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Abstract: <span>We discuss holography for cosmology, focusing on a class of slow-roll inflationary spacetimes that are holographically dual to a
perturbative RG flow between two nearby CFTs.& nbsp;& nbsp; The cosmological power spectrum and non-Gaussianities may be calculated directly
from the dual QFT using conformal perturbation theory, even when the dual QFT is strongly coupled.& nbsp; Holography thus offers new methods
for computing cosmological observables.& nbsp; To illustrate, we show how to recover the power spectrum to second order in slow roll.</span>
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Introduction

In this talk we present a precise and quantitative holographic decription of a
class of inflationary slow-roll models.

Through calculations in the three-dimensional dual QFT, we can derive

©® The inflationary power spectrum to second order in slow-roll

® Non-Gaussianities
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Introduction

Our holographic framework for cosmology is based on standard AdS/CFT plus

the domain-wall /cosmology correspondence.

radius

[PM & Skenderis '09-'11]

4d cosmology:

ds® = —dt* + a*(t)d&

¢ =(t)
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Framework

4+ This correspondence also holds for perturbations about the background
solutions, and to non-linear order:

One can set up a 1-1 map between solutions of the perturbed domain-wall
equations of motion and those of the corresponding cosmology.

4+ Using this map, plus the standard holographic dictionary, one can
construct holographic formulae linking quantities in the 3d QFT to
cosmological observables.
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Introduction

Our holographic framework for cosmology is based on standard AdS/CFT plus

the domain-wall /cosmology correspondence.
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Framework

For example, the primordial scalar power spectrum is given by

1

) 4
850 =55

where ¢(q) is the spectral density of the 2-point function (7'T") in the dual QFT.
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Framework

For example, the primordial scalar power spectrum is given by

|
mt ¢(q)

where ¢(q) is the spectral density of the 2-point function (7T in the dual QFT.
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Today

Our goal today is to apply this framework by recovering standard inflationary
physics starting from the 3d QFT.

An apparent obstacle is that the QFT is strongly coupled: how do we compute?

One possibility is when the QFT is the deformation of a CFT by a scalar
operator 0. We take O to be nearly marginal, A = 3 — A, and expand in
AL 1.
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Framework

For example, the primordial scalar power spectrum is given by

A%(q) =

!
mt ¢(q)

where ¢(q) is the spectral density of the 2-point function (7T") in the dual QFT.
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Plan

© The dual QFT

® Properties: 3 function, spectral density

® Holographic computation of power spectrum
® Nature of corresponding inflationary cosmology

©® Non-Gaussianities
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The dual QFT

We consider a dual QFT which is the deformation of a 3d CFT by a nearly
marginal scalar operator,

S = Scrr + ¢o / d’z Oy (),

where Oy has scaling dimension A =3 — A, with 0 < A < 1. We work in
Euclidean signature.

Correlators in the deformed theory are given by

(Oo(21)O0(x2)) = (Oo(x1)O0(2) exp (—(,-s.,/(l": a,(:))>”
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The dual QFT

We consider a dual QFT which is the deformation of a 3d CFT by a nearly
marginal scalar operator,

S = Scrr + ¢o / d’z Op(z),

where Oy has scaling dimension A =3 — A, with 0 < A < 1. We work in
Euclidean signature.

Correlators in the deformed theory are given by

(C)()(.I'[)C}(](.I"_J)> = <C)¢)(.!'|)C)U(J"_)){‘KI) (_(;Z‘[)/(l:‘: C)”(C))>(]
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Correlators

Expanding out:
<C){](J'| )C)U(.I'g )>

= <On(-!'| )On(-!'z)>[1 — Qo / (1:531 <C)Il(--"l )C)n(-!':)@u(ii ))n

1 o [ . e :
+ 590 / d’z /(l“:z(@u(.rl)C)n(-l‘:)on(31)C7tl($z)>t1 + O(¢p),
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Correlators

Expanding out:
<C)[](J'| )C)U(.I'g )>

<On(!|)0u(!>)>1—0[1/(l -1(011(!1)0[1( )Oll( )))

_/ B /" 22(00 (1) o (22)Oo(21) Do (22))o + O(8}).
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Correlators

In momentum Space:

