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POINCARE RECURRENCE

Boltzmann’s resolution of time-reversal symmetry puzzle by Poincaré recurrence:
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The direction of entropy growth defines the direction of time (to heat death)

Eternal recurrence of ‘one-past—two-futures” scenario
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The direction of entropy growth defines the direction of time (to heat death)

Eternal recurrence of ‘one-past—two-futures” scenario
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Dark Energy
Accelerated Expansion
Afterglow Light
Pattern  Dark Ages Development of
400,000 yrs. Galaxies, Planets, etc.
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1st Stars
about 400 million yrs.

Big Bang Expansion

13.7 billion years

. Requires very special pre-inflation state 2. Requires invisible expansion of space
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ITHE ZERU-ENERKUY INEW ITUNIAN INFBUDY PRUBLEIVI

Toy model of the whole universe
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Single dynamical ocurrence of ‘one-past—two-futures’ scenario
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Single dynamical ocurrence of “one past=two-lutures

SCCNArio
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Toy model of the whole universe
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The shape potential cenerates forces that chanee the

shape of the configuration but leave its overall size unchaneed

The complexity is a sensitive measure

ol clustering of the particles
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nd Shape Compl

[he shape potential generates forces that change the

shape of the conficuration but leave its ove sze unchaneed

The complexity is a sensitive measure of clustering of the particles
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Centre-of=-Mass Moment of Inertia:
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Moy Z Mag¥faqTqg = —5 Z MaMpTap
Mot g=1 "ot a< b

Newton's Gravitational Potential:
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The Shape Potential -~ Vg and Shape Complexity  Cs:
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The shape potential generates forces that change the

shape of the configuration but leave its overall size unchaneed.

The complexity is a sensitive measure of clustering of the particles.
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THE SHAPE SPHERI
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THE SHAPE SPHERI
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THE SHAPE SPHERE
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DYNAMICAL SIMILARITY & LAGRANGE-JACOBI RELATION
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Only

D
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1s directly observable.
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Use

D

as evolution parameter
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\MILTONIAN DESCRIPTION OF NEWTONIAN GRAVITY IN SHAPE SPACE

Spherical coordinates on the Shape Sphere o;

o | - -

Conjugate momenta T T

Hamiltonian constraint

D-translations cenerating Hamiltonian
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0

- b arbitrary
=(elO.0
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Only  Cs s chrectly observable Use D asevolution parameter
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AMILTONIAN DESCRIPTION Of EWTONIAN GRAVITY IN SHAPE SPACE

Spherical coordinates on the Shape Sphere o; .0

Conjugate momenta g/ Th-Ta

. y T L)

To-=sin= 0 75+

Hamiltonian constraint ' T .
‘m

D-translations generating Hamiltonian

s (s

- O arbitran
)= (el(B., 0
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HAMILTONIAN DESCRIPTION OF NEWTONIAN GRAVITY IN SHAPE SPACE

U& \-.\ Spherical coordinates on the Shape Sphere 6; = (6.¢)
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\MILTONTAN DESCRIPTION OF NEWTONIAN GRAVITY IN SHAPE SPACE

Spherical coordinates on the Shape Sphere @;

Conugate momenta Jt Ta.Ta
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Hamiltonian constraint

D-translations eenerating Hamiltonian
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\MILTONTAN DESCRIPTION OF NEWTONIAN GRAVITY IN SHAPE SPACE

Spherical coordinates on the Shape Sphere o;
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Conjugate momenta Tn

Hamiltonian constraint

D-translations generating Hamiltonian
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Hamiltonian for affinely-parametrized geodesics in Shape Space
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EQUATIONS OF MOTION FOR Ayw WITH D AS EVOLUTION PARAMETER
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Spherical coordinates on Shape Space are dimensionless

Shape Momenta are sull dimensionful o To
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DIMENSIONLESS MOMENTA @' AND EVOLUTION PARAMETER A
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THE GENERIC ORBIT ON SHAPE SPACI

Two branches with irreversible dvnamics
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single dynamical ocurrence of “one-past=two-futures” seenario
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THE EMERGENCE OF COMPLEXITY AND INFORMATION
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most uniform shape
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THE EMERGENCE OF COMPLEXNITY AND INFORMATION
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Outline

e T'wo explanations of classical gravity
Q as spacetime geometry solving Einstein’s equations (GR)
Q as evolving conformal geometry (SD)
» local dyn. equivalence, but global differences
» differences important near spacetime singularities
e SD/GR equivalence reminiscent of AdS/CET duality
» SD/GR equivalence is bulk /bulk
» boundary limit explains class. aspects of AdS/CFT
@ New theory space for Quantum Gravity
» SD from effective field theory
» Loop quantization attempts
» Black Hole Thermodynamics

