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Abstract: <span>In the standard model neutrinos are assumed to have streamed across the Universe since they last scattered at the weak decoupling
epoch when the temperature of the standard-model plasma was ~MeV. The shear stress of free-streaming neutrinos imprints itself gravitationally on
the Cosmic Microwave Background (CMB) and makes the CMB a sensitive probe of neutrino scattering. Y et, the presence of nonstandard physics
in the neutrino sector may alter this standard chronology and delay neutrino free-streaming until a much later epoch. We will discuss how
observations of the CMB can be used to constrain the strength of neutrino self-interactions G_eff and put limits on new physics in the neutrino
sector from the early Universe. Key measurements of the CMB at large multipoles made by the Planck satellite and high-l experiments are critical
for probing this physics. Within the context of conventional LambdaCDM parameters cosmological data are compatible with G_eff < 1/(56 MeV)"2
and neutrino free-streaming might be delayed until their temperature has cooled to as low as ~25 eV. Intriguingly, we also find an alternative
cosmology compatible with cosmological data in which neutrinos scatter off each other until z~10"4 with a preferred interaction strength in a
narrow region around G_eff = 1/(10 MeV)"2. This distinct self-interacting neutrino cosmology is characterized by somewhat lower values of both
the scalar spectral index and the amplitude of primordial fluctuations. We phrase our discussion in terms of a specific scenario in which a late onset
of neutrino free-streaming could occur, but in fact our constraints on the neutrino visibility function are very general .</span>
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LHC: A Modern Particle
Physics Experiment
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Geneva: A Wonderful Place for Particle Physics!
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LHC: A Modern Particle
Physics Experiment

Collide particles it at the centre, see what comes OUT at a distance
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LHC: A Modern Particle
Physics Experiment

SALAS

Run the same scattering experiment, at the same place, many times.
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LHC: A Modern Particle
Physics Experiment

1. Find a Place to Run an Experiment:

Geneva: A Wonderful Place for Particle Physics!
2. Carefully Set Up and Run the Experiment:

Collide particles it at the centre, see what comes OUT at a distance

3. Carefully Repeat under the Same Conditions:

Run the same scattering experiment, at the same place, many times.

4. Get constraints on Physics!!
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LHC: A Modern Particle
Physics Experiment

Run the same scattering experiment, at the same place, many times.

LHC Physics Evolution
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But... why do we have both ATLAS and CMS?
Surely if not for lacking of funding impatient physicists would:

Run the same scattering experiment, at many places, at the same time.
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CMB: A Primordial Particle
Physics Experiment

The Universe: A Wonderful Place for Particle Physics!
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CMB: A Primordial Particle
Physics Experiment

Collide particles it at a distance, see what comes IN to the centre
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CMB: A Primordial Particle
Physics Experiment

1. Find a Place to Run an Experiment:
The Universe: A Wonderful Place for Particle Physics!

2. Carefully Set Up and Run the Experiment:

Collide particles it at a distance, see what comes IN to the centre

3. Carefully Repeat under the Same Conditions:

Run the same scattering experiment, at many places, at the same time.

4. Get constraints on Physics!!
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CMB: A Primordial Particle
Physics Experiment

1. Find a Place to Run an Experiment:
The Universe: A Wonderful Place for Particle Physics!

2. Carefully Set Up and Run the Experiment:
Collide particles it at a distance, see what comes IN to the centre

3. Carefully Repeat under the Same Conditions:

Run the same scattering experiment, at many places, at the same time.

4. Get constraints on Physics!!
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1. Find a Place to Run the Experiment

Image: Boomerang
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The Early Universe: A Natural Source of Particles of All Sorts:

Photons,

“Dark Matter Particle”, Neutrinos
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2. Carefully Set Up and Run the
Experiment: Detectors

A Section of the CMS Experiment

High Energy:

Photons, .
Electrons, LH C.
Muons, Pions,

Nucleons

Microwave: C M B .

