Title: Shape Dynamics - 1

Date: Jul 22, 2013 02:30 PM

URL: http://pirsa.org/13070040

Abstract:

Pirsa: 13070040

Pirsa: 13070040 Page 2/72

POINCARÉ RECURRENCE

Boltzmann's resolution of time-reversal symmetry puzzle by Poincaré recurrence:

The direction of entropy growth defines the direction of time (to heat death)

Eternal recurrence of 'one-past-two-futures' scenario

.

POINCARÉ RECURRENCE

Boltzmann's resolution of time-reversal symmetry puzzle by Poincaré recurrence:

The direction of entropy growth defines the direction of time (to heat death)

Eternal recurrence of 'one-past-two-futures' scenario

.

1. Requires very special pre-inflation state 2. Requires invisible expansion of space

Pirsa: 13070040 Page 5/72

Pirsa: 13070040 Page 7/72

Pirsa: 13070040 Page 9/72

Pirsa: 13070040 Page 10/72

Centre-of-Mass Moment of Inertia:

$$I_{\text{cm}} = \frac{1}{m_{\text{tot}}} \sum_{a=1}^{N} m_a \mathbf{r}_a \cdot \mathbf{r}_a \equiv \frac{1}{m_{\text{tot}}^2} \sum_{a < b} m_a m_b r_{ab}^2, \qquad m_{\text{tot}} = \sum_{a=1}^{N} m_a$$

Newton's Gravitational Potential:

$$V_{\text{New}} = -\sum_{a < b} \frac{m_a m_b}{r_{ab}}$$

The Shape Potential V_S and Shape Complexity C_S :

$$V_{\rm S} = \sqrt{I_{\rm cm}} V_{\rm New} = -C_{\rm S}$$

The shape potential generates forces that change the shape of the configuration but leave its overall size unchanged.

The complexity is a sensitive measure of clustering of the particles.

3

Pirsa: 13070040 Page 12/72

Pirsa: 13070040 Page 13/72

-

Pirsa: 13070040 Page 14/72

DYNAMICAL SIMILARITY & LAGRANGE-JACOBI RELATION

$$V_{\text{New}} = -\left(\frac{m_1 m_2}{r_{12}} + \frac{m_1 m_3}{r_{13}} + \frac{m_1 m_2}{r_{23}} + \dots\right)$$
 is homogeneous of degree $k = -1$

$$V(\alpha \mathbf{r}_a) \to \alpha^k V(\mathbf{r}_a)$$
 $\mathbf{r}_a \to \alpha \mathbf{r}_a$ $t \to \alpha^{1-\frac{k}{2}} t$

$$\frac{dI_{\rm cm}}{dt} = 2 D$$
, $D = \sum_{a} \mathbf{r}_a \cdot \mathbf{p}^a$ is the **dilatational momentum**

$$\frac{d^2I_{\rm cm}}{dt^2} = 4E - 2(k+2)V \qquad \Longrightarrow \qquad \frac{d^2I_{\rm cm}}{dt^2} = 4E - 2V_{\rm New} > 0 \qquad \text{if } E \ge 0$$

$$\Longrightarrow \quad \frac{dD}{dt} > 0 \qquad D \quad \text{is monotonic}$$

7

Pirsa: 13070040 Page 16/72

Pirsa: 13070040 Page 18/72

HAMILTONIAN DESCRIPTION OF NEWTONIAN GRAVITY IN SHAPE SPACE

Spherical coordinates on the Shape Sphere $\sigma_i = (\theta, \phi)$ Conjugate momenta $\pi^j = \pi_{\boldsymbol{\theta}}, \pi_{\boldsymbol{\phi}}, \quad \{\sigma_i, \pi^j\} = \delta_i{}^j$

Hamiltonian constraint
$$\frac{\pi_{\theta}^2 + \sin^2 \theta \, \pi_{\phi}^2 + \frac{1}{4}D^2}{I_{\text{cm}}} + \frac{V_{\text{S}}}{\sqrt{I_{\text{cm}}}} = 0$$

D-translations generating Hamiltonian:

$$\mathcal{H}_{\text{New}} = \log \left(\frac{1}{2} \frac{\pi_{\theta}^2 + \sin^{-2}\theta \, \pi_{\phi}^2}{D_0^2 \, C_{\text{S}}(\theta, \phi)} + \frac{1}{8} \frac{D^2}{D_0^2 \, C_{\text{S}}(\theta, \phi)} \right) \,, \quad D_0 \neq 0 \text{ arbitrary value of } D$$