. 2 / k 3/ l 12 / [
<C)(|(({)C)()(—q)> — :l”q‘{ e — ;’11(,-")[]({5 A + ;:1-_:(;’)(,([1 N —+ ()((;‘)(i)

-

where Ay, Ay, As encode the CFT correlators

(Oo(0)O0(—q))o = Aog”~*
(O0(q)O0(—q)Op(0))o = A1g°>~**
(O0(q)O0(—q)00(0)00(0))o = A2g” "

These three numbers characterising the UV CFT will be the input to our
calculations.
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Correlators

In momentum Space:

. 2 / h 3/ l (2 / [«
<C)(|(({)C)()(—q)> = :l”q“ 2A — ‘_11{;)”(15 e —I— ;:1-_:(;’)(,([1 A + ()((;‘)(i)

-

where Ay, Ay, As encode the CFT correlators

<C)ll({f)c)u(—{[))“ — ..\”q:‘ 2
<C)n(q)c)(|(*({)C)“((]D” — -‘ll(j:‘ 3N
(O0(q)O0(—q)O0(0)00(0)) = Azqg’ 2y

These three numbers characterising the UV CFT will be the input to our
calculations.
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Correlators

In momentum Space:

v ) . ‘ l o K
(C)“(q)C)“(—q)> o :l”q‘i 2A — ;’11(,-‘")[]({‘5 SA —|— ;:1;_:(;")6([.1 1A + ()((‘)(i)

-

where Ay, Ay, A encode the CFT correlators

<C)l1({/)c)n(—{;))“ — ..\”q:‘ 2
<C)|)(([)C)(|(*({)C)“((]D” — -‘\l(f:% 3\
(O0(q)O0(—q)00(0)00(0))0 = A2g” ",

These three numbers characterising the UV CFT will be the input to our
calculations.

Pirsa: 13070006 Page 19/63



The dual QFT

We consider a dual QFT which is the deformation of a 3d CFT by a nearly
marginal scalar operator,

S = Scrr + %0 / d’z Oo(z),

where Oy has scaling dimension A =3 — A, with 0 < A < 1. We work in
Euclidean signature.

Correlators in the deformed theory are given by

(C)()(.I'[)c}(](.l"_i)> = <C)¢)(.!'|)C)U(J"_)){‘KI) (_(;5[)/(133 C)“(C))>(]
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Correlators

In momentum Space:

3-2 . _3=3) l 2 ) %
(C)“(q)C)“(—q)} = xluq‘i 2A —_ ;’l]fl,-")[]([i A - ;:1-_:(;’)6([1 1A + ()((;‘)‘i)

-

where Ay, Ay, As encode the CFT correlators

(Oo(q)O0(—q))o = ,\“q:‘ 2
(O0(q)O0(—q)O00(0))o = A1q° 3\
(Oo(q)O0(—q)Op(0)Op(0))o = .'\-u’/:‘

These three numbers characterising the UV CFT will be the input to our
calculations.
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Correlators

Expanding out:
<C)H(J'| )C)U(.I'g )>

<On( Ul )Ou(! >)> 0 — U[J /I(l: 21 (On( L )On( )Oll( )> 0

_/ B /" 22(O0(21)O0 (2) Oo(21) Oo(22))0 + O(60).
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Renormalisation

The theory has divergences in the limit A — 0 where Oy becomes marginal,

4 Cured by field renormalisation:

Oo
Z(g)

0=

where ¢ is the dimensionless renormalised coupling corresponding to the
renormalised operator O.

4 Renormalisation scheme: at some momentum scale u, define
(O(W)O(=p)) = Aoy’

Can now solve for v/Z using Aop® = Z7{O0 (1) O (—p)).
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Correlators

In momentum Space:

. 2 [ k 3/ l 2 L / [«
(C)“(q)C)“(—q)} — :l”q‘i 2A — ‘_11{;)”(15 A —|— ;:1-_:(;’)(,([1 1A + ()((;‘)(i)

—_

where Ay, Ay, As encode the CFT correlators

<C)ll({f)c)u(—{[))“ — ..1”(;:; 2
(Ou(q)O0(—=q)Ou(0)) = A q® 3
(O0(q)O0(—q)00(0)00(0))o = A2g” ",

These three numbers characterising the UV CFT will be the input to our
calculations.
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Renormalisation

The theory has divergences in the limit A — 0 where Oy becomes marginal,

4 Cured by field renormalisation:

Oo
Z(g)

0=

where ¢ is the dimensionless renormalised coupling corresponding to the
renormalised operator O.