Photons

Build detectors that can determine the properties of certain “messenger particles”
that interact strongly enough to tell us something about the fundamental physics we
are interested in
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2. Carefully Set Up and Run the
Experiment: Initial Conditions

LHC:
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2. Carefully Set Up and Run the
Experiment: Initial Conditions

Adiabatic Initial Conditions
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Initially Correlated Over or Underdensities of All types of Particles!
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2. Carefully Set Up and Run the
Experiment: Initial Conditions

Adiabatic Initial Conditions
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Evolve According to Linear Perturbation Theory
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3. Carefully Repeat under the Same
Conditions:

LHC:

SALAS

Run Many Times and Record Different Outcomes
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3. Carefully Repeat under the Same
Conditions:

CMVMB: C(x) = / d?k e™ > (k)

Perform the same experiment everywhere in the Universe with Gaussian random field initial
conditions and a nearly scale-invariant power spectrum for the curvature perturbation.

k-;PCC(k‘) ¢ k'n,—l

I

T

Green’s Function of Adiabatic Evolution Convolved with Random Curvature Field
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CMB: A “"Metricometer”

In linear GR about an FRW background we can decompose the metric into the form:

900 e —(r.z(T} {l -t 2(,"'(.‘1.'.._ T)} N
go:. = ”2(7”) wi (¥, 1),
gy = a?(7) {1 —26(F 1)y + xi;(F T}, xu=0

As CMB photons travel through the Universe their evolution is sensitive to the
Form of the Scalar, Vector, and Tensor perturbations of the metric.

e.g.  ‘
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CMB Polarization

Pirsa: 13070025 Page 20/47



CMB: Scalar Potentials

In contrast to Newtonian gravity, scalar perturbations in GR are described by two
gravitational potentials:

Gravitational Potential in the Newtonian Limit

¢ Curvature Perturbation

— ¢ Difference Sourced by Shear Stresses

o)
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CMB: Scalar Potentials

In contrast to Newtonian gravity, scalar perturbations in GR are described by two
gravitational potentials:

Gravitational Potential in the Newtonian Limit

¢ Curvature Perturbation

E— ¢ Difference Sourced by Shear Stresses
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CMB: Scalar Potentials

In detail the evolution is given by (e.g. Ma and Bertschinger):

GEOMETRY = MATTER-ENERGY-STRESS

Poisson-like equation ‘\
2 . a . a . z—i— -0
k¢ +3— (¢ + — = AdnGa“o1 o (Con),
a a
I (q) A~ %q) = 4nGa®*(p + P)O(Con) ,
. .e . 2 2
. a , - - a a _ K | 47 0 wrig
P+ —(Y+2p)+ |2 — 5 |v+ 5 (@—v) = —Ga*dT"(Con) ,
a a a 3 3
E2(¢p — ) = 127Ga*(p + P)o(Con),

AY sourced by shear stresses
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CMB: A Primordial "Shearometer”

‘/’3;. i
hhg |
o AP > 0

o = o # 0

irsa: 13070025 Page 24/47



Pirsa: 13070025

Low Energy v-v

’

Scattering

e h = e ’ V y
q’ Qs W
(outgoing neutrino or lepton) (other outgoing porticle) P

s=(p+q)’ =2p-q
t=(p-p)¥=-2p-p’
u=(p-q’) =-2p-q’

p q
(incoming neutrino) (other incoming particle)

4 Fermion Interaction

Prof. Fermi
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SM v-Vv Scattering

p" qi'
(outgoing neutrino or lepton) (other outgoing porticle)

s=(p+q)’ =2p-q
t=(p-p)¥=-2p-p’
u=(p-q’) =-2p-q’

q
(incominqpneutrino) (other incoming particle)
4 Fermion Interaction Prof. Fermi
e V2 g2 B
—E — g — 1.16637(1) x 10~ MeV 2
(he): 8 mgiy
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Weak Neutrino Decoupling

12

Gy V2 g? — 2
he)d = 8 mi. = 1.16637(1) x 10 " MeV 2 Neutrino Visibility
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Only SM Interactions =2 Neutrinos free stream after 1.48 MeV!

Free-streaming relativistic particles generate shear stress!
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Neutrinos and the CMB

S. Bashinsky and U. Seljak (2004)
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Phase Shift in k or | space N. Bell, E. Pierpaoli, and KS (2006)

Used by, e.g., Trotta and Melchorri (2005) to find evidence
for Free-Streaming Neutrinos within a c,. paramatrization
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Neutrinos and the CMB

We can use the CMB to
conduct a v-v Scattering
Experiment!

