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Spin foams: Dynamics for quanta of space

» spin network states

» dynamics as state sum model

NEEEY

T (T S

expected to project s on the kernel of the Hamiltonian constraint

» At fixed foam o,

.\.T H| S ]_[ \f|]f|]_[ \,[[, . .?-4 | ~ ‘ 'D”‘T‘ ]f,‘“" LY

Jfste [

Similar to LGT (.‘l.‘,‘ = dimjy exp{—3S¢|js.al}, A, fixed by gauge im-';n'i:mm-)

but no background metric structure, no fixed lattice spacing
boundary dynamics in the dual cell Regge action to the vertex

a priori no continuum limit to take, » dofs recovered by summing over all graphs

Speziale — SF overview Introduction: spin foams, twistors and the EPRL model
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State of the art

» Main arena for testing: EPRL model
Related constructions: FK, KKL

I I y | \f aratn \ I
BO (same linear constraints, but based on non-commutative Fourier transform)

» Explicit computations hard but possible

Many active research groups worldwide
M.Hl\/ research directions

semiclassical dynamics
histories of fuzzy twisted geometries and intriguing link with twistors
effect of quantum corrections
coarse granining/continuum physics
applications to cosmology and black holes

matter coupling

(More than 100 papers in 2011-2013)
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Twistors and the Lorentz algebra

A
Lol = 2lm(mw). -

N ¢ A iff null twistor, s — 0

» twistor space T carries a rep. of SL(2,C) and SU(2,2)

mw Lorentz invariant, helicity s = Im(7w) conformal invariant

T.'_uh;" b oo
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Twistors and the Lorentz algebra

A
Lol = 2lm(mw). Or = wadw? + ce

N ¢ AL iff null twistor, s — 0

» twistor space T carries a rep. of SL(2,C) and SU(2,2)

mw Lorentz invariant, helicity s = Im(7w) conformal invariant

holonomit

p——— o Yy e . . m?2
["*SL(2,C) is a symplectic submanifold of T

T vs. T: the scale of the twistor determines the value of the Casimir of the algebra
- the area of spin foam faces
» conformal invariance broken enforcing equal dilatations, Re(rw Re(#7w
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Twistors and the Lorentz algebra

A
Lol = 2lm(mw). Or = Tadw? + ce

N ¢ A iff null twistor, s — 0

twistor space T carries a rep. of SL(2,C) and SU(2.2)
mw Lorentz invariant, helicity s = Im(7w) conformal invariant

‘ nerators N NO I T | ¢

-~ o e p . m2
["*SL(2,C) is a symplectic submanifold of I

T vs. T: the scale of the twistor determines the value of the Casimir of the algebra
> the area of spin foam faces
conformal invariance broken enforcing equal dilatations, Re(rw) — Re(7w
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Constraining the incidence relation and simple twistors

» Incidence relation, w® — iX*7 . X ¢ M iff null twistor, s — 0

o simplicity constraints

iy ; | ;8
K+ ~L" =0 . ) — nAA il

I A’

convenient to separe the norm r.

(Related to lapse and shift, the extrinsic curvature will later come from the variations of r)

mao 1
] ¢
! f Ll

Not null: Re(nw) = vIm(7mw) # 0
isomorphic to null twistors:

Z v Zoy=(wh %), 8(Zy)=0

Isomorphism depends on v, reduces to the identity for v — 7
Corresponds to pure Einstein-Cartan, no Ashtekar formulation for purely null twistors

3. spinors’ null poles aligned to the time normal

A simple twistor is a v-null twistor with a time-like direction picked up

Defines a spacelike plane, associated with the simple bivector (A — 11D 11)

B — (1 - ~Ax )M, niB" = 0. ™ !

