Title: Quantum Cosmology - 2
Date: Jul 22, 2013 04:40 PM

URL: http://pirsa.org/13070043
Abstract:

Pirsa: 13070043 Page 1/114



Confronting Loop Quantum
Cosmology with Observations

Edward Wilson-Ewing

Louisiana State University

Loops '13

WE, Class.Quant.Grav. 29 (2012) 085005,
WE, Class.Quant.Grav. 29 (2012) 215013,
WE, JCAP 1303 (2013) 026,

WE, JCAP (at press), arXiv:1306.6582 [gr-qc].

Pirsa: 13070043 Page 2/114



It is generally expected that quantum gravity effects will only become
important when

@ the space-time curvature becomes very large,

@ or at very small scales / very high energies.

Since we cannot probe sufficiently small distances with accelerators,
or even with cosmic rays, the best chance of testing any theory of
quantum gravity appears to be by observing regions with high
space-time curvature.

The two obvious candidates are black holes and the early universe.
However, since the strong gravitational field near the center of
astrophysical black holes is hidden by a horizon, it seems that
observations of the early universe are the best option.
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Cosmological Observables

T he variables R, and hy are the variables that represent the scalar
and tensor perturbations, in Fourier space. The scalar power
spectrum is

k3
A% (K) = 5

and if the perturbations are scale-invariant, n, = 1.

|Rk|2 oy kns—l.

T he relative amplitudes of tensor and scalar modes are given by the
tensor-to-scalar ratio r,

A7 (k)

AR (k)

Observations of temperature anisotropies in the CMB by the Planck
collaboration, and of its polarization by WMAP, indicate that

I ==

n. = 0.9603 =+ 0.0073. (68%).
r < 0.120. (95%).
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The Goal

Use cosmological observations to test LQC.

T here exist several cosmologies that predict scale-invariant scalar
perturbations and a small r, among them

@ inflation,
@ the matter bounce,
@ the ekpyrotic universe.

As observations becomes more precise, one scenario is likely to
become favoured.
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The Goal

Use cosmological observations to test LQC.

T here exist several cosmologies that predict scale-invariant scalar
perturbations and a small r, among them

@ inflation,

@ the matter bounce,

@ the ekpyrotic universe.
As observations becomes more precise, one scenario is likely to
become favoured.

@ How does LQC change the predictions in these scenarios when
quantum gravity effects are included?

@ Are there LQC corrections (that may be small) to the
predictions that can be tested observationally?

| will focus on holonomy corrections.
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Perturbations in Loop Quantum Cosmology

O

Predictions for Two Loop Cosmologies
@ [ he Matter Bounce Scenario
@ [ he Ekpyrotic Universe

© Conclusion
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Loop Quantum Cosmology

In loop quantum cosmology (LQC), we use the same variables as in
loop quantum gravity: holonomies of A’ and areas.

So, in the definition of the Hamiltonian constraint operator, the field
strength operator is expressed in terms of holonomies of A’ around
the smallest loop possible: a loop that has an area of A, the smallest

area eigenvalue in loop quantum gravity.
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Loop Quantum Cosmology

In loop quantum cosmology (LQC), we use the same variables as in
loop quantum gravity: holonomies of A’ and areas.

So, in the definition of the Hamiltonian constraint operator, the field
strength operator is expressed in terms of holonomies of A’ around
the smallest loop possible: a loop that has an area of A, the smallest
area eigenvalue in loop quantum gravity.

T his procedure can be followed for homogeneous cosmologies.
[Bojowald; Ashtekar, Lewandowski, Martin-Benito, Mena Marugan, Olmedo, Pawtowski, Singh,

Szulc, Vandersloot, WE, .. .].

However, it is hard to use loop techniques to treat inhomogeneities.

Instead, inhomogeneities are usually treated by a Fock quantization on a
loop background; these are called "hybrid’ approaches, [Garay, Martin-Benito,
Martin-de Blas, Mena Marugan, WE, ...] and can be used for perturbations too.

[Fernandez-Méndez, Mena Marugan, Olmedo; Agullé, Ashtekar, Nelson]
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Perturbations in Loop Quantum Cosmology

One approach that makes it possible to perform a loop quantization
of both the background and the perturbations is to generalize the
‘separate universes' approach to LQC. [Wands, Malik, Lyth, Liddle]

a(l1)
®(1)

a(4)
®(4)

a(7)
@(7)
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a(2)

®(2)

a(s)

P(5)

a(8)

@(8)

The idea is to work on a lattice, where each cell
iIs homogeneous, and the gravitational and matter
fields vary from one cell to another. Then, after
some gauge-fixing, the standard LQC techniques
can be used in each homogeneous cell. It turns
out that interaction terms are easy to handle.
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®(1) P(2)
a(4) a(s)
P(4) P(5)
a(7) a(8)

@(7) @(8)

! v .

®(3)

a(6)

@(6)

a(9)

P(9)

The idea is to work on a lattice, where each cell
iIs homogeneous, and the gravitational and matter
fields vary from one cell to another. Then, after
some gauge-fixing, the standard LQC techniques
can be used in each homogeneous cell. It turns
out that interaction terms are easy to handle.

Then, for states where the perturbations are small, the scalar and
diffeomorphism constraints for each cell, H(Z) and H, (Z), weakly

commute with the Hamiltonian CH.
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Effective Equations of Lattice LQC

In the FLRW models, the effective equations provide an excellent
approximation to the dynamics of sharply peaked states, throughout

the entire evolution including the bounce.

We will assume that the effective equations will be a good
approximation for the perturbations too.

Page 15/114
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Effective Equations of Lattice LQC

In the FLRW models, the effective equations provide an excellent
approximation to the dynamics of sharply peaked states, throughout
the entire evolution including the bounce.

We will assume that the effective equations will be a good
approximation for the perturbations too.

Defining
z=a/p+ P/H.

the effective equation for v = zZ/R coming from lattice LQC is

v’ — (1 —

Z

2 144
/)) Vv — v =o0.
[ c

where p. is the critical energy density of LQC.
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The Anomaly Freedom Approach

Another way to obtain effective equations for perturbations in LQC is
to follow the anomaly freedom approach.

