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Abstract: <span>The AdS/CFT correspondence provides new insights and tools to answer
previously inaccessible questions in quantum gravity. Among the most

interesting is whether it is possible to describe a cosmological

"bounce" in amathematically complete and consistent way. In the

talk, I'll discussjoint work with M. Smolkin, developing the dual description

of the simplest possible 4d M-theory cosmology in the stringy regime, employing

the full quantum dynamics of itsdual CFT. I'll also present evidence that the

description extends to the Einstein-gravity regime.<strongr>

<br></strongr></span>

Pirsa: 13070008 Page 1/55



Resolving Cosmological Singularities
with AdS/CFT

Neil Turok

work with M. Smolkin
hep-th/1211.1322; in preparation, 2013

Developing earlier work with B. Craps and T. Hertog
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Planck, WMAP and other CMB experiments, as

well as the LHC, seem to have revealed surprising
simplicity in the universe

The challenge 1s to find the physical principles
which can predict such extreme simplicity in nature

Mathematical explorations are needed, to

develop more powerful principles and methods
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A compelling theory must explain and resolve:

1) the cosmological singularity, from which
everything we observe seemingly emerged

2) the measure on the space of cosmologies,
showing why a universe like ours 1s likely
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These problems are related to profound issues in
quantum gravity:

The kinetic energy for the scale factor of the
universe has the “wrong sign™

The Liouville measure ngdq 1s divergent and

must be carefully regulate

The Euclidean action for gravity i1is unbounded
below
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This talk will try to tackle these questions
within a mathematical laboratory:

M-theory in asymptotically-AdS spacetime
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Again and again, when | have been at a
loss how to proceed, | have just had to
wait until I have felt the mathematics
lead me by the hand. It has led me
along an unexpected path, a path where
new vistas open up...

Paul Dirac

Pirsa: 13070008 Page 8/55




AdS/CFT

a theory with gravity in

asymptotically AdS spacetime

. s to

a theory with no gravity living
on the boundary

-a field theory

a marvellous theoretical laboratory!
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Best understood example:

M theory on AdS, < (S, /Z,)
- fibration over Cpq

t

— CF7 on

3

S, xR
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For purposes of choosing AdS-invariant bcs,
truncate to gravity + scalar

B \
Spuk = _[ (% R — % (/(:) (0)2 + RAiS (3 cosh \/%qo)/
bulk

V(¢)A quadrupole of S7 traceless bilinear under SO(8)

- @

el N
@:O;méz—zR” >—2R°. =m,

AdS AdS BF
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general asymptotically AdS solutions:
@~ o(t,Qe" + LB, Qe +...
AdS isometries act as conformal gp on CFT
-> identify o(¢2,Q2) ~ O, B(¢,2)~J_,, O ~¢” in D=3

SUSY bcs: o =0 or 8=0 -> static and stable
Generalised AdS-invariant bcs:

B = Ao’
- correspond to adding deformation to CFT
S T — S('f"’l' —|—%J.O7§, i.e., V RN V+%¢6

C

Hertog, Maeda,
Horowitz,Witten
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Hertog+Horowitz

AdS cosmology

For each A #0, 1 a cosmological instanton solution:

collapsing
k=-1
cosmology
For the chosen bcs,
near singY the 11d bulk
geometry turns out to be
| , 1T+1 Milne x flat space,
‘oo _ _ ,/ as invoked in the cyclic
O(4) -mvariant instantorL” model — a very natural
T~ oL -7 setting for all mass scales
ST to vanish at the singularity

— -
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Dual CFT identified by Aharony et al (ABJM):

UM )HYXU(M) Chern-Simons theory with 4 bi-fundamental

/
Higgs fields )

ad

S oy J'(k(A AF+AANAANA)—|DY|" —k2X"Y)’ +.f5;)rmi()i-7s)

3

‘t Hooft limit
]1,’4

- R . R .
M.k —eo, at fixedg, =M /k; — ~ (M), s w[ ’;”-’

&

For the most part, we shall discuss the theory at small &,,
corresponding to a stringy bulk. At the end we’ll discuss the more

interesting limit of large g, corresponding to Einstein gravity in
the bulk.
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Hertog and Horowitz interpreted their instanton
solution as describing “tunneling” from AdS to a
big crunch cosmology.