Speziale — SF overview Introduction: spin foams, twistors and the EPRL model
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Schematic picture

A set of twistors all satisfying the constraints
This gives me a collection of ruled spacelike planes floating around
Glue them together to form a discrete geometry

How | al gau nvariance derine I Unique convi :\.|".-\ round each no
One obtains a collection of flat polyhedra plus information on their embedding

a discrete version of the phase space (g.,. N"") of GR, called twisted geometn

Extrinsic geometry = : In

Reduced SU(2) holonomy is the lattice equivalent of the AB connection:
a non-trivial embedding able to probe the boost part of the Lorentz group

Speziale — SF overview Introduction: spin foams, twistors and the EPRL model
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Quantization

» Quantize initial twistorial phase space, a la Schrodinger:

iho'’y, flw) e L3(C2, d*w) = w, 7= il

(W

impose constraints: simplicity on half-links, then area matching on full link

(4,7) e T" . °

the result are homogeneous functions,

(F) 7, , =\ . (~73.0) a3 A (™~ 707) . Jeliyg—. 1) . | ‘
(,' (W, ) . _/‘““ l.&)/ (n . '/J”‘ (W) Js ], W o Perelomov

rrn jrm

.r . A LOQG . ' . :
different representation of ‘H " than cylindrical functions
carries a representation of the holonomy-flux algebra as ladder operators

» Fluxes: Schwinger representation of SL(2,C)
» Holonomy: composite operator, need ordering prescription
possibile also to consider angle operators corresponding to the spinor phases

| | 1
nu | | N [ | I

And the equivalence with the usual cylindrical functions?
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Quantization

» Quantize initial twistorial phase space, a la Schrodinger:

iho'’y, flw) e L3(C2, d*w) W= w7 il

(W

impose constraints: simplicity on half-links, then area matching on full link

(4,2) e T* . °

the result are homogeneous functions,

(F) 7., =\ . AY2.2) 0 YD) = (Ya) Jetiyyg-1) . [
G (w,7) := fim " (W) ] (7). Jim W) 1, M|, W)Perelomov

mrn jrm

.r . A LG . . . :
different representation of ‘H " than cylindrical functions
carries a representation of the holonomy-flux algebra as ladder operators

» Fluxes: Schwinger representation of SL(2,C)
» Holonomy: composite operator, need ordering prescription
possibile also to consider angle operators corresponding to the spinor phases

not |
L | [ : I

And the equivalence with the usual cylindrical functions?
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Manv research directions

semiclassical dynamics

effect of quantum corrections

coarse graining

applications to cosmology and black holes

matter coupling

imber of ults!
More than 100 papers in 2011-2013

Very hard to give justice to all the work that has been done

Speziale — SF overview Bird's eye view '11-'13
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Classical dynamics

» EPRL model leads to Regge action on a 4 simplex

» Lorentzian propagator Bial
(inverse square distance sc .alang of area correlations also for Lorentzian signature,
completely spacelike boundary)
higher order correlations FRo. '} 11 (recovery of Regge 3-point function)
addressing the quesTic')n of the cosine vs. exp projecting cos Sp to e'“R Engl
role of parity i
(How to implement insensitivity to orientation, i.e. |e/e// e} F J)

v

Speziale — SF overview Bird's eye view '11-'13
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Semiclassical behaviour

C . - y 1 KL
Plebanski action S(e,w) = \Tr[(« + =1)B A F(w)] + Praxi B A B"

' .. . N 9’ JKL m
Simplicity constraints: B! A BEE L dIRETY B A B) = 0

Why does it work?

Speziale — SF overview Bird's eye view '11-'13
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Semiclassical behaviour

Plebanski action S(e,w) = §Te[(« + L) B A F(w)] + Pruk

' .. . N 9’ JKL m
Simplicity constraints: B! A BRE L IRLT (B A« B)

Why does it work?
| U o3y ) k \
Urbantke metric vVog Juv ﬁf f)’w.“::_r/r’,,-,,f ik, B!J = (Bt BY)

SU(2) B-field: “cubic root” of the metric with internal symmetry s{(3)

Decomposition into irreps:  d ¢ (2.0)D (0.2)D(1.1)D (0.0)

(1.1)D (0,0): ldentify SD and ASD metrics

(2.0)D (0, 2): Reduce internal symmetry  sl(3) x sl(3) — so(3) x so(3) = so(3,1)