Working at the effective level, correction functions are added to the
classical constraints in order to represent holonomy or inverse triad
effects. Then the constraint algebra typically no longer closes, so it is
necessary to add some counterterms in order to ensure that the
constraint algebra remains free of any anomalies. [Bojowald, Hossain,

Kagan, Shankaranarayanan]

When this is procedure is followed with holonomy corrections for
perturbations on a flat FLRW background, the same effective
equation is found for v as in lattice LQC, [Cailleateau, Mielczarek, Barrau,
Grain]

Z

144
v — ( 2/)> Vzv—z—v:O.
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An Aside: The Constraint Algebra

A modification to the constraint algebra for the truncated constraints
appears in the Poisson bracket of the two scalar constraints:

20
{H[N1]. H[N-]} = (1 B ) H[NLO? N> — N7 Nyq].
[
Recall that

{H[N1]. H[N>]} = —s HL[N1O7No — NoI?Nq].

where s = —1 for Lorentzian space-times and s = 1 for Euclidean
space-times.

Does this mean that the space-time becomes Euclidean near the

bounce? The results of Hojman, Kucha¥ and Teitelboim seem to
argue that it does. [Bojowald, Paily]
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An Aside: The Euclidean Scalar Constraint

T he scalar constraint in loop variables is

EFEPey, Fop" ( s )
R — - ({1 - = g PR +2/gA.
2V4a V2 v va

Do the s terms appearing in the action change signs?

He = s
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An Aside: The Euclidean Scalar Constraint

T he scalar constraint in Ioop variables is

EPEPeY, (3)
He = s Az\/_ —(1——)\/_ R + 2\/q /.

Do the s terms appearing in the action change signs?

T his is most easily checked in the flat A 4 0 FLRW model, where

BG)R = 0. The LQC effective scalar constraint is [Pawlowski, Ashtekar]

2 Spt= sin® jic A
£ 871G ~2 A 3)°

and we see that the sign between the two terms never changes. So it

seems as though the space-time does not become Euclidean at the
bounce point after all.

Maybe the results of Hojman, Kucha¥ and Teitelboim do not hold
here because these are truncated constraints?
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Predictions from LQC

Let's return now to the main focus of this talk, and use the
holonomy-corrected Mukhanov-Sasaki equation in order to determine
whether LQC effects may modify the standard predictions.

T here exist several possible cosmologies, among them:
@ Inflation [Bojowald, Calcagni, Tsujikawa; Agullé, Ashtekar, Nelson; Linsefors,
Cailleteau, Barrau, Grain, ...],
@ Matter Bounce,

@ Ekpyrotic Universe.
T he matter bounce and the ekpyrotic universe are two alternatives to
inflation where scale-invariant perturbations are generated in a
contracting universe.

T he presence of a bounce is necessary for these two models, so they
seem to fit in quite nicely with LQC.
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Example: The Matter Bounce Scenario

T he matter bounce is an alternative to inflation where a contracting
dust-dominated universe with

P = 0. = P~ a >
turns quantum vacuum fluctuations into scale-invariant fluctuations,
just as an exponentially expanding universe does. [Wands]

If there is a bounce, continuity arguments give some hope that the
perturbations in the expanding post-bounce era will also be
scale-invariant. [Finelli, Brandenberger]

However, the specifics of how the perturbations travel through the
bounce depend on the detailed dynamics of the bounce, and also
whether the equations of motion for the perturbations are modified

as they go through the bounce.
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Perturbations in the Matter Bounce

T he classical solution to the Mukhanov-Sasaki equation is

Th(—1
\/ 2( )H(él)(—kf})-

.

vi(1)) =

where the numerical pre-factor is chosen so that v, are quantum
vacuum fluctuations at early times (1) — —o0),

Vi ~ ie*“’-k’/_
2k
Then, when the modes exit the Hubble radius as the bounce is
approached, R, = v, /z contains a growing scale-invariant term,

k——i 2

/
Ry ~ k32 +
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Evolution Through the Bounce

In the long wavelength limit, the LQC Mukhanov-Sasaki equation is

ZII

v, — — v, = 0. Vi = A1z + Asz
K 1 >

1 (lﬁ
z z2

where z ~ (t2/t3, + 1)°/°/t. The solution for R = v./z is
Pl

. 7T t
R ~ k3/2 & k=3/2 | ¢, ( tan(t/tp) +— — ) — .
" p1(arctan(z/tp) + 3 (t/tp1)2 + 1

Pirsa: 13070043 Page 26/114



Perturbations in the Matter Bounce

T he classical solution to the Mukhanov-Sasaki equation is

Th(—r
\/ 2( )H(él)(—kf/)-

P

vi(1)) =

where the numerical pre-factor is chosen so that v, are quantum
vacuum fluctuations at early times (1) — —o0),

Vi ~ ie—iﬁ(:/.
2k
Then, when the modes exit the Hubble radius as the bounce is
approached, R, = v, /z contains a growing scale-invariant term,

k——i 2

/
Ri ~ k3/2 + .
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Evolution Through the Bounce

In the long wavelength limit, the LQC Mukhanov-Sasaki equation is

ZII

vi, — — v = 0, Vi = A1z + Asz
K 1 >

1 (lﬁ
z z2

where z ~ (t2/t3, — 1)°/°/t. The solution for R = v./z is
Pl

J . 7T t
Ry ~ k372 + k—3/2 | tp ( t t/tp) + — ) — .
- p1(arctan(z/tp) + 3 (t/tp1)2 + 1
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Evolution Through the Bounce

In the long wavelength limit, the LQC Mukhanov-Sasaki equation is

Z’f *r) l_
v, — —v, = 0. Vi =A12—~A22/ %
z , z
where z ~ (t?/t3, + 1)°/°/t. The solution for R, = vi/z is
. Iy t
Ry ~ k*/2 + k=22 | tpy (arctan(t/tp) + 5 ) — .
- pr{aretan(t/te) = 5 ) = /ey + 1
The k-dependence is determined by demanding that for t << —tp,
, k—3/"2
Ry ~ k3% + 3
']

in agreement with the classical result. After the bounce for t > tp,
k—3/2

>

R ~ k32 + k73/2 +

13

the dominant constant term for long wavelengths is scale-invariant.
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Evolution Through the Bounce

In the long wavelength limit, the LQC Mukhanov-Sasaki equation is

Z’f *r) l_
v;’(’—?vkzO. vszlz—wAzz/ (2—12/
where z ~ (t?/t3, + 1)°/°/t. The solution for Ry, = vi/z is

. Iy t

Ry~ k¥?2 k=2 | tp (arctan(t/tm) + 5 ) — .
- pr{aretan(t/te) = 5 ) = G /tm)? + 1
The k-dependence is determined by demanding that for t << —tp,
3/2 k—3/2
Ry ~ k> +
k e

in agreement with the classical result. After the bounce for t > tp,
k—3/2

>

R ~ k32 + k73/2 +

7>

the dominant constant term for long wavelengths is scale-invariant.