Hamiltonian for affinely-parametrized geodesics in Shape Space:

$$\mathcal{H}_{\text{geodesic}} = \frac{1}{2} \frac{\pi_{\theta}^2 + \sin^{-2}\theta \, \pi_{\phi}^2}{D_0^2 \, C_{\text{S}}(\theta, \phi)}$$

10

Dimensionless momenta ω^i and evolution parameter λ

$$\lambda = \log \frac{D}{D_0}, \qquad \omega_{\theta} = \frac{\pi_{\theta}}{D}, \qquad \omega_{\phi} = \frac{\pi_{\phi}}{D}.$$

$$[\theta] = [\phi] = [\lambda] = [\omega_{\theta}] = [\omega_{\phi}] = 1$$

New equations of motion:

$$\frac{d\theta}{d\lambda} = \frac{2\omega_{\theta}}{\omega_{\theta}^2 + \sin^{-2}\theta \,\omega_{\phi}^2 + \frac{1}{4}} \qquad \qquad \frac{d\phi}{d\lambda} = \frac{2\sin^{-2}\theta \,\omega_{\phi}}{\omega_{\theta}^2 + \sin^{-2}\theta \,\omega_{\phi}^2 + \frac{1}{4}}$$

$$\frac{d\omega_{\theta}}{d\lambda} = -\omega_{\theta} + \frac{2\sin^{-3}\theta\cos\theta\,\omega_{\phi}^{2}}{\omega_{\theta}^{2} + \sin^{-2}\theta\,\omega_{\phi}^{2} + \frac{1}{4}} + \frac{\partial\log C_{S}}{\partial\theta} \qquad \frac{d\omega_{\phi}}{d\lambda} = -\omega_{\phi} + \frac{\partial\log C_{S}}{\partial\phi}$$

They include dissipative terms $(-\omega_{\theta} \text{ and } -\omega_{\phi})$

12

Pirsa: 13070040 Page 25/72

Pirsa: 13070040 Page 26/72

Pirsa: 13070040 Page 27/72

Pirsa: 13070040 Page 28/72

Pirsa: 13070040 Page 29/72

Pirsa: 13070040 Page 30/72

Shape Dynamics and Quantum Gravity at Loops '13

Tim A. Koslowski

University of New Brunswick, Fredericton, NB, Canada

(Kunigundenstein, Gollachtal)

July 2013

4 □ > 4 @ > 4 분 > 4 분 > 별 90

Tim A. Koslowski (UNB)

Shape Dynamics and Quantum Gravity

July 2013

1 / 14

Pirsa: 13070040 Page 31/72

Shape Dynamics and Quantum Gravity at Loops '13

Tim A. Koslowski

University of New Brunswick, Fredericton, NB, Canada

(Kunigundenstein, Gollachtal)

July 2013

- 4 ロ x 4 団 x 4 恵 x 4 恵 x - 夏 - 少久で

Tim A. Koslowski (UNB)

Shape Dynamics and Quantum Gravity

July 2013

Pirsa: 13070040 Page 32/72

Outline

- Two explanations of classical gravity
 - as spacetime geometry solving Einstein's equations (GR)
 - 2 as evolving conformal geometry (SD)
 - ▶ local dyn. equivalence, but global differences
 - differences important near spacetime singularities
- SD/GR equivalence reminiscent of AdS/CFT duality
 - ► SD/GR equivalence is bulk/bulk
 - boundary limit explains class. aspects of AdS/CFT
- New theory space for Quantum Gravity
 - ▶ SD from effective field theory
 - ► Loop-quantization attempts
 - ▶ Black Hole Thermodynamics

Tim A. Koslowski (UNB)

Shape Dynamics and Quantum Gravity

Pirsa: 13070040 Page 33/72

Pirsa: 13070040 Page 34/72

Pirsa: 13070040 Page 35/72

Pirsa: 13070040 Page 36/72

Pirsa: 13070040 Page 37/72

Click on Sign to add text and place signature on a PDF File.