Tim A. Koslowski (UNB)
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Gravity explained as Spacetime Geometry

because spacetime “ties foliations together”

General Relativity: Hamiltonian GR:
gravily = spacelime geomelry, gravity = equivalence class of

solves Einslein equ Ccurves on superspace

Tim A. Koslowski (UNB)
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York miracle: CMC curves project Shape Dynamics (h
to parametrized curves aravity 15 cvolving
on conformal superspace spatial conformal geomeltry

. Tim A. Konlownkl (UND)

July 2013
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York miracle: CMC curves project Shape Dynamics (h
to parametrized curves aravity 1s cvolving
on conformal superspace spatial conformal geomelry

~ Tim A, Koslowskl (UNB)

July 2013
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hecnuse spacetime “ties folintions together

General Relalivily Hamiltonian GR
gravily = spaceline genmelry gravity = equivalence class of
solves Einslen equ curves on superspace

July 2013
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Gravity as dissipative spatial conformal Geometry

Gauge-unfixed ADM in CNC gauge:

) “ -(cd)

e cauge theory on ADNI phase space, i.e. {gan(r). ™ A= J‘,,r;: (-
o cauge gen. H(§) = [den®(Leg)ay = 0, Q(p) = [ d®xpm ~ 0
e Hamn. ”,q,n = .]';I”,rv"|_.-,t$3[_q. ‘_'}l;:

il

(Q2[g. 7] solves Lichnerowicz-York equ.)

Dynamical Similarity makes system autonomous and dimensionless |

i ) s 3 -
Lepivics = amsap (Pind o D= LAl 01G )
where oy denotes dimensionless tracefree metric momenta

{.. ,}‘. =T '{.. } is dimensionless

noncan. trf. introduces dissipation 2L = i Holor- -2 oty

('If
where | = In(+/7) denotes dimensionless time and (..5) a bulk O]ll’-l‘l)p\f'

Shape Dynamics (11)

Gravity =

dissipative evolution of spatial conformal seometry

Tim A. Koslowski (UNRB)
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Local equivalence. global differences

E.oom. of GR and SD coincide when:

(1) GR is evolved in CNIC eauee (_r;”h/\',,;, = const., lapse N = .\',::.‘I. .'.'j)
(2) SD is evolved in Lichnerowicz-York gauge

= local equivalence, global differences if CNIC' cange breaks down

Extendible curves on Shape Space can replace singularities

e CNMC' slices avoid many singularities
= generic possible global difference whenever these singularity tvpes occur
= extensions of curve in Shape Space (not spacetime sineularities)

Example: Bianchi I cosmology (on 3-torus) in Shape Dyvnamics

dynamics = Teichmiiller geodesies = generically extendible
in GR: big bang = singularity in conformal factor (pure cauee)
freezeout = divergent lapse (“lost in translation™ to spacetime)

Tim A. Koslowski (UNRB) Shape Dynamics and Quantum Gravity
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Bulk equivalence of SD and GR | et

Local equivalence, global differences

[.o.m. of GR and SD coincide when:

(1) GR is evolved in CMC gauge (_r;”h/\‘,,;, = const., lapse N = .\'“[_c/. :r:)
(2) SD is evolved in Lichnerowicz - York gauge

= local equivalence, global differences if CMC gauge breaks down

Extendible curves on Shape Space can replace singularities
e C'MC slices avoid many singularities
generic possible global difference whenever these singularity types occur

= extensions of curve in Shape Space (not spacetime singularities)

Wogy 8 ) o= ~ : . ) . : . \ ’ - ;
Example: Bianchi I cosmology (on 3-torus) in Shape Dynamics
dynamics = Teichmiiller geodesics = generically extendible
in GR: big bang = singularity in conformal factor (pure gauge)

freezeout = divergent lapse (“lost in translation” to spacetime)

Tim A. Koslowski (UNB) July 2013 6 / 14
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Local equivalence.