Relaxing “Weyl| components”: larger internal gauge group
= no extra dofs but modified dynamics

Relaxing “Ricci components”: the two metrics independent from each other

= bi-metric theories, extra dofs

SD Plebanski action (7 — £i): only (2,0) components present

Speziale — SF overview Bird's eye view '11-'13
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Semiclassical behaviour

Plebanski action S(e,w) = \Tr[(» + 21)B A F(w)] + ®ruk

TN ; J L JKL
Simplicity constraints: B! A BRE L dIRLT (B A« B)

Why does it work?
| 8] a3y ) k .
Urbantke metri \ ”1 Gpw ﬁf f)’“”f}::_r lr’,,',,( gk Hf-f = (B, BY)

SU(2) B-field: “cubic root” of the metric with internal symmetry s{(3)

Decomposition into irreps:  d ¢ (2.0)D (0.2)D(1.1)D (0.0)

o (1.1)D(0.0): ldentify SD and ASD metrics

e (2.0)D(0.,2): Reduce internal symmetry  si(3) x sl(3) — so(3) x so(3) =~ so(3,1)

Relaxing “Weyl| components”: larger internal gauge group
= no extra dofs but modified dynamics

Relaxing “Ricci components”: the two metrics independent from each other

= bi-metric theories, extra dofs

SD Plebanski action (7 — £i): only (2,0) components present
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Semiclassical behaviour

Plebanski action S(e,w) = §Te[(« + L) B A F(w)] + Pruk

SUETIY ; J L JKL
Simplicity constraints: B A BRE L JIRLET (B A« B)

Why does it work?
| 8] a3y ) k \
Urbantke metric V=g Yuv ﬁf H,ur-“::", Bs,cijk. B! = (B!, B")

SU(2) B-field: “cubic root” of the metric with internal symmetry s/(3)

Decomposition into irreps:  d ¢ (2.0)D (0.2)D(1.1)D (0.0)

e (1.1)D(0.0): ldentify SD and ASD metrics

e (2.0)D(0.2): Reduce internal symmetry  sl(3) x sl(3) — so(3) x so(3) =~ so(3,1)

Relaxing “Weyl| components”: larger internal gauge group
= no extra dofs but modified dynamics

Relaxing “Ricci components”: the two metrics independent from each other

= bi-metric theories, extra dofs

SD Plebanski action (7 — £i): only (2,0) components present

Speziale — SF overview Bird's eye view '11-'13
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Quantum corrections

¢-deformation and finiteness M. Hal
interpretation as cosmological constant

Regge action behaviour in appropriate limit (1’ vA » 7 » 1)

Radiative corrections
Self-energy diverges logarithmically in A (taking natural face weights)

Relation between IR divergences and continuum gauge symmetries
bubble divergences and lack thereof in the Barrett-Crane model

Definition of coarse graining & ittrich-Helly mi
Fixed points in 2d spin net toy models

Effective action

Various approaches to the key question of continuum physics

Compute radiative corrections and find relevant graphs for given process

Study continuum limit as in lattice or tensor networks
[

Resummation of underlying GFT /tensor model

Speziale — SF overview Bird's eye view '11-'13
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Quantum corrections

Various corrections present:

| metric perturbative expansion, Sp|[¢" + h| = Sy

( !’ .H.‘z

f

¢ ;,‘ﬁH

Foll/y)

v

i

'R 4 o(l/7)

( p corrections

refined graph correction

(A expansion in GFT )

1st vs. 2nd order action

Speziale — SF overview

Bird's eye view '11-'13
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Quantum corrections

Various corrections present:

| metric perturbative expansion, Sp|[¢" + h| = Sy

( !’ .H.‘z

f

¢ ;,‘ﬁH

foll/y)

v

L

'R 4 o(1/7)

( p corrections

refined graph correction

(A expansion in GFT )

1st vs. 2nd order action

Speziale — SF overview

Bird's eye view '11-'13
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Quantum corrections

Various corrections present:

| metric perturbative expansion, Sp[¢" + h| = Sy + GSq +

"R 4 o(l1/)) (p corrections 1st vs. 2nd order action

v

"R 4 o(l/9) i ... refined graph correction

(A expansion in GFT )

Juantum 1
. Do they have a metric interpretation? Polyhedra picture still relevant?