Pirsa: 13070043 Page 30/114



Results for the Matter Bounce in LQC

The same procedure can be followed for the tensor perturbations
(although the LQC corrections to the Mukhanov-Sasaki equation for
tensor modes are slightly different), and we find that:

@ Initial vacuum fluctuations give scale-invariant perturbations in
the post-bounce expanding branch,

@ [ he scalar and tensor perturbations have the same tilt,
@ T he tensor-to-scalar ratio is small, r ~ 103,

@ In order to match observations, p. ~ 1072 ppy.

In most matter bounce models, r = 0.25, so LQC predictions are
different from the expectations coming from general relativity here.
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The Ekpyrotic Universe

The ekpyrotic universe is a slowly contracting space-time

a(t) = (—t)”. 0O < px 1.

with one or two scalar fields » with some potentials V() that mimic

a perfect fluid

2
P = wp. w = — — 1.

3p
In the contracting branch, the Bardeen potential becomes

scale-invariant, though not the comoving curvature perturbations .
[Khoury, Ovrut, Steinhardt, Turok; Lyth]

If there is more than one scalar field, then the entropy perturbations
ds are also scale-invariant. [Finelli; Lehners, McFadden, Turok, Steinhardt]
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The Single Scalar Field Case

The Bardeen potential contains a growing mode in the contracting
branch that is scale-invariant,

N

k—i
: o

D ~ k—l,f’2 e

What happens on the other side of the bounce?

By solving the LQC Mukhanov-Sasaki equation in the ekpyrotic
universe, we find that in the expanding branch of the universe

k—3;’2

']

D ~ k—l/2 e kl;"2

Since the last term will decay rapidly in the expanding universe, the
dominant term for long wavelengths goes as k—
spectrum.

1/2 and has a blue

Pirsa: 13070043 Page 35/114



The Two Scalar Field Case

If there are two scalar fields, then entropy perturbations can become
important. Assuming initial quantum vacumm perturbations, as the
bounce is approached the growing mode of ds, is scale-invariant.

Entropy perturbations can source curvature perturbations. From this
entropic mechanism, the curvature perturbations become [Lehners,

McFadden, Turok, Steinhardt; Buchbinder, Khoury, Ovrut, .. .]

kl_/2 . .

____kj.____k—ﬁ._
/)] '

already in the contracting branch. Now we can use LQC to determine
the form of the comoving curvature perturbations in the expanding
branch,

Rk — k—l/2 e

~3/2 —1/2 1/2 3/2 k=
Ry ~ k S+ kT + kT 4+ k7T + :

1]
and we find that the dominant term is scale-invariant.

Pirsa: 13070043 Page 36/114



Results for Ekpyrotic LQC

@ [ he ekpyrotic scenario with a single scalar field is not viable in
LQC.

@ [ he two scalar field realization of the ekpyrotic universe agrees
with observations: a nearly scale-invariant power spectrum, and
no tensor modes.

@ [ he predicted values for the tilt and amplitude of the scalar
perturbations depend on the specific form of the potentials for
the scalar fields.

@ [ he dominant term in the constant mode of R, can be
determined in the classical regime before the bounce; LQC
corrections do not affect it.
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Conclusions

@ LQC effective equations with holonomy corrections for
perturbations can be obtained by working with a lattice of
homogeneous cosmologies.

@ [ hese effective equations can be used to see how perturbations
travel through the bounce, e.g. in the matter bounce scenario
and the ekpyrotic universe.

@ [ he matter bounce and the ekpyrotic universe with two scalar
fields are both in agreement with the results of Planck.

@ Observations of tensor perturbations with r = 0.01 would rule
both of these cosmologies out.

@ Next steps: inflationary models going beyond the V() ~ »°

potentials, non-Gaussianities, anisotropies, and more.
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LOOP QUANTUM COSMOLOGY IN THE COSMIC MICROWAVE BACKGROUND

I -J. Grain (IAS, Orsay)-
-B. Bolliet, L. Linsefors, A. Barrau (LPSC, Grenoble)-
-T. Cailleteau (Penn State)
-C. Stahl (Univ. Paris Sud)-
-J. Mielczarek (Cracaw University)-

*
‘

- - -
. i
i :
. F X 1

1
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LQC-model of the Universe :
v~ Background evolution : Bounce and inflation
v’ Perturbations (scalar and tensor) : the observables !

GRAND REBON

Power spectrum for primordial > CMB angular
perturbations (at the end of inflation) i power spectra
v Based on holonomy corrections (inverse volume not considered here)
v H i LQOC STD
Assume the following small scale limite PP (k — ) = P27 (k)
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2
e e oBRL . dis B
The line-of-sight solution : (/7 — <aB'£maB'£m> — I(Af (k /kH)) P, (k)dk
A transfer functions : probes from the end of inflation to today
Py primordial power spectrum : probes the (contraction, bounce and) inflation

-

Y Y
Described by P, Described by A,

Inapplicability of L.O.S. : break the history of the Universe in two parts
v’ After the end of inflation : the standard cosmic history

v~ Before the end of inflation : the Universe is dominated by the scalar field (no
radiative transfer, particles production)
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The Hubble scale today : k,,~2.3x10“ Mpc? Typical scale of LQC at the bounce : k  ~(8nGp_)/?
if k<k,, the mode cannot be observed if k<k , LQC affects the power spectrum

LQC observed in CMB if k >k, today : (k,(1,)/k, (1,)) =exp(N(1,.1,))
k*(ta) s | Lp,'l 5 Ninf< 70-90 (depending on the reheating and superinflation)

> (, =k, (15)/ky(1y) assuming A ,(k/k,) < d(k/k, — ()

B—mode power spectrum

o
General relativit i K3 -
Y 10 k.=107?2 Mpc ’-“/"'"\
Toy-model for LQC R ~
&~ 1072 k.=10* Mpc*! o -
< "M o’ 2
£ 3 -3 ~ . ‘w‘.v"‘
- - - - -
é' ‘5 _' 0 —__\' P P - . . - “'. - \‘ _
o “
; ~ . e o‘.'.o -
= ,2.. 1077 ’,'.‘,w s‘_‘. -
8. o= e’ "‘ -~
— - s .* a .~
S _ = 107%}| PR ~—— Standard primordial |
5 2 PP simieieieess Standard lensi N
2 o, K.(t,) Y g Bounce K= 10~Mbo-! _
k [Mpc1] 10 ',o“ ——————— EPIC—-2m nolse
& aidasl asd ——a . 1 i 1
4 0.001 001 0.1 1 0
10 T . 1 T 10 100 1000 T
Multipole ¢
Large length scales small length scales Large angles small angles