Gauge-unfixed ADM in CMC gauge:

- gauge theory on ADM phase space, i.e. $\{g_{ab}(x), \pi^{cd}(y)\} = \delta^{(cd)}_{ab}(x, y)$
- gauge gen. $H(\xi) = \int d^3x \pi^{ab} (\mathcal{L}_{\xi}g)_{ab} \approx 0, \ Q(\rho) = \int d^3x \rho \ \pi \approx 0$
- Ham. $H_{SD} = \int d^3x \sqrt{|g|} \Omega[g,\pi]^6$; $(\Omega[g,\pi] \text{ solves Lichnerowicz-York equ.})$

Dynamical Similarity makes system autonomous and dimensionless

 $H_{SD}(\rho, \sigma; \tau) = \tau^{-3} H_{SD}(\rho, \tau^2 \sigma; 1) =: \tau^{-3} H_o(\rho, \tilde{\sigma}),$ where $\tilde{\sigma}^a_b$ denotes dimensionless tracefree metric momenta $\{.,.\}_o := \tau^{-2} \{.,.\}$ is dimensionless

 \Rightarrow noncan. trf. introduces dissipation $\frac{\partial f}{\partial t} = \{f, H_o\}_o + 2\int \tilde{\sigma} f_{,\tilde{\sigma}}$ where $t = \ln(\tau/\tau_o)$ denotes dimensionless time and (., S) a bulk entropy

Shape Dynamics (II)

Gravity = dissipative evolution of spatial conformal geometry

Tim A. Koslowski (UNB)

Shape Dynamics and Quantum Gravity

July 2013

5 / 14

Pirsa: 13070040 Page 38/72

Bulk equivalence of SD and GR

Local equivalence, global differences

E.o.m. of GR and SD coincide when:

- (1) GR is evolved in CMC gauge $(g^{ab}K_{ab} = const., lapse N = N_o[g, \pi])$
- (2) SD is evolved in Lichnerowicz-York gauge
- ⇒ local equivalence, global differences if CMC gauge breaks down

Extendible curves on Shape Space can replace singularities

- CMC slices avoid many singularities
- ⇒ generic possible global difference whenever these singularity types occur
- ⇒ extensions of curve in Shape Space (not spacetime singularities)

Example: Bianchi I cosmology (on 3-torus) in Shape Dynamics

dynamics = Teichmüller geodesics ⇒ generically extendible in GR: big bang = singularity in conformal factor (pure gauge) freezeout = divergent lapse ("lost in translation" to spacetime)

Tim A. Koslowski (UNB)

Shape Dynamics and Quantum Gravity

July 2013

6 / 14

Pirsa: 13070040 Page 39/72

Bulk equivalence of SD and GR

Local equivalence, global differences

E.o.m. of GR and SD coincide when:

- (1) GR is evolved in CMC gauge $(g^{ab}K_{ab} = const., lapse N = N_o[g, \pi])$
- (2) SD is evolved in Lichnerowicz–York gauge
- \Rightarrow local equivalence, global differences if CMC gauge breaks down

Extendible curves on Shape Space can replace singularities

- CMC slices avoid many singularities
- \Rightarrow generic possible global difference whenever these singularity types occur
- ⇒ extensions of curve in Shape Space (not spacetime singularities)

Example: Bianchi I cosmology (on 3-torus) in Shape Dynamics

dynamics = Teichmüller geodesics ⇒ generically extendible in GR: big bang = singularity in conformal factor (pure gauge) freezeout = divergent lapse ("lost in translation" to spacetime)

Tim A. Koslowski (UNB)

Shape Dynamics and Quantum Gravity

July 2013

/ 14

Pirsa: 13070040 Page 40/72

Bulk equivalence of SD and GR

Local equivalence, global differences

E.o.m. of GR and SD coincide when:

- (1) GR is evolved in CMC gauge $(g^{ab}K_{ab} = const., lapse N = N_o[g, \pi])$
- (2) SD is evolved in Lichnerowicz-York gauge
- ⇒ local equivalence, global differences if CMC gauge breaks down

Extendible curves on Shape Space can replace singularities

- CMC slices avoid many singularities
- ⇒ generic possible global difference whenever these singularity types occur
- ⇒ extensions of curve in Shape Space (not spacetime singularities)

Example: Bianchi I cosmology (on 3-torus) in Shape Dynamics

dynamics = Teichmüller geodesics ⇒ generically extendible in GR: big bang = singularity in conformal factor (pure gauge) freezeout = divergent lapse ("lost in translation" to spacetime)

Tim A. Koslowski (UNB)

Shape Dynamics and Quantum Gravity

July 2013

6 / 14

Pirsa: 13070040 Page 41/72

Pirsa: 13070040 Page 42/72

Gravity in d+1 dimensions

evolution of d-dimensional conformal theory

is like "bulk-bulk AdS/CFT"

Tim A. Koslowski (UNB)

Shape Dynamics and Quantum Gravity

July 2013

7 / 14

Pirsa: 13070040 Page 43/72

Shape Dynamics explains classical AdS/CFT

Click on Sign to add text and place signature on a PDF File.

special CMC slices

If R is constant in a CMC slice, then $H(N \equiv 1)$ generates SD evolution.

