal for the loop gravity transition amplitudes results
from the canonical quantisation of a classical theory with a finite
number of degrees of freedom.

B | gave two arguments supporting the idea that the classical theory is
a discretisation of GR: (i) the model has curvature, (ii) the equations
of motion imply geometricity, which means that we can assign the
unique length to any of the three bones bounding a triangle.

El The spinorial framework allows to complete the canonical analysis.
All constraints are preserved in the “time” variable around a
spinfoam face. There are no secondary constraints.

Spinors are useful for the following reasons: (i) They are canonical Darboux
coordinates taking care of the non-linearities of the loop gravity phase space.
(if) They transform covariantly under the local symmetry group of general
relativity. (iif) Dynamics on a fixed discretisation of space-time simplifies.
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Thanks for the attention!

This talk is based on the papers:
m WW,, T\ rial ph S|  for con X /
Quantum Grav. 29 (201 2), arXiv:1104.3683.
m S. Speziale and WW., wistorial stri |
ransition amplitu PhyS Rev. D 86 (2012), arX1v 1207 6348.

m WW., Hamiltonian spir ravity (2013), arXiv:1301.5859.
acceptedfor pubhcat!on in: Class. Quant. Grav.

See also:

m L. Freidel and S. Speziale, m tw isted geol ries; Phys.
Rev. D 82 (2010), arXiv:1001.2748.

IMDupwsandE Livine, Holomorphic Simplici nstraints for 4

I m Models, Class. Qucmtum Grdv 28(2011) arXiv:1001.2748.

m B. Dittrich and Hohn, ¢ raint ai r variational
ms (2013), arXiv:1303.4294.

Page 53/69



Spin-cube Models of Quantum Gravity

Aleksandar Mikovic¢
Lusofona University and GFMUL

July 2013

Aleksandar Mikovi¢ Lusofona University and GFMUL Spin-cube Models of Quantum Gravity

Pirsa: 13070045 Page 54/69



Spin foams

» Problem with the classical limit: the effective action gives the
area-Regge action [Mikovi¢ and Vojinovi¢; 2011]. It was also
conjectured that the non-geometric configurations are
exponentially supressed. No proof yet.

Problem with matter: spinors couple to the edge lengths while
a generic spin-foam configuration does not define a metric
geometry.

How to introduce the edge lengths (tetrads):

1) AdS/dS BF theory: does not work [Martins and Mikovic,
SIGMA, 2011].

2) Poincare gauge theory: tetrads do not transform as
connections.
3) 2-groups

Aleksandar Mikovi¢ Lusofona University and GFMUL Spin-cube Models of Quantum Gravity
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2-groups

Category: objects and maps (1-morphisms)

2-Category: objects, maps and maps between maps
(2-morphisms)

Group = Category with one object and invertible 1-morphisms

2-Group = 2-Category with one object and invertible 1 and
2-morphisms

2-Group = Crossed module of groups: (G.H.d,r>) such that
grhe H 0he G and

t')(g g h) = g((')h)gil . (;)h) [> h" - hh!h—l -

G = 1-morphisms, G xs H = 2-morphisms

Poincare or Euclidean 2 group: G = SO(1.3) or G = SO(4),
H = R*
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2-BF theory

(G.H.0.r) — (g.h,d.) = differential crossed module
Ac Qi(a) — (A7) € (R1(g).822(h)) = 2-connection

2-group gauge transformations: g : M — G and
1 M — Qp(h)

A— g(A+ d)g_l. 3 — g_l > 3

A— A+dn, B—=0+dn+ArN"n+nAny

2-curvature
(F.G)=(F —03.d3+ AA" )

where F = dA+ A/ A.
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BFCG action and GR

» BFCG action [Girelli, Pfeiffer and Popescu; 2008], [Martins
and Mikovi¢; ATMP, 2011]

50 = / (BAF)g+ (C NGy
JM

is invariant under the 2-group gauge transformations if
g:. B—gl'Bg, C—gvC;
n. B—B-[C,n, C—C.