MIELCZAREK, CAILLETEAU, GRAIN, BARRAU, Phys. Rev. D 81 104049 (2010)
GRAIN, BARRAU, CAILLETEAU, MIELCZAREK, Phys. Rev. D 82 123520 (2010)
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:2 \ - . - ".' -"
- - -
g 2-. 10 ‘|- e’ ‘_o‘ N -
8‘ ': - - - O". ..-‘
- - - o -
2 = = 107%} PR =~ Standard primordial =
5 z . o e g:_:mrdk. .I'I°.| :
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4 0.001 0.01 0.1 1 10
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MIELCZAREK, CAILLETEAU, GRAIN, BARRAU, Phys. Rev. D 81 104049 (2010)
GRAIN, BARRAU, CAILLETEAU, MIELCZAREK, Phys. Rev. D 82 123520 (2010)
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I What are the major outputs of a CMB experiment ? I
PLANCK temperature map and C,’s i ARG S A B AR A, PR
Angular scale Yoo s DA
an 18 1 0> i R : e A R N S Ty e "‘f:’:
6000 T T, AL e e A N AR
A S E T L

5000 !
—— 4000 i A
[ ] f
= [
== 3000 B
Q‘ rI I‘ J.-'.‘ ".‘

2000 ‘ WA A

1000 i ""f s

LHQ‘K St
"_"“"--.......__
0 - - - - "
2 10 50 500 1000 1500 2000 2500
Multipole moment, ¢
I CMB maps, CMB angular power spectra are mandatory... but not surricient 1! I
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FROM ANGULAR SPECTRUM TO PRIMORDIAL SPECTRUM (I1)

A final output LIKELIHOOD FUNCTION: /.(68,) = Prob(C{™ 16,)

£.(6,) < Prob(8,)

P 6 I (anb.\ .
( i £ ) PIOb(( -;lf’,\ )

dual object: relates observed spectra to predicted spectra assuming a theoretical framework

A simple example:

((--?h.\' il (--;h [6']))

1
L(B,)) = —=——— xexp <
V25,161 ‘( 20716,]
with C["[6,] given by the line - of - sight solution

LOS assumes a specific shape for the theoretical C,’s, that is a specific shape for P, (k)
=2 any constraint on e.g. the inflaton potential assumes pure inflation
=>» the prior probability for LQC model is set to zero

2 steps process:
v

With CMB, we directly constrain the primordial power spectrum
v

Translated into constraints on a specific model e.g. inflaton potential
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6000 |

Temperature C,’s as measured by

PLANCK 5000 |

— 4000
cJ
=
== 3000

-

o
2000

1000 |

0

Tension with inflation at ~¥2.50 I

Constraint on the typical scale of LQC :

500 1000
Multipole moment,

Very good agreement with a

inflationnary P(k)

k_(to)/k,,(to) = 50
v’ For k(t,)>50 x k,,: primordial spectrum should be identical to inflationnary prediction

v’ For k(t,)<50 x k,,: primordial spectrum should be suppressed and/or oscillations
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4 T T T T T T T T T T T T T T T T T T
10 Excluded by PLANCK results on temperature
I k,(ty) )k, (1y) =50

107
k*(fo)/kn (15) =1

10° k,(tg) =1L,

LQC scale at the bounce, k ,(tg) [PI. u]

136 138 140 142 144
Number of e-folds from the bounce to today, N(t,, t,)

This assumes that :

P (k > k)= P>'""(k > k,)
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v LQC could be observed if k,(7y)/k, (15) >1
v" From PLANCK results, LQC parametr space regions not excluded if k. (fo)/kH (1) < 50
v" Current prediction of LQC shows that k  (t,) falls in that range

v" CMB data could be used to constrain LQC model of the Universe

v CMB firstly probes the primordial power spectra (asuming classes of models)

v One should go through the computation of the LIKELIHOOD for any quantitative
conclusions

BOJIOWALD, CALCAGNI, TSUNKAWA, Phys. Rev. Lett. 107 211302 (2011)

Still to be done for holonomy correction
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Duration of slow-roll inflation as
a prediction of effective LQC

Linda Linsefors

Laboratoire de Physique Subatomique et de Cosmologie

July 2013
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. K
Modified Friedmann equation: H?* = ,—\p (l — ﬁ) , K: = 8

-

Inflaton field: V(p) = > ok =5 ¢ +3HPp +m?¢p =0

——> Predict length of slow-roll inflation

Pirsa: 13070043 Page 50/114



) K
Modified Friedmann equation: H?* = ;p) (l — ﬁ) , K: = 8

Inflaton field: V(p) = > ok = ¢ +3HPp +m?¢p =0

——> Predict length of slow-roll inflation

Pirsa: 13070043 Page 51/114



Classical inflation

H? = 3P ¢ + 3HDP + m?¢p = 0, m = 0.2 mp,, K: = 81G
&
| o
|
| Y A Y ‘ \ Y Y Y
B
|
|
| |
4 | ol m¢
i
|
i |
19 |
A A A A A A A A

1.1
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HZ

Classical inflation

i . . .
%p, ¢+ 3HP + m*¢p = 0,
&
|
Y Y Y A
| o
| | | !
| o
| "

m = 0.2 mpy,

Slow-roll inflation

Re-heating

K: = 8

1.2
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Classical inflation

H? = =0 ¢ + 3HDP + m?¢p = 0, m = 0.2 mp,, K: = 811G
&
| b
|
B
|
J | | | PSPPI
[
| |
] | T mao
i
|
| | |
10l i
A A B A A A A A

1.3
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Classical inflation

H? = f—;p ¢ + 3HDP + m?¢p = 0, m = 0.2 mp,,
&
| S
v Y Y \ Y - |. Y v
| L, H pPHp. | i
[
\
] f v
| |
| | |
| | |
’ A . A A A L A
|