4 Renormalisation scheme: at some momentum scale u, define
(O(W)O(=p)) = Aoy’

Can now solve for v/Z using Aop® = Z7{O0 (1) O (—p)).
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Renormalisation

The theory has divergences in the limit A — 0 where Oy becomes marginal,

4 Cured by field renormalisation:

Oo
Z(g)

0=

where ¢ is the dimensionless renormalised coupling corresponding to the
renormalised operator O.

4 Renormalisation scheme: at some momentum scale u, define
(O(u)O(=p)) = Aoy’

Can now solve for v/Z using Aop® = Z7{O0 (1) O (—p)).
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Renormalisation

The theory has divergences in the limit A — 0 where Oy becomes marginal,

4 Cured by field renormalisation:

Oo
Z(g)

0=

where ¢ is the dimensionless renormalised coupling corresponding to the
renormalised operator O.

4+ Renormalisation scheme: at some momentum scale i, define
(O(p)O(=p)) = Aoy’

Can now solve for v/Z using Aop® = Z7{O0 (1) O (—p)).
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Renormalisation

The theory has divergences in the limit A — 0 where Oy becomes marginal,

4 Cured by field renormalisation:

Oo
Z(g)

0=

where ¢ is the dimensionless renormalised coupling corresponding to the
renormalised operator O.

4 Renormalisation scheme: at some momentum scale u, define
(O(m)O(=p)) = Aoy’

Can now solve for v/Z using Aop® = Z7{O0 (1) O (—p)).
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S-function

The renormalised coupling g then follows from integrating

dg(u) _
: — J'Hj .
dinpg (9)
; ) 1 ;2 2) l l__! ‘-3 /o 3) ) 4
= g(n) = pop™ " — .1,.12](’6““ T 12(,1[] - 2.'11'5,)("”‘{'“ " +0(60)-

Inverting and substituting back, we find

B(g) = —Ag + bag” + bag” + O(g"),

As
) - Ao ) .

L ¥

!’J-_)

[}

A A A /DA
e R }.' —_—
4 /1(; - ) (11
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S-function

The renormalised coupling g then follows from integrating

dg(p) _
! — B(a).
dlnp (9)
ooxn AL ooan 1Ay AT 3 g )
= g(u) = pop~ " - .1,.-1[“‘”““ A 12(,.1“ N zfﬁ)""":” 4+ O(¢).

Inverting and substituting back, we find

B(g) = —Ag + b2g” + bsg” + O(g"),

Ay
) - Ao ) .

L 2}

b

v}

A A ; A (31
2 — — L) ): - -
- 4 /1(; : y V4 A

Pirsa: 13070006 Page 30/63



S-function

If bo > 0 we obtain a new IR fixed point at g = \/ba + O(A\?).
When b2 ~ 1, this IR fixed point is close to the original UV fixed point.

Perturbative RG flow: [cf. e-expansion in d = 4 — €]

A controls both separation of fixed points and scaling dimension of O.

Pirsa: 13070006 Page 31/63



S-function

If b2 > 0 we obtain a new IR fixed point at g = A/b2 + O(\?).
When b2 ~ 1, this IR fixed point is close to the original UV fixed point.

Perturbative RG flow: [cf. e-expansion in d = 4 — €]

A controls both separation of fixed points and scaling dimension of O.
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Change of scheme

Under a change of renormalisation scheme
9 =01+ a9+ a2’ + O(p”)),
the 3-function becomes

| N -
Bp) = .x’f(.a)(_') = —X¢ + Bap” + Bsp® + O(p"),

where
[))g — (Jg + /\H-| ) lg;; — {);; + 2/\(!.-_) — 2/\(If.

[The holographic formulae involve T;;, however, which is scheme independent.]
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Change of scheme

Under a change of renormalisation scheme
9 =01+ a9+ a2’ + O(p”)),
the 3-function becomes

1 9 :
B(p) = ;;(g)(—') = —Ap + B2¢” + Bsp” + O(¢"),

where
[))g — ()3 + /\H-| " lg;; — {);; + 2/\(!.-_» — 2/\(If.