. Do they grow as we refine the graph, thus spoiling Regge's continuum limit?

3. What is their continuum interpretation? Can we match with EFT, in what
framework? Modified Plebanski action?

Speziale — SF overview Bird's eye view '11-'13
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Boundary states and symmetries

Usual QFT are defined with asymptotic boundary conditions
Spin foams are naturally defined on finite regions: general boundary formalism

W,lx,y) 'p‘fluh O(x)Oly) I\'|‘r;| \IJ,I,|”|

\\‘

q
W, [g]: semiclassical boundary state peaked on a classical configuration in phase space

» induces a background to expand around (graviton calculations)
» possible to analyse isometries

What is the specific property that encodes asymptotic flatness and Poincaré invariance?

How about different properties, e.g. BHNHG?

Analysis of boundary terms for Lorentzian general boundaries
hi-W\ ) | [

exponential matter degeneracy?

Treat generic Lorentzian 4-simplices

Speziale — SF overview Bird's eye view '11-'13
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Spin foam cosmology: some results

» Derivation of the Friedmann equation in dipole cosmology with Lorentzian signature
Dipole with N links and Friedmann equation

[7(N) symmetry guide to isotropic sectors

Beyond the dipole: some undesired contributions
turn out to be subdominant Kiselo Lewar

Possible extension to anisotropies
|

Studies of singularity resolution

Link with LQC
nd

Speziale — SF overview Bird's eye view '11-'13
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Spin foam cosmology: some research directions

quantum corrections to the Friedmann equation
their dependence on higher order graphs, on the choice of boundary state

treat k' # 0

stregthen the comparison with LQC results
match with the effective equation description

Use as a toy model to investigate the role of the various different corrections at stake

Find observables depending weakly on the specific choice of semiclassical boundary
state, such as in LQC Agullo, Ashtekar |

Speziale — SF overview Bird's eye view '11-'13
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Spin foam cosmology: some research directions

» quantum corrections to the Friedmann equation
their dependence on higher order graphs, on the choice of boundary state

» treat k' # 0

stregthen the comparison with LQC results
match with the effective equation description

» Use as a toy model to investigate the role of the various different corrections at stake

Find observables depending weakly on the specific choice of semiclassical boundary
state, such as in LQC Agullo, Ashtekar |
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Conclusions

Spin foams with respect to Madrid:

Improved understanding of the spin foam geometry

Improved control over the quantum corrections

Many new tools and results to deal with continuum physics

Applications to cosmology and black hole physics

Many pieces are still missing!

Semiclassical interpretation on arbitrary cellular decompositions?
Geo or non-geo interpretation of the quantum corrections?
Dynamical description of BHs?

Matter coupling still to be developed

Numerical evaluations still limited

Many research directions to explore, many young and motivated people

Speziale — SF overview Conclusions
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Conclusions
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Questions

e What does (the most simple) radiative correction in a realistic 4d
Lorentzian spin foam model look like?

@ Does it introduce new elements in the theory?

e How divergent is the Lorentzian EPRL-FK model?
(As much as the Euclidean one?)

,

o
oy mir#?

Aldo RIELLO (CPT Marseille U.) LOOPS13 2/19
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Motivations |
Divergent SF (and GFT) amplitudes

Tackle the issue of divergences in realistic 4d Spin Foam (SF) and Group
Field Theory (GFT) models

@ SF with unconstrained internal hypersurfaces generally diverge
(bubbles)

@ These divergences are likely relevant for the continuum limit
- renormalization

@ Does renormalization wash away the nice properties of our models?
- consistency issue

@ Even in finite (g-deformed ) models some
amplitudes will be very large, because the inverse cosmological

constant /s very large (A = ( Slanck/\)il ~ 10120)
N

oy ¥

Aldo RIELLO (CPT Marseille U.) LOOPS13 3/19

J;
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Motvations ||

Divergences are related to diffeos

In 3d: good understanding of the intimate relation among
bubble divergences and discrete diffeomorphisms

Also, hints towards a connection with the sum over orientations

[confirmed by melon analysis]

N,

oy

Aldo RIELLO (CPT Marseille U.) LOOPS13 4 /19

J;
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Why melons?