However, this interpretation is problematic since
AdS is infinite and there would be an infinite total
rate of decay, with bubble collisions ruining any
simple cosmological picture. (D. Harlow)

The problem of infinitely many bubbles should
sound familiar from eternal inflation. Here we
shall be able to resolve it completely. It is the

result of asking the wrong question.
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We shall sum over all of these instantons and
show that they collectively define a stable,
nonsingular “cosmological phase” of the
boundary CFT.

It is a “time crystal” in that the ground state of
the theory exhibits spontaneous time
dependence.

Within this phase, we can precisely describe the
approach to (and the passage across) the big
crunch singularity.

Pirsa: 13070008 Page 23/55




We shall sum over all of these instantons and
show that they collectively define a stable,
nonsingular “cosmological phase” of the
boundary CFT.

It is a “time crystal” in that the ground state of
the theory exhibits spontaneous time
dependence.

Within this phase, we can precisely describe the
approach to (and the passage across) the big
crunch singularity.

Pirsa: 13070008 Page 24/55




Along the way we shall encounter (and resolve) many
strange phenomena:

An apparently unbounded-below Hamiltonian.

Infinite numbers of bubbles, each containing a

singularity. Nevertheless, when correctly summed, they
combine to give a completely regular state.

We are required to deal with the AdS bulk in global
coordinates. The dual theory makes no sense in flat
space, but is well-defined on a de Sitter boundary.

Conformal symmetry lies at the heart of our analysis. It
is spontaneously broken but there is no Goldstone
mode. Conformal symmetry shall completely determine
the propagation of modes across the singularity.
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Craps,Hertog, NT

Dual theory has a UV fixed point o Herts
Pisarski 80" s - for O(N) model in 3d

— _3 S 3
B() 2N (/’L() 192 )"6)

suppressed by 1/N
In deformed ABJM, same calculation shows UV fixed

point, 4,. =192 at weak ‘t Hooft coupling

AdS/CFT calculation also indicates a UV fixed point

at strong ‘t Hooft coupling
For simplicity, in most of this talk | consider the theory

to be strictly at this fixed point
* Historical remark: at N=1 this is the model exhibiting

the famous Wilson-Fisher IR fixed point
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Fa\liglel8le] g ﬂ,ﬁ iIs positive, Hamiltonian is unbounded below!

Trial wavefunction: free field mass m

(p”) = j(zﬂ) 2@/ = 2L (A —m);

2 ’ 2'6
() =L(-—m) =(H)= N24ﬂ[l*ﬁ]

2
Forﬂ > 16 , in flat spacetime, theory has no
ground state Bardeen,Moshe,Bander

Gain more insight by studying time-evolution towards
the singularity
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_C
lin Q- (at N = oo; at finite
Scaling: < > - exponent gets N Ncorrns)

o= x:(t) e, > — ($?) in N — oo limit
>

Fieldeq = ¥, =—k’x.— A X:» Bessel vZ=1—-2 C~

6 2 4 6
72

> AV 2
=V = 167\; (cotwr)

A, —A,.=192=v —>v, =IN,, N,=1.061..

Gap equation

Instability dynamically breaks Poincare invariance
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BUT the theory is Weyl invariant
1) UV fixed pt
2) No trace anomaly in D=3

so the “singularity” can be removed via a Weyl
transformation

—=5 C
<¢’">=—HN»

1
n

2 v
|t

constant <53>= —CN 1n de Sitter!

é— | ¢, n,, —
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<$2>:_|z£|N’ $—d 6. n—

Minkowski de Sitter!

ds”’

> ] > > s |
ds® = —(-d 7~ +d£2)), “Y=—CN
(cosT)” ( - <¢ >
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Global Picture

By choosing
boundary to

be dS3,

we avoid the
singularity!
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AdS/CFT in global coordinates
7,

7" — X'X' =1

(T, X')HY=(T,Z,X")

Stereographic coords

3
W . < S
vz 1+T+Z /K. E-

M, =X,P,—X,P,6 =50(4,1)= Special Conformal Generators on x’l
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Dual CFT
S, = [| (36)* + RG> + 25($)" |

- [ DLS'DPDQE).e_j[N(’1"”‘—”’ )+(/5(}\‘</5+./'.q5]

J

—j[N( }th"—.s'pﬂ-'l'r In (-)_\, )+./'(-)N 'J :|

| DsD pe

-

Formally, use

B .[ [ N(gep +s(p*—p )]