[The holographic formulae involve T;;, however, which is scheme independent.]
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Change of scheme

Under a change of renormalisation scheme
g=¢(l+a1p+ap” +0(p")),

the 3-function becomes
_ . (l!i ' 2 3 |
B(p) = ;a(g)(—) = —Ap + B2y + Bsp® + O(ph),

de

where
[))g — ()3 -+ /\H-| y lg;; — b;; + 2/\(!.-_) — 2/\(17)

[The holographic formulae involve T;;, however, which is scheme independent.]
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Renormalisation

The theory has divergences in the limit A — 0 where Oy becomes marginal,

4 Cured by field renormalisation:

Oo
Z(g)

0=

where ¢ is the dimensionless renormalised coupling corresponding to the
renormalised operator O.

4 Renormalisation scheme: at some momentum scale u, define
(O(W)O(=p)) = Aoy’

Can now solve for v/Z using Aop® = Z7{O0 (1) O (—p)).
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Change of scheme

Under a change of renormalisation scheme
g=¢(l+a1p+ap” +0(p")),

the 3-function becomes
. . (l.fi ' 2 3 |
B(p) = ;5(;;)(—) = —A¢ + B2p” + B3p” + O(¢ "),

de

where
[))g — ()3 + /\H|, lg;; — {);; + 2/\(!.-_) — 2/\(If

[The holographic formulae involve T;;, however, which is scheme independent.]
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Change of scheme

Under a change of renormalisation scheme
9 =01+ a9+ a2’ + O(p”)),
the 3-function becomes

1 9 .
B(p) = .x-'f(x;)(;) = —Ap + B2¢” + Bsp” + O(¢"),

where
[))g — (Jg + /\H-| s lg;; — {);; + 2/\(!.-_) — 2/\(I‘f.

[The holographic formulae involve T;;, however, which is scheme independent.]
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Change of scheme

Under a change of renormalisation scheme
g=o(l 4+ a0+ axp® + O(p%)),
the 3-function becomes

1 9 .
Blp) = .x-'f(x;)(;) = —Ap + B2p” + B3p” + O(¢"),

where
[))g — {Jg + /\H-| . lg;; — {);; + 2/\(1.2 — 2/\(I‘f.

[The holographic formulae involve T;;, however, which is scheme independent.]
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Change of scheme

Under a change of renormalisation scheme
g=¢(l+a1p+ap” +0(p")),

the 3-function becomes
_ . (l,fi ' 2 3 |
Bp) =B9)(52)  =-Ap+ Bap” + Bsg’ + O(¢),

de

where
[))g — (Jg + /\H-| . lg;; — {);g -+ 2/\(!.-_) — 2/\(17)

[The holographic formulae involve T;;, however, which is scheme independent.]
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S-function

The renormalised coupling g then follows from integrating

dg(u) _
: = A(qg).
dinp (9)
‘ ) .'1[ , 2 2) 1 l_’ ‘_\‘.3 L 37 L
= 9(k) = dop” " = b+ 12(,.1“ - 2.1':;-’,)(""‘{"' " +0(60)-

Inverting and substituting back, we find

B(g) = —Ag + bag” + bag® + O(g"),

As
) - Ao ) .

L ¥

!’J-_)

[}

A Ay A /DBA
= - —, f q = —
4 /’11; » (11
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S-function

The renormalised coupling g then follows from integrating

dg(p) _
- — a'l‘-j .
dinp (9)
‘ P "11 2 2) ] 1_3 ;\2 y 3) N
= 90 = oon™ = Toobu + 15 (55 — g )b + 0D

Inverting and substituting back, we find

B(g) = —Ag + bag” + bag® + O(g"),

Ay
) - Ao ) .

o

!’J-_)

[}

A A A/HA
= - —, f.- =
4 /1(; N ) (11
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Spectral density

The 2-point function of T = T} has the following spectral representation

o d*q q .
T(x)T(0)) == [ dpe iz
T@TO) =5 [ docle) [ 5t

The spectral density ¢(p) encodes the contribution of propagating intermediate

states of mass p.

c(p) may be extracted via a dispersion relation:

¢(p) = = - Im (T(q)T(~q))

ﬂ-'.l [).'{

) >
qe=—p=—ie

[Capelli, Friedan, Latorre '91]
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Spectral density