(4+) The simplest bubble

J,

N,

oy

Aldo RIELLO (CPT Marseille U.) LOOPS13 5/19
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Why melons?

(4+) The simplest bubble
(+) Central in (coloured) Tensor Models and GFTs (most diverging

building block = role in 1/N expansion, renormalization)

(—) Topological sphere, but dual to a degenerate triangulation

™

N~

LO (CPT Marseille U.) LOOPS13 5 /19

,

o
oy mir#?
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The Lorentzian EPRL-FK model

Vertex amplitude

The Lorentzian EPRL-FK vertex amplitude is obtained by restricting the
SL(2,C)-BF one to the y-simple representations, defined by

ORI

oY)
— .//SL(2

yim) = |y.Jj,m)

C)

,

o
oy mir#?

~.Aldo RIELLO (CPT Marwallls U;) | e R
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The Lorentzian EPRL-FK model - Ii
Edge and face weights

Edge weight chosen to be 1 in spin representation (trivial gluing P)
Renormalization engenders corrections

[cf. Bulatov model and later in this talk]

Face weight fixed to the SU(2)-BF value of 2/ +1

[as required by SF composition invariance a /a Atiyah]

IMPORTANT

These choices of edge and face weights strongly influence the convergence
(divergence) properties of the SF model

,

o
oy mir#?

..Aldo RIELLO (CFT Marsdllla U.) . R
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The amplitude of the melon

W 4 (na.na.ja) = Z /.]—[dgadga H A";bi”l l—[ Agext

Japt” @ fint:ab f ext:a

where for external and internal faces, respectively:

Ag ext __ Oa;naY}:,ga_leY[:,gaYyUa;Ffa>

in : SU(2 Foel 1
Agbl L= (zJab+1)Trjab( ) (Yng lgaY}f) (\ - lga\ y)]

,

o
oy mir#?

Aldo RIELLO (CPT Marseille U.) LOOPS13 9 /19
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The amplitude of the melon - 1l

Source of divergences & regularization

W.#(nanaja) = Z /Indﬁ».adaﬂ'.; [] -"'\_'_,}1“ [I /1,‘{; o
) f ext:a

i

{Jap a f int:ab

@ The integrals on SL(2,C) at fixed internal spins are finite

oy ¥

Aldo RIELLO (CPT Marseille U.) LOOPS13 10 / 19

J,
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Main techniques (& approximations)

@ Large spin analysis within the internal faces (stationary phase technique)

@ Decoupling of the internal from the external faces

- effective 3d geometry (related to spike normal section - next slide)

@ All spins scale together

N | "’}

oy ¥

Aldo RIELLO (CPT Marseille U.) LOOPS13 11 / 19
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Main techniques (& approximations)

@ Large spin analysis within the internal faces (stationary phase technique)

@ Decoupling of the internal from the external faces

- effective 3d geometry (related to spike normal section - next slide)

@ All spins scale together

oo

oy ¥

. Aldo RIELLO (CPT Marsliis U.) | EODE S T
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The geometrical interpretation

Going spiky or, better, going large (on the inside)

tetrahedral section ~ N\
of the spike

-..Aldo RIELLO (CPT Marsdllis U.) ... EOOR S L
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The calculation - |
The melon scaling
Careful analysis of space of stationary points and its symmetries

- partial amplitude scaling

- the melon diverges at most logarithmically in the cut-off

K
|\W.z|| ~ log (_)
Jo

,

o
oy i

Aldo RIELLO (CPT Marseille U.) LOOPS13 13 / 19
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The calculation - |
The melon scaling
Careful analysis of space of stationary points and its symmetries

- partial amplitude scaling

- the melon diverges at most logarithmically in the cut-off

K
|\W.z|| ~ log (_)
Jo

Scaling agrees with previous studies of the Euclidean version of the model

(Obtained with different techniques)

,

o
oy mir#?