K: = 8mG

maeo

1.4
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. K . . .
H? = 3P b+ 3HP +m*¢p = 0, m = 0.2 mp,,
&
|
| |
v Y Y \ Y \ v
|
J ' | PP | PSPPI
[ [
| \ |
- T ] . Y
| |
[ [
| |
| |
| ‘ | }
1ol |
’ A A A A A | A B
| |
, 5 2T
ﬁ)(* 0.41 pP{' N = Z‘n(d)xtui'f)“ —

Classical inflation

5 (”I(p};tur'f )2
=

/

“\

= 811G

mao

1.5
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LQC inflation

H? =%p(1—pﬁ), ¢ + 3HDP +m?*¢p = 0, m = 0.2 mpy, K: = 81G
-
& &
,_,// N V2p /// SN v2p
rd A ) ( \
. i | ;
/’/‘ ‘ SN ZV VAT \
\ ' |
ll S e e S \ mao ( S s s S ﬁ__l“. - % mao
U NERTE W,
\ v J r/ A
\ ' . y / A \ A y /
\\ / g \\ I' //
~. _—;—_ |~ ) -~ ns —~

2.1
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LQC inflation

H? = —=p (1 —ﬁ) ¢+ 3HDP +m?*¢p = 0, m = 0.2 mpy, K: = 811G

(oY

Slow-roll inflation Re-heating

2.2
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LQC inflation

. K . : .
H? = ‘p (1 —ﬁ) ¢+ 3HP +m=¢p = 0, m = 0.2 mp,, K:= 811G

Slow-roll inflation Re-heating

2.2
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LQC inflation

K . : .
H? = %p (1 _pﬁ) , G+ 3HP +m=¢pp = 0, m = 0.2 mp,, K:= 811G
& &

Slow-roll inflation Re-heating

2.4
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LQC inflation

K . : .
H? = lp (1 —ﬁ) , G+ 3HP +m*¢pp = 0, m = 0.2 mp,, K:= 811G

3 Pec
& b
0.08,
4 6.06 | 4 -
4 - p(
«
—CIC‘G ‘|C ;3-‘- I: 6 0 :Srrl(b t ] m@
»
r
Slow-roll inflation
2.5
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LQC inflation

K . : .
H? = %p (1 _pﬁ) , b+ 3HP +m*¢pp = 0, m = 0.2 mp,, K:= 811G
-

2 pe

. 2 4 [k
(N) = (Zn((\bstart)z) ~ §11‘1 (E % (‘) ’ AN = (N)

2.6
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| —-- II‘
T H—,me
‘II‘ "y va —
/8 m 2 [« )
| J ‘_‘» v 3 K i 3 p(‘
. . P 4 [K
<N) = <Zn(¢)start)z) ~ §1n (E E -

LQC inflation

¢ +3Hp +m2¢p =0, m = 0.2 mpy,

K:= 8rrt(;

2 pe

2.6
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LQC inflation

H? = 3P (1 —i) , ¢+ 3HDP + m?¢p = 0, m = 1072 mp,, K: = 81G

& &

3 | ‘
- \I' | | |“ | -~
|
| ‘ | ||\ | s p(
0.002 | . |11
| ‘I A
"l |
2m |l (|
P, | i | |
0.001 r/ i |
K L/ i
i v |l \
i M me
| | /- -
| !

* |
NY = (2 2y = 21n (X [ AN ~ JN
(N) = 2rt(Pstare)”) = s~ 3P ) ~ /(N) >
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LQC inflation

¢ +3Hp +m?¢p = 0,

m = 1073 mp,, K: = 8rtG
&
2 Pec

‘i‘ [l | If
003 Il. [ I
[ 11 ] [
If
| | | I| |
o.002 kIl W |
| I ‘I 1 '
2m 1 .
- e | i 19
K S [/ [ |
——— 2 ; Il |
T 1)
T YT *_ mao
| | 7 P =
[ !

* |
. . 2 4 [K
(N) = (Zn(ﬁbstnrt)z) ~ §11‘1 (E gpc) ’
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AN = /{N)

2.7
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Initial conditions:

mao(t = 0) = /2py sin(S)
H(t = 0) = /2py cos(S)

C P |
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Initial conditions:

maop(t = 0) = /2py sin(d)
Pt = 0) = /2py cos(S)

/) P
A
m
VK
o006 | —olos be P 88 L7
» y
s

3.2
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Initial conditions:
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y

- -1
maop(t = 0) = /2p, (1 ——“iifc’ Sin(25)) sin(o)

|t =0) =2 (1 -

-0+

J3Kpo

4m

—1

5111(25)) cos(6)

3.3
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4m

e _W)‘l
kq‘)(t—O)—,/ZpO(l 2P0 sin(28))  cos(d)

m

( e -1
maop(t = 0) = /2p, (1 — 3?”)0 Sin(Z(S)) sin(o)

Initial conditions: <

S K ) .. A 5
H? = ,—Lp (1 — L) b +3HPp +m=~¢p =0, m=1.21 X 107 °%myp,

3.4
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mqb(t = 0) = ./2p0 (1 - :(n ° Sll‘l(25)) sin(&)

Initial conditions: <

\ Pt =0) = /2p, (1 ——“ik'oo sm(25))—l cos(S)

m

K .. . _ ,
H= =3 (1—5), ¢ +3HpP +m=¢p =0, m = 1.21 X 107 °myp;,
-
N dP (V)
_ ) dN
lGOJ w054 _
0.04¢} § I
140 0.03l
120 0.02}
| I
p- T 3I o R qt1|ﬂ”|“| ||hit R N
2 dd 3 <7 110 120 130 140 150 160 170
3.5
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- o
maep(t = 0) = /2p, (1 ——“i’:f"’ sin(25)) ' sin(6)

Initial conditions: < 1

\ Pt = 0) = /2po (1 ——”i:fk’ sin(25)) cos(d)

K iy . ‘
H2=§p(1—pﬁ), ¢+ 3HP + m2¢p = 0, m=1.21 X 10" °myp,
C
dP (.X)
sgn(dy) dp dx
3.0F : .
- 3.0
2'8:/ 2.5
2.6f
. 2.0}
2.4f
" 1.5
2.0f 1.0t “l“
: 0.5}
N N 5
o 3rx 23 R N — mlﬂﬂ"[""lm
’ & : S 1.8 2.0 2.2 . 26 2.8 3.0 X

X = 59”(¢B)¢B 35
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Barbero-lmmirzi parameter, from black hole entropy: y = 0.2375
V3
Critical density, from minimum area: Pec = == 53 — 0.41
32mT=Yy
P(N > 65)
P(N > 65) Do y
0.5 1.9 x 10°5° 6.6
0.95 5.4 % 10°° 10.1
0.99 3.2 x 10°° 11.9
':l:1 p(‘

m = 1.21 X 10~ %myp;,
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Barbero-lmmirzi parameter, from black hole entropy: y = 0.2375
a2 s . . . — 3 — 0 41
Critical density, from minimum area: Pe = 353 s =0
P(N > 65)
P(N = 65) Pe y

0.5 1.9 x 10°° 6.6
0.95 5.4 x 10°° 10.1
0.99 3.2x 10°° 11.9

e ::I" ::I"' iilil Pc

m = 1.21 X 10~ %myp;,
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Conclusions

* If we put arbitrary initial conditions at about
plank density, then we generally get a lot of
inflation. This is not unique for LQC!