The 2-point function of T = T} has the following spectral representation

T [ ©d’g q" .
r[\ T r[r {) — 1 N ‘Hf J .
T =5 [ docte) [ 5t

The spectral density ¢(p) encodes the contribution of propagating intermediate
states of mass p.

c(p) may be extracted via a dispersion relation:

¢(p) = = = Im (T(q)T(~q))

ﬂ-'.l [).'{

) 5
qe=—p=—ie

[Capelli, Friedan, Latorre '91]
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Spectral density

s Bl

To compute ¢(p), we calculate (T'(q)T(—q)) using RG improved perturbation
theory. This uses the Callan-Symanzik equation to effectively resum the
expansion in ¢g, giving correct scaling behaviour about the IR fixed point.

Running coupling:

de(q) 4/ - o
W = ((o(q)), o(u) = .
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Spectral density

With an appropriate choice of renormalisation scheme and operator
normalisation, we find

c(p) = ﬂﬁ [1 — 268 + (4+26° — T)B"% + (% -

)B" B + O(X?)
s

12

where b =2 —In2 — v and 8 = B(@(p)).
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Spectral density

With an appropriate choice of renormalisation scheme and operator

normalisation, we find

b

c(p) = ﬂﬁ [1 — 268" + (4 + 2b° — ’TT),@"-’ + (b% - T—‘),-'i”b’ +O0(\%)
e &

where b=2 —1In2 -~ and 3 = 3(@(p)).

Page 47/63
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Holographic power spectrum

The primordial power spectrum for the dual cosmology is related to the
spectral density by

) 4 1
AH(([') — ; {.(q) by

By design, in the renormalisation scheme we use, the running coupling ¢(q)
equals the value of the inflaton at horizon crossing ©.(q). This means

3%, =8 +00Y, G =p8%+8"B+00\Y),

€Eyx =

N =

where the slow-roll parameters ¢ = ¢°/2H? n = $/H¢ and 5 = @ /H?p.
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Holographic power spectrum

The primordial power spectrum for the dual cosmology is related to the
spectral density by

) 4 1
A.‘ﬁ'(q) . ; (.(q) b

By design, in the renormalisation scheme we use, the running coupling ¢(q)
equals the value of the inflaton at horizon crossing @.(q). This means

3%, =8 +00Y, G =pB%+8"B+00Y),

€Eyx =

D=

where the slow-roll parameters ¢ = ¢°/2H? n = @/H¢ and 5 = @ /H?p.
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Holographic power spectrum

Plugging in our results, we obtain the slow-roll power spectrum to second order:

A

02 + (—b2 + %)‘52* + ()(X‘)]

Ly
5%

12

H?
871'2f.+:

1 + 2bm. + (30° —4 +

cf. Gong & Stewart [astro-ph/0101225]
Note that since 3 = =A@ + Bop® + Bap® + O(¢*), we have ¢ ~ ), so

B~ A\, B~ A, B ~ 1,

meaning
4 . 2
(y ~ A y I’Q ~ A. f)_?* ~ A »
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Holographic power spectrum

Plugging in our results, we obtain the slow-roll power spectrum to second order:

2 2

)u3+p$2+¥§wh+wxxn]

2 H? R =
Ag(q) = 372 1 + 2bm. + (30" — 4 + )17;

cf. Gong & Stewart [astro-ph/0101225]

Note that since 3 = =A@ + Bop® + Bap® + O(¢"), we have ¢ ~ ), so

B~ A\, B~ A, B ~1,

meaning
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Holographic power spectrum

Plugging in our results, we obtain the slow-roll power spectrum to second order:

VA

2 + (—b? + ’l"—z)ﬁh + ()(x*)]

2 H? 2 572
A§(q) = g |1+ 2bm + (36" — 4 + ’l?;

cf. Gong & Stewart [astro-ph/0101225]
Note that since 3 = =A@ + Bop® + Bap® + O(¢"), we have ¢ ~ ), so

B~ N\, B~ A\, B~ 1,

meaning
4 S 2
(k ~ A y I}k ~ A. ()_?* ~ A »
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Inflaton potential

The inflaton potential may be derived from

1 2 hd ] 9 9 1 L l -
V = ;((i — [37) exp(— / Bdyp) =3 + S " — Zg3p°® — —_(;.lpl + O(¢”)
2 Jo 2

3 1

where

m? =A3-=X), ¢3=23Bx(1-)\), gs = (3 —4\)Bs + 2B3 + O()\?).