Aldo RIELLO (CPT Marseille U.) LOOPS13 13 / 19
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Comments

o Naively, fixing K = A ~ 10'?° (inverse cosmological constant)
~ estimation of melon graph largeness at different scales

» e.g., at Planck scale: jo ~ 1~ [|W 4|| ~ 280

@ The new gluing TL}),:
» T 4P with P the bare EPRL-FK (and BF) trivial gluing.

(Though, lim j, —sc0 ’II‘% —P )

» is not a projector

e Face and edge weights strongly influence the divergence degree.
However, provided the graph is divergent, the associated tensorial
structure is given by Tf,

,

Aldo RIELLO (CPT Marseille U.) LOOPS13 16 / 19

o
oy mir#?
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What is the refinement limit of spin foam models?

Spin foams: path integral approach related to Loop Quantum Gravity

[Barrett, Crane, Rovelli, Reisenberger, Engle, Livine, Pereira, Freidel, Krasnov, ...

o Lattice as a regulator — relation to GR?

o Semi-classical limit of large building blocks — Regge action (discrete
gravity) [Barrett, Baez, Freidel, and many others]
@ Renormalization / coarse-graining (refinement limit)?
o What are the relevant d.o.f.?
o No background scale [Bahr, Dittrich '09, Bahr, Dittrich, S.5t. 11, Rovelli 11, Dittrich '12]
o Do spin foams have more phases than lattice gauge theories?

Goal: Coarse-grain analogue spin foam models on Quantum groups.

Sebastian Steinhaus (Pl) Refinement Limit of spin foam / net models 22nd July 2013 2/16
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Lattice gauge theories vs. spin foams

Partition function:

Lattice gauge theory Spin foams

Parameter face weights: replace Haar projector:
space: Wr(jr) Ce({jf}roe)
smaller subspace
[Bahr,Dittrich Hellmann Kaminski "12]

Phases / e BF / weak coupling Same phases as for
fixed points: || e degenerate / strong coupling lattice gauge theories
eBF on normal subgroups More phases?

To apply numerical simulations, we have to make two simplifications:
@ Dimensional reduction

@ ‘Regularization’ - finite amount of rep. labels

Sebastian Steinhaus (PIl) Refinement Limit of spin foam / net models 22nd July 2013

5/ 16
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The d |g0rlth m [Levin,Nave '07, Gu, Wen '09]

square lattice splitting and coarse grained
contraction lattice

Sebastian Steinhaus (PIl) Refinement Limit of spin foam / net models 22nd July 2013 10 / 16
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Protecting the symmetries... (itrich Martin-BenitoSchnetter

Under coarse graining we get... [talk by M. Martin-Benito on Tuesday]
J2 J2

Cy

A 4

Ja J Ja

. B
Je JesJes g5
Me., N Me. N

@‘, Vi ® Vi @ WiV @ Vi

o effective edge with doubling of rep. labels.

o enlarged space of models ;' # j* allowed.

@ New C, in matrix block form, labelled by intertwiner labels.

Sebastian Steinhaus (Pl) Refinement Limit of spin foam / net models 22nd July 2013 11 /
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FIXEd pOIﬂtS and phaseS I see also [Dittrich, Martin-Benito, Schnetter '13]

Conjecture:

Excitation of intertwiners is relevant and determines the phase.

standard models
(lattice gauge theory)

j/ - j;-:

simplicity constraints
some reps. forbidden

J#T

factorizing
. -,
J+J
or "mixed models”

degenerate (HT)
(0.0)

(0.0).(0.1). (1.0

). (1.1)
(also found for k = 6)

(0,0),(1,1),(0,1),(1,0),
(2,2),(0,2),(2,0),(1,2),(2,1)

SU(2)x ordered (BF)
(0.0).(1.1).(2.2)

(0.0), (1, 1), (2.2)
(0.2).(2.0)

Z~ ordered
(0,0),(2.2)

Fixed points define triangulation invariant (three-valent) vertex model!