 If we put arbitrary initial conditions in the
early pre-bounce universe, we get enough

inflation, and a very peaked probability
distribution for the number of e-folds
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QFT in Quantum Spacetime

A. Dapor

Wy
University of Warsaw

in collaboration with J. Lewandowski and J. Puchta

PI. 22 July 2013

Phys. Rev. D 87. 063512 (2013) [arXiv:1211.0161]
Phys. Rev. D 87. 104038 (2013) [arXiv:1302.3038]
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€@ notivation

e construction

)

o first question: which canonical variables’

o second question: which dressed metric?

o conclusions
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motivation

Answer a couple of questions about QFT on (cosmological) QS:
@ Which phase space variables should we quantize?

© Which dressed metric should we use in the case of massive fields (inflaton)?
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full theory

action

S [ d¥x =g R— —g"0, T, T —Vi(lT)— —g"d,00,d — V4(d)

b D)
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full theory

action

S [ d*a \/-— g R — T;"“ri},,/d\./ — Vo (T) — Tt.:“‘.mi‘”(_"i.r)\.r_-"F — V()

K v v

canonical analysis >IN =T x Iy xT,
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full theory

action

I I
BV e e b i v ‘ Y.
> R — =8 Yoo T — Vi(l) — Tt\’ "O,DA D V()

s= [ dvv=z

-

canonical analysis >IN =T x Iy xT,4
b
Suv 3 (‘/(ﬂ)*ﬁ” )

T — (T.pr)

H — {(,f)_ ]f",:,)

plus C and C,.
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o construction
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kinematical splitting

cauchy surtace X = [ = cosmological coordinates (x“) € [0, 1)”
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kinematical splitting

cauchy surface X = 1" = cosmological coordinates (x9) € [0, 1y
I\ In ( 1:0("/J l\ (/;\(f“.p)

d? P

1 —
_— ] _.‘l
Ta — -t ’f‘r.-/r_[\_
A ‘f}_c/’.\'/'
) ) 3
/:'/ ‘ = ‘LJ /27

Page 85/114
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kinematical splitting

. "3 . . 3
cauchy surface X = 1" = cosmological coordinates (x9) € [0, 1y
Q = I‘lll( ]:O“h l\ (/;\(f“.p )
T, — 2e%S 4p [\ d3 x b
7 [ PxT
0 T3
/J'] ' — ’ d7xpy

the “rest”

OGap(X) = gap(X) — €O
onP(x)y = a%(x) e o—2a §ab
o7 (x) = T(x) — TV

opr(x) = prx) — py

Od(x) = d(X)

Ot 4 (X) : 7T (X)

Pirsa: 13070043
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gauge-fixing

F-transform the rest (oy(x) — Oo¥(k)): and projection of geometry modes in scalar,

vector and tensor sectors
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gauge-fixing

F-transform the rest (oy(x) — Oo¥(k)): and projection of geometry modes in scalar,

vector and tensor sectors

S A 0
{H.,-'T“} = 1. {/'[]}_/}ll )’ = ]

{(/,HI/\ )_/)”(/\’}} — ‘);ir‘)ﬂ-k" {("l-(/\ L(“’/’j(/\!)} = Ok L’ !(‘l"’(/\ |_|‘3z"1',,:,(/\’ l} = Ok’
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gauge-fixing

F-transform the rest (oy(x) — o¥(k)): and projection of geometry modes in scalar,

vector and tensor sectors

Ja— ()
{lav. )} = 1. {/'“'_/Jl/)lz |

{(/,”(/\ )_/)”(/\’}} = ‘);ir‘)ﬂ-k" {("l-(/\ ’.(3/’1(/\!)} = Ok L’ !(‘l"’(/\ ].l‘"z'.",!.(/\’ )} = “A,.(’

T-expansion of € and C', (1st order):

C' Ek):= CV(k), Mk) :=kC k). Vk):=viCP(k), Wk):= wrC (k)
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gauge-fixing

F-transform the rest (oy(x) — o¥(k)): and projection of geometry modes in scalar,

vector and tensor sectors

r~ (
{v.m,} = 1. (TO p7) =1

{(/,”(/\ )_/)”(/\’}} = ‘);ir‘)ﬂ-k" {("l-(/\ l.(“’/’j(/\!)} = Ok L’ !(‘("’(/\ ].l"’f&',.’.(/\’ l} = “A,.(’

T-expansion of € and C', (1st order):

C' Ek):= CV(k)y, Mk):=kClVk). Vk):=viCP(k), Wk):= wrC (k)

reduction to I'¢:

C9 >~ 0 > /J(,”' \,""‘Afrfr [6 — 2%V (TD))
(k) =0, M(k) =0 = /1] = /1|| Viree )~ P° = P~ (Viree)
Vik) = O, W(k) = O > /r; — /?;I Viree ) /)" — /;1( Y free )

Page 90/114
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gauge-fixing

F-transform the rest (oy(x) — o¥(k)): and projection of geometry modes in scalar,

vector and tensor sectors

—r ()
.,y = 1. AT p3 "} =1

{(/,”'/\ )_/)”(/\’)} — r‘r;:‘,(n‘p. {("l-(/\ |.(3/’j(/\’ )} = Ok L’ !(\(,f’(/\ ]_()ff,.g,(/\’ l} — (\;\JQ'

T-expansion of €' and C', (1st order):

( 'l{“_ !'_‘( f.,) g— ("].(/\ ). ;1!(/\ ) = /\”( ‘:}I!(/\ ). \F(/\) — \‘”( -(l;ll(/\ ). lt.l/\) — H'”(‘::]'(/\}

reduction to I'¢:

( () ~ () — /,(I“I — \’:‘.'f‘t\j“‘_:...‘(1 . :(‘hu\'li’!'(('l,
k) = 0. Mk) = 0 —— /r' = /?II Yiree ) /;-1 — /)'1( Viree )
ViKY = O, W(k) = 0 —> /;R — /);l Viree ) /J'l — /;1( Y free )

G-fixing to I':

»I-|{J} r = (). (/] — (I.‘ — (/; f— ‘/-1 — ()

Pirsa: 13070043 Page 91/114



hamiltonian(s)

(Vree) and 7' uniquely define the dynamics:

d

adT

()( }‘.”t(') — {()( )’f“( ). /}Ii}
where

k#0.m=5.6

Pirsa: 13070043

hp = Huom = > Hy,— > H[ = > H]
k#0 I’
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hamiltonian(s)

(Vpee) and T uniquely define the dynamics:

d

AT

hp = Huom = > Hi, = > H[ = > H]
k#0

K#£0.m=5.6 K

()( }’.”t(') {()( }‘fllt ). /’l'}

where

In particular

2]

| KTT * l |
I L | (8 e ber 2 - 2 Y rrr - 2
H, = H__ ~’(n,p,r(fxa- - w/(/\)) + S K0T (k)™ + 5™ VIOT (k)

HY

k hom

5 1 Y y ] )
= H . = (1.’3'"4,(/\ )<= + - eIk “O0D(k)- + 5 e ey ‘;"(‘r(-’:(/\ )~
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)

o first question: which canonical variables’
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the problem

focus on HZ-:

Y
I KT - l 2

H = H! (opr(k) -

hom

5
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the problem

focus on HZ-:

Y
-y -

I A"‘"’ S B I dar 2 G r? 7 S B 2
~ (H/J/(/\l-— 8 n/(/\a) + = (e k= + V) oT (k)

H! = H!

hom

= h.o. Hamiltonian tor M-S var’s

-—

KT, o
Qk) := oT (k). Pk) := opr(k) —oT(k)
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the problem

focus on HZ-:

)
KJT

I L or e . I . ) P e >]
~ (f‘i/)/(/\ } — - O (k l) ~+- 5 (("l”f\_ -+ (‘h”\ 7 )c\[(/\ )"

H! = H!

hom

= h.o. Hamiltonian tor M-S var’s
KT, -,
ol (k)
~

Q(k) := oT (k). Pk) := opr(k)
= not a canonical transformation if the background is dynamical!

”
(. P(k)} = —5Q(k) # 0
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a solution

canonical transtformation

KJT

K = ) Al 'y Al
= o + ol (k). Moy = M O = o1 (k). Pir := opr(k) — ol (k)
4 - D)
produces
l ) 4 ] ) .
7 L 1 )< 2 } : Af_hi; rr? 6 ﬂ.&.(k)‘ ;
H] = Hyho5 | PE+ (KFate™% + viia® ) Of |
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a solution

canonical transtformation
!\ r . > ] . -
@ = a + Jrml(/\ ¥ s Rag = Mq. Ok = 0T (k), Pi = opr(k) —

produces
I
|

hom ~»

HI = H

hybrid quantization:

@ Polymeric G sector: Lo(E., d1tBohr)

-

f\a'\” o
ol (k)

~

@ Schroedinger T sector: L-(E.dQy). with Q,\ = QO and Py = —id/ OOy

Pirsa: 13070043
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)

o second question: which dressed metric’
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the problem

the Hamiltonian has the torm (also for test field &)

l ) ’7 y )
H = Hyom — Hyom~ |9t + K2t qf + V7o |

hom ~»
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the problem

the Hamiltonian has the torm (also for test field &)

H = Hyom — Hyom 5 |9t + K2t qf + V7 a4 |

hom ~
at quantum level. we have

H = Hyom — ' Hyon®pi + k2 (HPa*H VYo g + V7 (H2a®H V) @ ;,;}|

hom hom hom hom
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the problem

the Hamiltonian has the torm (also tor test field &)

l ) > ] Y T 5 )
H = Hyom — H;! ‘,:; + /\"u"(/; + V7 (/gl

hom ~
at quantum level, we have

- ~ I ~ > 3 -~ ) - >] > ) - Y - y)
. 1 o A2 2 1/2 ~4 /2 &> 22 4 v’ 1/2 ~6 1/2 S A2
H = Hyom — = |Hpom @ Pr + k- (H T "H, [ “)@ g + V"7 (H, [~a°H, )caf/,\l
assuming that W.(v.qy) = W) @ (¢ ) with f(;—{‘l": = Hypom 'Y, we can trace away
the G part, obtaining

. ‘/ f <l.[1nalm> ~ 2 / 2 <l.‘rhn]:.n:‘.( il‘f{n]n;{T) ~2 \.” <[.[hnl|.n:“{hl.!hnln.nj) ~2 /
[ () = P K - i t - i |V (gr)
(/T : <//iltlllll> <l,hnlm>
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the problem

the Hamiltonian has the torm (also for test field &)

l Y Yy y b sy ]
H = Hyom — Hyon s [P + K2 aql + V7 a4} |
at quantum level. we have
Il I"/ - I II | P "): -+ / 2 (,'/ 1/2 - l]l 1 )) o 2 " \'It (’"{ 1/2 A r'/'l 1/2 ) ® -2
' hom > hom = P T A hom ¢/ hom & g 7 hom ¢/ hom = L

assuming that W.(v.qy) = W) @ (¢ ) with i;—{‘l": = Hyuom WY, we can trace away
the G part, obtaining

- - 1/2 - - 1/2
. d <l[|n]m> ~ 2 2 <l/hnm o 1}!hnm ) ~2
(g ) = S Pr + k-

/ -
dr — <l/
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the problem

the Hamiltonian has the torm (also for test field &)

1 D) rr ) ]
H = Hyom — H-! \p; + k2dt g + Vg

hom ~
at quantum level. we have

- - I ~ > ] > - > - ] > ] - Y - ]
) | . A2 2 1/2 ~4 1/2 , A2 rrr 1/2 ~6 1/2 . A2
H = Hnom — > llh“ln @ P + A (l/hnm & Ilhnm ) @ g + | (’/hnm & /lhum ) @ gy |
assuming that W .(v. gy ) = lI"r’( V) @ (¢ ) with f(;—{‘l"; = H.,“,,,‘l"r’. we can trace away
the G part, obtaining