36,

This describes a hilltop Vig)
model: we roll from

w1 ~ A/ B> to the

origin.
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Reheating

A more complete model would have to incorporate reheating.

Holographically, this amounts to changing the fate of the RG flow in the UV
(= late times), e.g., by allowing other operators to enter.

The behaviour in the IR (= early times) is controlled by the most nearly
marginal irrelevant operator (i.e., ) and so is unchanged.

Our current model can thus still be used to calculate the primordial spectrum.
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Reheating

A more complete model would have to incorporate reheating.

Holographically, this amounts to changing the fate of the RG flow in the UV
(= late times), e.g., by allowing other operators to enter.

The behaviour in the IR (= early times) is controlled by the most nearly
marginal irrelevant operator (i.e., ) and so is unchanged.

Our current model can thus still be used to calculate the primordial spectrum.
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Reheating

A more complete model would have to incorporate reheating.

Holographically, this amounts to changing the fate of the RG flow in the UV
(= late times), e.g., by allowing other operators to enter.

The behaviour in the IR (= early times) is controlled by the most nearly
marginal irrelevant operator (i.e., ) and so is unchanged.

Our current model can thus still be used to calculate the primordial spectrum.
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Universality

Analogy with critical phenomena: different UV Hamiltonians flow to same IR
fixed point, giving universal long-wavelength behaviour.

hl
774
v W ‘ liquid
5 | B h, P solid
Fixed
il point #
\ . gas
h _ ' Critical
3 Y surface
T
9
(ns — l)| " —21) ~ 28 ~ =22+ O(\7)
IR IR IR
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Choice of scheme revisited

Let's return to our choice of renormalisation scheme.

This choice does not affect the spectral density ¢(q), but it does affect the
B-function and the nature of the mapping to the bulk cosmology.

We selected our scheme so that the running coupling @(¢q) equals the inflaton
at horizon crossing ¢.(q). How did we achieve this?
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AdS/CFT

The coefficients Ay, Ay and Ao parametrising the UV CFT can be computed
using standard AdS/CFT: we just solve Op = V' () perturbatively on a fixed
AdS background.

. l 9 I L l 5
Vow () = =3+ M = 3)¢" + 303" + 210" + O(¢”)

RS
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Choice of scheme

We then have (3(g) in terms of the coefficients A\, g3, g1 in the bulk potential.
We can similarly identify dy.(¢)/dIn g in terms of these coefficients.

We now choose our field redefinition g = ©(1 + a1¢ + a9 + O(¢?)) to set
the running coupling ¢(q) equal to the inflaton at horizon crossing ©.(q):

. dp(q) _ des(q)
B(p = = \
Blela) dIng dIng

[Other schemes lead to a nontrivial mapping between ¢(q) and ¢.(q).]
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Non-Gaussianities

One can also compute cosmological 3-point functions holographically, starting
from 3-point functions in dual QFT.

See [1211.4550] for results at leading order in A for (¢, (v, (v, etc.

Find usual first order slow-roll expressions (for ¢, < 1).)

e.g., (C(q1)C(q2)C(g3)) = nw >, - (C(qi)C(—ai))(C(q;)¢(—aq5))

. - (£) * 3 3
) -~ ’ - —(1 [ » A —_ 1 { ¢ '
<Q((]|)Q((I...) / (di)) l() ;—2(*(,:}!”(‘:;( (4] +(l)+()(” (IJ+ %()

where a =} qi, b=_,_. qiq;, ¢ = q14243.

Pirsa: 13070006 Page 61/63



Conclusions

We constructed inflationary cosmology dual to 3d QFT which is deformation of
a CFT by a nearly marginal scalar operator.

The small parameter A controls (i) the dimension of O, (ii) the separation of
UV & IR fixed points, (iii) the spectral tilt ng — 1.

+ We computed the power spectrum to second order in slow roll using the
holographic formula A% = 4/7%¢(q).

4+ Leading order non-Gaussianities computed in [1211.4550].

= Striking test of holographic framework.
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