Look for non-standard self-
interactions!
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Neutrinos and the CMB

Francis-Yan Cyr-Racine and KS, arXiv:1306.1536
Limits on Neutrino-Neutrino Scattering in the Early Universe

Francis-Yan Cyr-Racine
NASA Jet Propulsion Laboratory, Califormia Institute of Technology, Pasadena, CA 91109, USA and

. Califorma Institute of Technology, Pasadena, CA 917125, USA
Kris Sigurdson
t Department of Physies and Astronomy, University of British Colurebia, Vancouwver, BC, VT 121, Canada

{Dated: June 10, 201:3)

In the standard model neutrinos are assumed to have streamed across the Universe since they last
scattered at the weak decoupling epoch when the temperature of the standard-model plasma was
~NeV, The shear stress of [ree-stremming neutrinos imprints itsell gravitationally on the Cosmic
Microwave Background (CNMNB) and makes the CNEB a sensitive probe ol neatrino scattering. Yet,

o, the presence of nonstandard physics in the neatrino scctor may alter this standard chronology
— and delay neutrino free-streaming until a much later epoch,. We use observations ol the CMB to
— 2 - M » M v " " . - =
- constrain the strength of neutrino self-interactions Gog and put limmits on new physics in the neutrino
-l sector from the carly Universe, Recent measurements of the CMB at large multipoles made by the
— Planck satellite and high-{ experiments are critical for probing this physics. Within the context
— ol conventional ACDM parameters cosmological data are compatible with &g = 1/(5606 MeVvy? and
—_ neutrino free-streaming might be delayved until their temperature has cooled to as low as ~25 oV,
) Intriguingly, we also find an alternative cosmology compatible with cosmological data in which
Ve : : |
neutrinos scatter off ecach other until =z ~ 10* with a preferred interaction strength in a narrow region
- Py rv2 gy s . . . . . . .
— around Geg == 1/{10MeV)7, This distinct self-interacting neutrino cosmology is characterized by
' somewhat lower values of both the scalar spectral index and the amplitude of primordial fluctuations,
r ) While we phrase our discussion here in terms of a specific scenario in which a late onset of neutrino
\—/: frec-streaming could occur. our constraints on the neutrino visibility function are very general.
(-
o s
= PACS numbers: 98.80.-Kk, 14.64.5t 98, 70. V¢
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Self-Interacting Neutrinos

,.". pl ql
L (outgoing neutrino or lepton) (other outgoing particle)
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174 A ) 24

New Unknown
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incoming particle)

4 Fermion Interaction

G, o< g2/M% G, > Gy
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General Neutrino Decoupling
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Extra Neutrino Interactions =2 Delayed Neutrino free streaming!
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General Neutrino Decoupling
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General Neutrino Decoupling

Extra Neutrino Interactions =2 Delayed Neutrino free streaming!

Shear Perturbations Damped.

Missing Shear Stress!
Modified CMB.
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General Neutrino Decoupling

1.0

Evolution of Single k-mode
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Delayed Neutrino Free-Streaming
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Delayed Neutrino Free-Streaming
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Delayed Neutrino Free-Streaming

9.10 More Subtle Effect as Time Progresses Y
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Constraints on G 4 from the CMB

1.0 Planck+~WP-+BAO
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An Interacting Neutrino Cosmology?
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Different Evolution
Same CMB!
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Constraints on G4 from the CMB
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Interacting Neutrinos?
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Conclusions

*  We can use the CMB to conduct an v-v scattering experiment to look for missing
shear stress.

*  Within the standard cosmological paradigm, neutrino free-streaming could be
delayed until the Universe has cooled to a temperature close to 35 eV, almost 5
order of magnitude below the value predicted by the Standard Model of particle
physics.

*  We have found a new cosmology in which neutrinos are tightly-coupled until
redshift z-9000. This cosmology is characterized by a lower value of the scalar
spectral index and of the amplitude of scalar fluctuations.

Parameters Standard Mode |Interacting-r Mode
Qph? 0.0221 £+ 0.0002 0.0222 + 0.0003
Qch? 0.119 £ 0.002 0.120 &+ 0.002
T 0.09 4+ 0.01 0.09 =+ 0.01
I 68.1 &= 0.8 m\
Tig 0.959 &+ 0.00 0.932 + 0.006 >
107 A, 2.19 #+ 0.02 207 igg_)z/
log,o(GegMeV?) | < —3.5(95% C.L.) —2.0 £ 0.2
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redshift z~9000. This cosmology is characterized by a lower value of the scalar
spectral index and of the amplitude of scalar fluctuations.

Stanc

Ouh? 0.0221 £ 0.0002 | 0.02
0ch? 0.119 £0.002 |
r 0.09 4 0.01

Hy 68.1 £0.8
My 0.959 + 0.00
10°A, A Y
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Constraints on G 4 from the CMB
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