E.o.m. of GR and SD coimncide when:

(1) GR is evolved in CNIC cange lf}”!ll\,,}, = const., lapse N = \,.:"I- wl)
(2) SD is evolved in Lichnerowicz York ecauce

= local equivalence. global differences if CNIC' gange breaks down

Extendible curves on .‘;ll.l;n' H[l.u'i- call ‘;-ﬂ‘:i;.lt'e' \.i[|’_“||[.‘5]'ii.li“‘-

e CNC' slices avold many singularities
= generic possible global difference whenever these singularity tvpes oceur
= extensions of curve in Shape Space (not spacetime sineularities)

Example: Bianchi I cosmology (on 3-torus) in Shape Dyvnamics
dynamics = Teichmiiller geodesics = generically extendible
in GR: big bang = singularity in conformal factor (pure cauee)

[reezeout = divergent lapse (*lost in translation” to spacetime)

Tim A. Koslowski (UNB Shape Dynamics and Quantum Gravity
( ) 8 1 L and Quant Lravity J“L\" 2013

Pirsa: 13070040 Page 41/72



Pirsa: 13070040 Page 42/72




Gravity in d+1 dimensions

evolution of d-cdimensional
conformal theory

is like “bulk-bulk AdS/CFT”

Tim A. Koslowski (UNB)
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Shape Dvnamics

special CMC slices

If i is constant in a CNC slice. then H (N = 1) cenerates SD evolution.
= conformal constraints are “emergent” gauge svinmetry generalors
asvinptotically locally AdS (alAdS) boundary conds.

Euclidean alAdS conditions imply CNIC' and R=const. at boundary

= boundary is special CNIC slice

= radial evolution at boundary = SD evolution

= boundary CEFT=restriction of SD to boundary

Nore results:

o conformal svmmetry at boundary is gange svinmetry of SD

o holographic RG equations are explicitly reproduced by SD

Tim A. Koslowski (UNB)
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path integral for volume-preserving conformal theory
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RG: local. even. POWE] counting relevant cauge hxing H (@

=5 4 LR/ + ¢ (_ L *,))
VAl A}

On Shape Space observable couplings only

b definition of speed of light. ¢ removed by dynamical similarity

= Newton and cosmological constant are the only essential couplings
= Defining equations of Shape Dynamics Hamiltonian cmerce oo g
low energy from local gauge fixing of VPCT theory

= Shape Dynamics as a generic low energy limit.

Tim A. Koslowski (UNB)
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1"”!1 mteceral for volume-preservinge niormmal theory
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RG: local, even, power-counting relevant gauge fixing H

" / y paimsis
—'-'-I‘ =l —-—/l ql =+ ¢ L +r/ [ 7]
] ( W ] |_1 (\ 5 v _U))

On HII.‘I[)V Hlmu' 1|}1>~l'1\';llllr‘ u.llgn]]“;ﬁ '115."-'

b definition of speed of light. ¢ removed by dynamical similarity

= Newton and m-|||n|tn-u .11 constant are the only essential mu]:lm"\
= Defining equations of Shape Dyvnamics |l uniltonian emerge ge

lm\ CHerey hum local gauge fixing of VPC'T' theory

= Shape Dynamics as a generic low enerey limit.

Tim A. Koslowski (UNB)

Page 46/72



Pirsa: 13070040

Shape Dyn

hmh mtegral for volume-preserving coniormail theory

’/)q/) tr/! lr"/,\ SV PCT)det(FFP 11\]‘(‘ ’ (v},,},,T”h - N\ /l))

RG: local. even. power—counting rele

B L AR CLARAD),

()11 HII.‘I[H' HI'.’H'{‘ (I}\‘-\I']\"li'll' ltll]!llillul.\ -']lal'-\'

b definition of speed of light. ¢ removed by dynamical similarity
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low energy from local gauge fixing of VPCT theory
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Hichlights

e Properties of Shape Dynamics:
Q cxplains gravity as dissipative evolution of spatial conformal geometry
it is locally indistinguishable from GR
© cvolution can be extended through some classical spacetime singularities
© cxplains some classical aspects of AdS/CFT
Q cmerges as a low energy limit on a VPC'T theory space
e New approaches to Quantum Gravity:
» heuristic physical Hilbert space in loop quantization
» two hints that black hole entropy is due to entanglement in matter sector

Tim A. Koslowski (UNB) July 2013 18 / 14
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Three Lessons from ADM Gravity

wriational Principles and Degrees of Freedom

ymmetry and Evolution in Quantum Gravity ' CllckonSngntoaddtext
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|. Hamiltonian constraints are not pure gauge generators

H(N) = [5 dIxN(x) . (x), V(N?) = [x d9xN?(x)V,(x)

C(f1.f2.87%) = g% (fifap — f2f1;p)

Gryb & Thébault, Loops 13 Symmetry and Evolution in Quantum Gravity. arXiv:1303.7130
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Manifest and Hidden Symmetries

» A symmetry is associated with some form of redundancy occurring
in the relationship between our mathematical formalism
(configuration space, variational principle) and the characteristic
behaviour of the system to which it corresponds (physical degrees of
freedom, physical boundary conditions).