- 1 r—=1/2~47r 1/2
; d o / ) = </[hnm> /A,_‘ _+_/_‘ </lhnm ” !!hnnl ) -/_‘ N / )
T Ik - 5 L \ ~ I n (g
2a - <//|1nm>
compare with Schroedinger eq tor QFT on classical FLRW spacetime
d5* = =N(T)2dT* + a(1)? ((/.\'3 + dv? + dr_:):
. d N (.5 2~4,2] .,
f‘/‘ W (gr) = > Pr Kk a g | W (qgr)
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the problem

the Hamiltonian has the form (also for test field &)

Y

1 3 3 Y 2y
H = Hyom — Hyon 5 | P2 + Kdtqi + V7 a®q; |

hom ~
at quantum level. we have

~

AL @ pt + k2 (H V2ot @ gf + v (H

hom hom

Il — l.]hnm o

hom hom

the G part, obtaining

. d (llh ]I!I> ~2 A 2 . //I E' \”l ;//| -‘\- 2 -~ 2
{ (e ) = : Y, + K- S ————gr | (gr)
JdT / _*1 / K ‘ l/t ‘ /A !/
compare with Schroedinger eq tor QFT on classical FLRW spacetime
d3? = =N(T)?dt> + a(7)* (dx? + dy* + dz?):
cd A > 4
! "»/’:((/.(' f— |/):( + K< (/.(- f."’f.v((/;\]
dr 2a°

2 eq’s for 2 unknowns = unique sol g, (dressed metric)

1/2 6 £y—1/2 "2
a°H ) ® (/gl

assuming that Wo(v.gx) = ‘I"_,’( V) @ (i) with i%‘l"r’ — H.,“,,,‘l"‘,'. we can trace away
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the problem

the Hamiltonian has the torm (also tor test field &)

l 5 ] ) .p P 3 »
H=H,mw— H l ‘f’k 4 /\'u'lqi' + V" f/,'\'l

hom ~
at quantum level. we have

3 ’ I r—1 o A2 2 (= 1/2~475—1/2\ o ~2 | rrr (Fp—=V1/2~655—1/2  ~2
H = Hyom — 5 |Hyom @ Pi + K7 (H @t H )@ g8 + V7 (Hy PaCH ) @ & |

L4

assuming that W, (v. ) = W20) @ v (qp) with i W0 = Hyyom'P0. we can trace away
the G part. obtaining

(/ <l‘lh.>||n> 2 > //‘ \ .l”l'[/f-“"' l -2

] (g ) = pr + k- - ‘ —qg; + V" g | W (qr)
dr 2 . // - K K
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the problem

the Hamiltonian has the torm (also tor test field &)

|
H = ’lln\ln o [!hnlnl 35

P+ /\"(I-i(/';\- + \'”dhf/;’\'l

at quantum level. we have

~ ~ I - - » - y -~ Y - Y
. 1 A P P 1/2 ~4 1/2 -~ 2 @ rrr 1/2 ~6 1/2 — 2
H = Hyom — 5 |Hyom @ Pi + K2 (H @t H )@ g8 + V7 (Hy PaCH ) @ 3 |

assuming that W, (v. ¢ ) = W2() @ & (qp) with i W0 = Hpom P2, we can trace away

the G part. obtaining

- di | - Cqr)

Ly (H _
——qgr + )

d (H
.f‘ ij, i ( ‘/!\ ) = hom
(/T :

'”,1:.

/',f = k-

;'i"r( 2"}‘%/7"2 + i le (1/.\“2 -+ t/‘\“2 -+ (/:2)2

QFT on classical FLRW spacetime 32 =

1/ L)

. (/ \ M ) 1 .9 s A
! Uelgr) = == |Px + Ka gy + ) i+
dT 2¢”
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the problem

the Hamiltonian has the torm (also tor test field &)

Loy e
H = H,,m — H l ‘/)L‘ -+ /\"(I'i(h'\' + V7 (.'hf/;'\'l

hom ~

at quantum level. we have

H = H . H=' @p2 +k2(H V2 H VA 2> + V7 (H-V2a°HV?) @ &2
_ hom D) hom &/ A b ( hom d hom ) ) i 7 ( hom o hom ) >

assuming that W, (v. g ) = W2(v) @ W (qp) with i W0 = Hpom P2, we can trace away
the G part. obtaining

1

d CH' 5 | /,-//‘_?.?«-’f/‘,f.‘-_\ : i
i ey ) = st 7w + k- —_— = g + V7 i | W(gr)
Jr 1k > & (- /i /i /k
QFT on classical FLRW spacetime 3% = —N(7)?d 7t + a(7)? (dx? + dyv? + dz7):
N (/ \ -~ 3y 1 A0 'y .
I} ; r,ff,((“ ) = ——< |[Pr K=t i + \ o+ t_-’f,((/,( )
aT il

3 eq’s for 2 unknowns = no sol for generic £ and V!
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a solution

consider a Bianchi I effective metric:

3 -_" Y Y Y

d3® = =N=d7t> + a” (dx* + dyv?) + b7 dz?

with axes oriented such that £ = (0. 0. k)
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a solution

consider a Bianchi I effective metric:
d3® = =N=d7t> + a (dx* + dyv?) + b7 dz?

with axes oriented such that £ = (0. 0. k)

QFT on (QS):

d CH ! > |, (H CAtH ..
f‘/rf,-’i_.(c/;\ ) - 5 P + k= ‘ i Ly o + | n !."/:(1//\)

QFT on g,,:

. . Y 1 A0 . N |
l o) = — prp + k~a“qg; +V G| wCqgr)
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a solution

consider a Bianchi I effective metric:

2]

s -—,-\-."‘(f."'

) Y L

+ a” (dv® + dyv?) + bPdz?
with axes oriented such that £ = (0. 0. k)

QFT on (QS):

d </‘/h.fmj> . CHTV2HMH, 5
f‘/rf,.f;_.lc//\ ) - > P+ 'S i N o + ! on !_a'/l.(tj,q)

QFT on g,,:

. ‘f \ ) Y 1 A" P a ")
! () = ‘ Py +k~a’¢g; + qr | wCqgr)
dT 2a-b

3 eq’s for 3 unknowns = unique sol g,,!
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conclusions

@ M-S variables are not suited for canonical quantization of the perturbations and
the background
a good choice of variables exist. and quantization i1s at hand
once the quantum theory is reached. the concept of dressed metric can be
applied in the case of a massive field. but the emergent metric “felt” by the field
modes is of the Bianchi I type rather than FLRW
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