» GR as a constrained BFCG theory for the Poincare 2-group
[Mikovi¢ and Vojinovi¢; 2012]

' ab a ab , - .
SGR — / B?° A R.'ab + e AV, i;} — AN (Bab - ‘.‘;b(de( /N e ) ,

JM

Where R‘?‘b = d\.&,‘&’) + -L-.S ."‘.n"‘. L-L‘(‘i) and TI)’J pm— d )’d + \.{.‘i’) -".‘." f!).
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State sum for BFCG

» Categorical and path-integral considerations imply that

. E
Zo = /L_REH/:(L,)dL, > Z W:;(L At).
Jiere £5

(Rep G)F ce(ltw N)E

where L..Ap and 1, are labels for a Poincare/Euclidean
2-group representation, intertwiner and 2-intertwiner,
respectively.

In [Crane and Sheppeard; 2003] and [Baez, Baratin, Freidel
and Wise; 2008] it was shown that there are irreps of
Poincare/Euclidean 2-group labelled by L. > 0. The
corresponding intertwiners are the irreps of SO(2) if L, form a
triangle, and the 2-intertwiners ¢ are trivial. Hence

o= /bREH,l L. S Wa(L.m)

meZF

Aleksandar Mikovi¢ Lusofona University and GFMUL Spin-cube Models of Quantum Gravity
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State sum for BFCG

» The results of [Baratin and Friedel; 2007] suggest that

f_
cos Sy (L, m)
3(L, m) 1__[ H YADS ,

o=1

and (L) = L. Here Ap is the area of a triangle A | V, is the
volume of a 4-simplex o and

S, =3 maty(L).
Aco

(o)

where 1,7 is the interior dihedral angle.
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State sum for quantum GR

» Since GR can be considered as a constrained BFCG theory,
one can try to impose a discretized analog of B = (e A e)’
constraint. A natural candidate is

vma = Aa(L).

S,(m. L) then becomes proportional to the Regge action for .

A good candidate is

ZGR = / ’_‘EH/I(L()dL‘ > 1IoGvma-Aa(L)) ] ™0
JLERE 7,

meNF A a

where y((L) ~ L" for large L and r < ry in order to have
finiteness [Mikovi¢ and Vojinovi¢; 2012].
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Solving the GR constraint

» In a 4-manifold triangulation we have

4
F_gE.-E

so that

Le = Ae(my.mo.....omg). e=1.2...E;

mx = ok(my.ma,....omg), k=E+1E+2 ... F.

where ¢ (m) = Ax(A(m)).
» The Diofantine equation above is difficult to solve and may
not have solutions, so we relax the GR constraint as

me=A(Ll), e=12 .. E,
I??k:[Ak(L)]. k:E*1E+2F
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Semi-classical limit

» Consider the effective action defined by

Rel(L)+ Iml(L).

where (L) is a solution of

. E E
d5 1T (L1 )exp [ iS(L+1) =iy T(L) | .
Jee E[ll( ) p(( ) =i ())

c=1

» When S(L) = Sgr(L) or S(L) = ER(L) and p(L) = L" for

L — ~E itis easy to show that

E
M(L)=Sr(L)+r> InLc+ %Tr log SP(L) + O(L™%).

e=1

for L — ~E, where k =2 for S = Sp and k =0 for S = Sg.
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Conclussions

Zcr can give a constrained area-Regge model or a
length-Regge model, depending on how the GR constraint is
imposed.

The effective action in the semi-classical approximation can be
easilly calculated for the length-Regge model.

Amplitude for matter coupling: Winarrer x e°mR(¥L).

Spin connection for fermions: wap, + ep5 U7 p " -

Canonical quantization of 2-Poincare GR action
Categorification of LQG

Construction of 4-manifold invariants
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Semi-classical limit

» Consider the effective action defined by
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) . E E
et (L) — d* I ] m(Let1.) exp (:‘S(L +) =iy rf(L)/,) .
-R‘? e=1

c=1
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