If the action does not change when the sample paths are varied
globally with respect to the function then this situation
automatically implies a symmetry, and we will call a symmetry of
this kind manifest.

Gryb & Thébault, Loops 13 Symmetry and Evolution in Quantum Gravity. arXiv:1303.7130
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v aned Dvohiton in L Cravity

If the variational principle is one in which no conditions are imposed
on a deg of freedom we say = 3 free variation. otherwise we sa
it 1s a fixed variation

Here we are consicering variation of the action based upon t
variation of a state-space curve in a direction associated with a

articular degree of freedom
I'\

Our focus is upon variation of the end points of the curve rather

than a global variation. Such end-point-variation corresponcls
A F

(roughly speaking) to considering families of slightly adjusted
variational principles — defined by action principles with
infinitesimally different boundary conditions

Manifest symmetries associated with fixed variations are
conservation symmetries. Manifest symmetries associated with free
variations are gauge symmetries There are v interpretational
differences between the two

~
Tt o Sgn b aebd hest
onil plage pgnature on 8
POF Fite.
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Symmetry and Evoluton in Quantum Gravity
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As we have seen, the structure of the Dirac-Bergmann algebra
implies that, for the of ADM GR, the symmetry and dynami
our terms this means the "tixed and “free

are ‘deeply entangle n
e mixed together

aspects of the manifest symmetry ar

Cryh L Thibauh, Leeps 13 Symmusry and Evelintion in Quamium Gravity, acXivi1303. 7139

Page 53/72

Pirsa: 13070040




Pirsa: 13070040

Three Lessons from ADM Gravity Quantization and Types of Symmetry
Variational Principles and Degrees of Freedom Reparameterization as a manifest fixed symmetry
Symmetry and Evolution in Quantum Gravity Relational Quantization

~
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PDF File.

Quantization and Types of Symmetry

» The physical basis of a symmetry is what should dictate its
treatment within a faithful quantization procedure

» Since gauge symmetries result from surplus representational
structure, the degrees of freedom to which they correspond must be
eliminated at some stage in the construction of the physical Hilbert
space

Gryb & Thébault, Loops 13 Symmetry and Evolution in Quantum Gravity. arXiv:1303.7130
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Consider the configuration space of » dimensional Jacobi type
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Relational Quantization of the Jacobi t

for symmetries associated with fixed varnatio

arbitrary phase spa wtension [(¢g.p) = |
have labeled a single auxiliary configuration

momenta T

Cryh & Thibsul, Lesps 13

-
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irst make the

T), where we
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 Symmatry and Bvehnion in Quamium Cravity, srXivi1303.7138
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nal Quantization

In Whe DeWitt quantization, only one energy eigenvalue is

allowed. Evolution of the quantum states c btained by
deparametrizing with respect to a degree of freedom that one must
make an arbitrary decision in the choice The observables of the
theory depend on this choice and, even for simple models, can lead

to complicated expressions

Cryh &L Thibauk, Leeps 13 Symmuiry and Evelutien in Quamum Gravity., aeXiv:1303. 7139
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only one energy eigenvalue 15

allowed. Evolution of the quantum states can only be obtained by

deparametrizing with respect to
make an arbitrary decision in the
theory depend on this choice and,
to complicated expressions
Through relational quantization
energy eigenstates and describe e
respect to an auxiliary time label

om that one must

choit ) bsarvables of the

even for simple r e in lead
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In Wheeler-DeWitt quantization, only one energy eigenvalue is

allowed. Evolution of the quantum states can only be obtained by
deparametrizing with respect to a d s of freedom that one must
make an arbitrary decision in the choice of The observables of the

theory depend on this choice and, even for simple models, can lead

to complicated o

Through relational quantization we can have superpositions of
energy eigenstates and describe evolution of the full state with
respect to an auxiliary time label. The identification of the
observables is easier because of the time-independence of the
Hamiltoman

Furthermore, unlike in the Wheeler=DeWitt approach. under
relational quantization time ordering structure present in the
classical formalism remains after quantization

There is good reason to expect distinct predictions for early unive
cosmology from mini-superspace cosmological models
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Why is gravity not fully scale-invariant?
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Analogue model Issues in quantum gravity Analogue models in quantum gravity

The analogue model

The analogue model wants to capture the relational features
of GR in the sense introduced above. So it is

Time-relational = Hamiltonian constraint H = 0.

Space-relational = No absolute space P =0, L = 0 and
scale invariant (invariant under global rescalings

Xj — /\X,'. A > O)
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