⇒ conformal constraints are "emergent" gauge symmetry generators

asymptotically locally AdS (alAdS) boundary conds.

Euclidean alAdS conditions imply CMC and R=const. at boundary

- ⇒ boundary is special CMC slice
- \Rightarrow radial evolution at boundary \equiv SD evolution
- ⇒ boundary CFT=restriction of SD to boundary

More results:

- conformal symmetry at boundary is gauge symmetry of SD
- holographic RG equations are explicitly reproduced by SD

Tim A. Koslowski (UNB)

Shape Dynamics and Quantum Gravity

Pirsa: 13070040 Page 44/72

Shape Dynamics has a different Theory Space

Click on Sign to add text and place signature on a PDF File.

path integral for volume-preserving conformal (VPCT) theory

$$Z = \int DgD\pi \left(diffeo \right) DN\delta(VPCT) \det(FP) \exp \left(i \int \left(\dot{g}_{ab} \pi^{ab} - NH \right) \right)$$

RG: local, even, power-counting relevant gauge fixing H(x)

$$H = a \left(\frac{\pi^{ab} \pi_{ab}}{\sqrt{|g|}} + bR \sqrt{|g|} + c \left(\frac{\pi^2}{\sqrt{|g|}} + d\sqrt{|g|} \right) \right)$$

On Shape Space observable couplings only

b definition of speed of light, c removed by dynamical similarity

- \Rightarrow Newton– and cosmological constant are the only essential couplings
- ⇒ Defining equations of Shape Dynamics Hamiltonian emerge ger low energy from local gauge fixing of VPCT theory
- ⇒ Shape Dynamics as a generic low energy limit.

Tim A. Koslowski (UNB)

Shape Dynamics and Quantum Gravity

- Jh

Shape Dynamics has a different Theory Space

Click on Sign to add text and place signature on a PDF File.

path integral for volume-preserving conformal (VPCT) theory

 $Z = \int DgD\pi \left(diffeo \right) DN\delta(VPCT) \det(FP) \exp \left(i \int \left(\dot{g}_{ab} \pi^{ab} - NH \right) \right)$

RG: local, even, power-counting relevant gauge fixing H(x)

$$H = a \left(\frac{\pi^{ab} \pi_{ab}}{\sqrt{|g|}} + bR \sqrt{|g|} + c \left(\frac{\pi^2}{\sqrt{|g|}} + d\sqrt{|g|} \right) \right)$$

On Shape Space observable couplings only

b definition of speed of light, c removed by dynamical similarity

- ⇒ Newton- and cosmological constant are the only essential couplings
- ⇒ Defining equations of Shape Dynamics Hamiltonian emerge ger low energy from local gauge fixing of VPCT theory
- ⇒ Shape Dynamics as a generic low energy limit.

Tim A. Koslowski (UNB)

Shape Dynamics and Quantum Gravity

-3.1

Shape Dynamics has a different Theory Space

Click on Sign to add text and place signature on a PDF File.

path integral for volume-preserving conformal (VPCT) theory

$$Z = \int DgD\pi \left(diffeo \right) DN\delta(VPCT) \det(FP) \exp \left(i \int \left(\dot{g}_{ab} \pi^{ab} - NH \right) \right)$$

RG: local, even, power-counting relevant gauge fixing H(x)

$$H = a \left(\frac{\pi^{ab} \pi_{ab}}{\sqrt{|g|}} + bR \sqrt{|g|} + c \left(\frac{\pi^2}{\sqrt{|g|}} + d\sqrt{|g|} \right) \right)$$

On Shape Space observable couplings only

b definition of speed of light, c removed by dynamical similarity

- \Rightarrow Newton– and cosmological constant are the only essential couplings
- ⇒ Defining equations of Shape Dynamics Hamiltonian emerge ger low energy from local gauge fixing of VPCT theory
- ⇒ Shape Dynamics as a generic low energy limit.