Sebastian Steinhaus (Pl)

Refinement Limit of spin foam / net models
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BF(Z,)

"triplepoint” fixed point
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‘triplepoint” fixed point
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Conclusions

Spin net models (of Quantum Groups) — analogue to spin foams

o New class of (scale independent) models
o T[ensor Network Renormalization can be successfully applied!
o Lots of structural information / Embedding maps
Conjecture: Intertwiner d.o.f. are relevant (also for spin foams)

o Approximation method: flow of models, keeps track of intertwiner
d.o.f., (accuracy under control!)

o Fine tuning necessary to avoid (fast) flow to ordered (BF) or
degenerate phase [Christensen, Khavkine '07]

Potential: phases beyond standard lattice gauge theory

Although starting from a fixed lattice: Fixed points (under
coarse-graining) describe fully triangulation invariant models

o Supports strategy to construct models via coarse-graining [Bahr, Dittrich '09
Bahr, Dittrich, S.5t. '11, Dittrich "12]

Sebastian Steinhaus (Pl) Refinement Limit of spin foam / net models 22nd July 2013 14 / 16
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Outlook

e TNR implies that intertwiner d.o.f. are relevant

o Systematic study of Quantum Group models
o Structural information from embedding maps:

e Examine (un)stable directions of the (new) fixed points.

@ Develop semi-analytical approximation schemes / analogue to
Migdal-Kadanoff.

o "'Running” of the cosmological constant?

e What happens to a fixed point of a Quantum Group with smaller k, if
it is put into a Quantum Group with larger k?

o Flow of Simplicity constraints?

@ Apply what we learned to the full (analogue) Quantum Group models.

In reach: Refinement limit and phase diagram for spin foams!
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Thank you for your attention!
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Statement of the problem

» Setup: C is two complex dual to simplicial decomposition with the
boundary I'. The state ¢',;, from projected Hilbert space is
constructed from coherent states.

Goal: Determine if the amplitude Z(C. ¢'\x, ) is exponentially
supressed in the limit A — oc (large spin = semiclassical limit).

So far: The known result are mainly about spinfoam with one
vertex. Suppression unless boundary data coherent vectors form 4
simplex or SU(2) BF geometry. First sign of the flatness problem
[Bonzom|

Method: Wave front set analysis. It is not as precise as stationary
phase approximation (phase is not determined), but results are more
general.

See Frank Hellmann’s plenary talk.

W. Kaminski
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The partition function Z,(C) in holonomy
formulation

[ ) (T ) (T 2000 ) (T

vCe ’

Auxiliary holonomy

f!’f = l‘f‘.fir L2 p2e2 oo ebpl Jylel
Geometric holonomy

flf — .fll lJ'.‘z.ij'l"f 2 .r/r "f':.‘}l‘lf I
Boundary (projected Hilbert space)
can be added ( ¢,., variables)

I is a simplicity function:

Epr(g) = d(g),
Epc(g)=0d(gT(g7) 1)

The formulation is based on previous works [Pfeifer and Oeckl], [Bahr]

W. Kaminski Loopsl3
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The wave front set and probing by coherent states

Wave front sets
The wave front set probes singular behaviour of the distribution (together

with its direction). It is a cone subset of cotangent bundle. It has several
nice geometric properties.