ﬁJ-’l.(;((p'?« )‘
e ¥ o< [ DsDpe

Prove by differentiating, integrating by parts.
True for any (s, P) contour for which the integral converges.
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Dual CFT
S, = [| () + RG> + 25(6°)’ |

Z . [ DLSvaDq_b'e_J‘I:N( /1(,;)"__5';) )—}—(})-(ﬂ)l\‘(/)-—hj.(p-:l

J

* —JI:N( A(,,c)"—.s';)+'l"t‘ In (-)_\, )+./'(-)N 'J :|

DsD pe
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Consider theory on S° of radius 7,

Saddle point equations P = <x| O:l|X>, s=A_p*

Defining N = /s7y — 1 , we obtain the “gap equations”
2
e — __ NCothNm gl < Iy [p— NCothNmT Y\~
pr, = . Sry = N? + 1 = /'L(‘( )

4 4

For A, >167° there is a nontrivial solution, with

5=17"C(A,), cc>C>0as 167> < A_ < oo;
C(A,.)=1.38..

This is the simplest, homogeneous instanton on S’
It breaks conformal symmetry SO(4,1) to SO(4)
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There is a 4-parameter family of such instantons,
parameterized by a size modulus a and centre &

Instanton

Instanton

a<n S~

In flat space they are known as “Fubini” instantons
They may be obtained by Weyl-transforming between
spheres of different sizes.
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Each Fubini instanton represents the boundary image of
a bulk cosmological instanton. If analytically continued
to real time, each describes a “bubble” with the field
rolling downhill towards a finite-time singularity.

We are able to regulate and perform the (coherent)

sum over all of these instantons in the Euclidean region,
before continuation to real time. The resulting field
theory on the boundary is completely regular and stable.

Note in particular the moduli space turns out to be
Euclidean AdS4i.e. H*. We regularise and integrate,
either by dimensional reg or by adding counterterms:

d—1 . d—1 a=l d—1 2 .
O dr sinh®'» =1 r(-%):imd=4

3

0]
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Each instanton defines a saddle point for the path integral;
we must still choose a contour in (s, p) along which the path
integral will converge.

Careful analysis shows that for A, > 167t°, spontaneous
breakdown of conformal symmetry occurs. The homogeneous
modes of both s and p must be integrated along imaginary
contours (contours which reverse under complex conjugation).

Nevertheless, the partition function Z is real and the
two-point correlation function satisfies reflection positivity
(which is required for unitarity).
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Our claim is that the CFT defined by this choice of
contour is well-defined and stable when continued to dS

e.g. s-s correlator constructed via Sommerfeld-Watson
transform and analytic continuation from Euclidean region
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In contrast, one can easily show that the same procedure,
applied to a Hawking-Moss instanton for example, results in
an exponentially growing correlator, i.e., an unstable theory.

So, in that case, the instability associated with the Euclidean
negative mode cannot be cured by a contour rotation).
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Integrating over moduli space, we explicitly obtain the full
2-point function for ¢ on dS’, with good short and long

distance behaviour: Instanton sum shifts vev away

from free field of mass N’ + 4

m 250 m g 52 S mn 1 9N cothaN .
<¢ (1)9™ (N )>“b Gran = om0 short distances

~ ~ 1 .
~(M' A7), large distances

-~ . ~ 2 2 . . ~ 3
where 77, obeying 17° =7, 1s a point on dS
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IN summary:

We have shown that the dual CFT exists and
is stable on S° /dS’. It cannot be defined on flat
space because the moduli space measure

cannot be regulated in a conformal invariant
manner.

In the cosmological phase of the theory, we
have a well-defined vacuum and S-matrix
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Crossing the singularity

3
dS "~ conformal to Einstein cylinder

cc ) - ol in
need “S matrix”: @ to @,

"fjp 2 demand SO(3,1) invariance

1N conformal weight

d, ~(E—7)""™ f£(Q)+hc.,T—> %

Factor out dependence -> correlators take
CFT form, weight h=1+iN.
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At small g,, compute in boundary theory
At large g,, compute in bulk theory
Find qualitative agreement for large A _ :

g <1 g, >1

(P)~(9*)~ 2] o ~ A"
<S> _ <(§52)2>"" )'(:l B~ )’6—1

S. ~ NA~ S, ~ NA”

E E

This suggests that nothing dramatic changes in
going from the stringy to Einstein gravity regime
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