Tim A. Koslowski (UNB)

Shape Dynamics and Quantum Gravity

Pirsa: 13070040 Page 47/72

Highlights

- Properties of Shape Dynamics:
 - explains gravity as dissipative evolution of spatial conformal geometry it is locally indistinguishable from GR
 - 2 evolution can be extended through some classical spacetime singularities
 - 3 explains some classical aspects of AdS/CFT
 - emerges as a low energy limit on a VPCT theory space
- New approaches to Quantum Gravity:
 - heuristic physical Hilbert space in loop quantization
 - ▶ two hints that black hole entropy is due to entanglement in matter sector

Tim A. Koslowski (UNB)

Shape Dynamics and Quantum Gravity

July 2013

13 / 14

Pirsa: 13070040 Page 48/72

Pirsa: 13070040 Page 49/72

I. Hamiltonian constraints are not pure gauge generators

$$\mathcal{H} = \kappa \frac{\pi^{ab} G_{abcd} \pi^{cd}}{\sqrt{g}} - \frac{1}{\kappa} \left(R - \frac{d(d-1)k}{\ell^2} \right) \sqrt{g} \approx 0$$
 (1)

$$V_a = 2g_{ab}\nabla_c \pi^{bc} \approx 0, \tag{2}$$

$$\{\mathscr{H}(N_1),\mathscr{H}(N_2)\} = V(\zeta^a(N_1,N_2,g^{ab})),\tag{3}$$

$$\{V(N^a), \mathcal{H}(N)\} = \mathcal{H}(\mathcal{L}_{N^a}N), \tag{4}$$

$$\{V(N_1^a), V(N_2^a)\} = V(\mathcal{L}_{N_1^a} N_2^a), \tag{5}$$

$$\mathscr{H}(N) := \int_{\Sigma} d^d x N(x) \mathscr{H}(x), \ V(N^a) := \int_{\Sigma} d^d x N^a(x) V_a(x)$$

$$\zeta^{a}(f_{1}, f_{2}, g^{ab}) = g^{ab}(f_{1}f_{2;b} - f_{2}f_{1;b})$$

Gryb & Thébault, Loops 13

Symmetry and Evolution in Quantum Gravity. arXiv:1303.7139

Pirsa: 13070040 Page 50/72

Manifest and Hidden Symmetries

- A symmetry is associated with *some* form of redundancy occurring in the relationship between our mathematical formalism (configuration space, variational principle) and the *characteristic* behaviour of the system to which it corresponds (physical degrees of freedom, physical boundary conditions).
- ▶ If the action *does not* change when the sample paths are varied *globally* with respect to the function then this situation automatically implies a symmetry, and we will call a symmetry of this kind *manifest*.
- The other options are that there is no symmetry or that there is a hidden symmetry hidden symmetries are important in GR and will return to them later in our discussion

Gryb & Thébault, Loops 13

Symmetry and Evolution in Quantum Gravity. arXiv:1303.7139

Pirsa: 13070040 Page 51/72

Pirsa: 13070040 Page 52/72

Pirsa: 13070040 Page 53/72

Quantization and Types of Symmetry

- ► The physical basis of a symmetry is what should dictate its treatment within a faithful quantization procedure
- ► Since gauge symmetries result from surplus representational structure, the degrees of freedom to which they correspond must be eliminated at some stage in the construction of the physical Hilbert space
- Conservation symmetries on the other hand, reflect the existence of conserved charges and not redundant variables – quantization should preserve the number of degrees of freedom, and allow for superpositions of the relevant conserved charges.

Gryb & Thébault, Loops 13

Symmetry and Evolution in Quantum Gravity. arXiv:1303.7139

Pirsa: 13070040 Page 54/72

Pirsa: 13070040 Page 55/72

Pirsa: 13070040 Page 56/72

Pirsa: 13070040 Page 57/72

Pirsa: 13070040 Page 58/72

Pirsa: 13070040 Page 59/72

Pirsa: 13070040 Page 60/72

Pirsa: 13070040 Page 61/72

Pirsa: 13070040 Page 62/72

Pirsa: 13070040 Page 63/72

Pirsa: 13070040 Page 64/72

The analogue model

The analogue model wants to capture the relational features of GR in the sense introduced above. So it is

- 1. Time-relational \Rightarrow Hamiltonian constraint H=0.
- 2. Space-relational \Rightarrow No absolute space P=0, L=0 and scale invariant (invariant under global rescalings $x_i \rightarrow \lambda x_i, \ \lambda > 0$).

Matteo Lostaglio

Analogue models for gravity and the problem of time

Pirsa: 13070040 Page 66/72

Pirsa: 13070040 Page 67/72

Pirsa: 13070040 Page 68/72

Pirsa: 13070040 Page 69/72

Pirsa: 13070040 Page 70/72

Pirsa: 13070040 Page 71/72

Pirsa: 13070040 Page 72/72