Coherent states
For the boundary (projected spin network)

. + NN f — | — y
".'\(Uf"f'f"“ } = H <!"f'+‘-"!i'ft" ”:" >3,\JF"”I(”:' ."’/r"r‘!““'l

v'evel’

Let us introduce (n is su(2) normalized element associated to n)

i} -
[

— () v+
l”t' - (—.jp y ,-llr

y ) U= ( [— ¢ + C=-r ‘ ! a— -
_)ll ey e ) Pyt = {—).j,.f,.. YR —)_ff‘r‘,',ll ’ ) i

1

Condition for supression of the map A — (¢'\. 2

- ’ s .
/ {fﬁ'r"fr':("f"']‘_ l }: /“Pr ‘J,",,ff,.l'!fl:‘_

W. Kaminski
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The WF set of the simplicity function £

The BC model

g

The singular support

S={¢"97) 9" =97}

The wave front set: such (g.p)

geSand p LTS
W
NV xp=0

W. Kaminski
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The EPRL/FK model
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The WF set of the simplicity function £

The BC model

g

The singular support

S={¢T.97) 9" =97}

The wave front set: such (g.p)

geSand p LTS
W
NV xp=0

W. Kaminski
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The EPRL/FK model
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(Almost) unigenesss of the wave front set for EPRL
function.

The EPRL simplicity function satisfies the simplicity constraints

L +7v+_\
- ‘_"/)l;:”

and SU(2) invariance
/;‘(/:_rj/r_]) = FE(g). heSU(2)

Is the EPRL function the only solution? Not exactly, but...

W. Kaminski
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The main results

The wave front set of the amplitude is supported on the points
{Gvev’ Poevr - ...} for which there exists

{gev = 9o € Spin(4)}. {pis € /\ R*

that together with ¢,.,» and p,..» from the boundary satisfy

» (parallel transport for geometric holonomy)

Vi ;ﬁ,"!- = —(evve' > Do r including p,.., on the boundary
\/ v

» (closure) Y, Z{r”a_,,‘_.r =)

> (simplicity) ¥, . p!, is twisted simple

Pep =\(By +v+Bly). DBy st simple . |B/|
» if Pep # 0 then holonomy 5 = gevGvergerr -+ is of the form

gf = E(# H:_J- — “f“,f )

Condition: Complex C is non-tardis.

W. Kaminski
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The wave front set and curvature constraints

For each vertex:
We have bivectors p satisfying

> Jue P Peg = —Guve' P Do,

> E_f';f 1’.’-";' =0
Together with twisted simplicity is the starting point for reconstruction
theorem of 4-simplex if certain nondegeneracy conditions are satisfied.

In the nondegenerate case we have geometric constraint (O is deficiency
angle)

!

gf = % OrBey for By st. simple . [B/,
Together with condition from the wave front set

P " 1) —_ v
g = pdl Bly=vB.y)

this gives 76 = () mod 27.

W. Kaminski
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The wave front set and curvature constraints

For each vertex:
We have bivectors p satisfying

> Jue D Peg = —Guve' P Doy,

> 2_{;( 1’.’-";' =0
Together with twisted simplicity is the starting point for reconstruction
theorem of 4-simplex if certain nondegeneracy conditions are satisfied.

In the nondegenerate case we have geometric constraint (O is deficiency
angle)

e

gf = % OrBey for By st. simple . [B/,
Together with condition from the wave front set

P " (&) —_ v
g = pdl Bly=vB.y)

this gives 76 = () mod 27.
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The wave front set and curvature constraints

For each vertex:
We have bivectors p satisfying

> Goe P Pef = —Gue' P Perp,

> E_f';f 1’.’-";' =0
Together with twisted simplicity is the starting point for reconstruction
theorem of 4-simplex if certain nondegeneracy conditions are satisfied.

> 10, =0 mod 27 (finite set)
5

» Nontrivial example is 3 — 3 move with one internal face (but no
internal edge)

» Modification of face amplitude leading to lack of constraints on
curvature exists.

W. Kaminski
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Conclusions

Results

1. Analysis of the partition function without assumptions on the
interior shows some problems leading to the curvature constraints

» incompatibility between twisting and discretization,
» lack of gluing constraints (improper use of area variables)

Other results:
1. Lorentzian (fate of curvature constraints) [Perini] and [Han].
2. Divergencies [Riello], [Puchta], [Bonzom, Dittrich]

Thank you for your attention!

W. Kaminski
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