Title: Dynamic and Thermodynamic Stability of Black Holes and Black Branes
Date: Jun 13, 2013 01:00 PM
URL: http://pirsa.org/13060014
Abstract: I describe recent work with with Stefan Hollands that establishes a new criterion for the dynamical stability of black holes in $\$ \mathrm{D} \backslash \mathrm{geq} 4 \$$ spacetime dimensions in general relativity with respect to axisymmetric perturbations: Dynamic stability is equivalent to the positivity of the canonical energy, \$\mathcal E , on a subspace of linearized solutions that have vanishing linearized ADM mass, momentum, and angular momentum at infinity and satisfy certain gauge conditions at the horizon.\ We further show that \$lmathcal $\mathrm{E} \$$ is related to the second order
 thereby establishing a close connection between dynamic stability and thermodynamic stability.

Thermodynamic instability of a family of black holes need not imply dynamic instability because the perturbations towards other members of the family will not, in general, have vanishing linearized ADM mass and/or angular momentum. However, we prove that all black branes corresponding to
thermodynmically unstable black holes are dynamically unstable, as conjectured by Gubser and Mitra. We also prove that positivity of \$ $\$$ mathcal E \$ is equivalent to the satisfaction of a "local Penrose inequality," thus showing that satisfaction of this local Penrose inequality is necessary and sufficient for dynamical stability.
issue by writing out the linearized Einstein equation off of the black hole or black brane background spacetime. One can establish linear stability by finding a positive definite conserved norm for perturbations, whereas linear instability can be established by finding a solution with (gauge independent) unbounded growth in time.
However, even in the very simplest cases such as the Schwarzschild black hole (Regge-Wheeler, Zerilli) and the Schwarzschild black string (Gregory-Laflamme) - it is quite nontrivial to carry out the decoupling of equations and the fixing of gauge needed to determine stability or instability directly from the equations of motion.
issue by writing out the linearized Einstein equation off of the black hole or black brane background spacetime. One can establish linear stability by finding a positive definite conserved norm for perturbations, whereas linear instability can be established by finding a solution with (gauge independent) unbounded growth in time.
However, even in the very simplest cases - such as the Schwarzschild black hole (Regge-Wheeler, Zerilli) and the Schwarzschild black string (Gregory-Laflamme) it is quite nontrivial to carry out the decoupling of equations and the fixing of gauge needed to determine stability or instability directly from the equations of motion.

Thermodynamic Stability

Consider a homogeneous thermodynamic system, whose entropy, S, is a function of energy, E, and other extensive state parameters $X_{i}, S=S\left(E, X_{i}\right)$. The condition for thermodynamic instability is that the Hessian matrix

$$
\mathbf{H}_{S}=\left(\begin{array}{cc}
\frac{\partial^{2} S}{\partial E^{2}} & \frac{\partial^{2} S}{\partial X_{i} \partial E} \\
\frac{\partial^{2} S}{\partial E \partial X_{i}} & \frac{\partial^{2} S}{\partial X_{i} \partial X_{j}}
\end{array}\right) .
$$

admit a positive eigenvalue. If this happens, then one can increase total entropy by exchanging E and/or X_{i} between different parts of the system. For the case of E, this corresponds to having a negative heat capacity. A positive eigenvalue of the Hessian is equivalent to

Thermodynamic Stability

Consider a homogeneous thermodynamic system, whose entropy, S, is a function of energy, E, and other extensive state parameters $X_{i}, S=S\left(E, X_{i}\right)$. The condition for thermodynamic instability is that the Hessian matrix

$$
\mathbf{H}_{S}=\left(\begin{array}{cc}
\frac{\partial^{2} S}{\partial E^{2}} & \frac{\partial^{2} S}{\partial X_{i} \partial E} \\
\frac{\partial^{2} S}{\partial E \partial X_{i}} & \frac{\partial^{2} S}{\partial X_{i} \partial X_{j}}
\end{array}\right) .
$$

admit a positive eigenvalue. If this happens, then one can increase total entropy by exchanging E and/or X_{i} between different parts of the system. For the case of E, this corresponds to having a negative heat capacity. A positive eigenvalue of the Hessian is equivalent to
finding a homogeneous perturbation of the system such that

$$
\delta^{2} E-T \delta^{2} S-\sum_{i} Y_{i} \delta^{2} X_{i}<0
$$

where $Y_{i}=\left(\partial E / \partial X_{i}\right)_{S}$.
For a general (inhomogeneous) thermodynamic system, the condition that S is not a maximum (to second order) at fixed E and X_{i} is equivalent to finding an inhomogeneous perturbation of the system for which $\delta E=\delta X_{i}=0$ and for which

$$
\delta^{2} E-T \delta^{2} S-\sum_{i} Y_{i} \delta^{2} X_{i}<0
$$

Hessian matrix

$$
\mathbf{H}_{A}=\left(\begin{array}{cc}
\frac{\partial^{2} A}{\partial M^{2}} & \frac{\partial^{2} A}{\partial J_{i} \partial M} \\
\frac{\partial^{2} A}{\partial M \partial J_{i}} & \frac{\partial^{2} A}{\partial J_{i} \partial J_{j}}
\end{array}\right) .
$$

admits a positive eigenvalue. This is equivalent to finding a perturbation within the black hole/brane family for which

$$
\delta^{2} M-\frac{\kappa}{8 \pi} \delta^{2} A-\sum_{i} \Omega_{i} \delta^{2} J_{i}<0
$$

One might expect that this condition for thermodynamic instability might imply dynamical instability. However, this is clearly false: The Schwarzschild black hole has
negative heat capacity $\left(A=16 \pi M^{2}\right.$, so $\left.\partial^{2} A / \partial M^{2}>0\right)$ but is well known to be stable. Nevertheless, the Schwarzschild black string is unstable. The Gubser-Mitra conjecture states that the above thermodynamic criterion for instability is a valid criterion dynamical instability for black branes.

We will prove that the fundamental criterion for the axisymmetric stability of black holes and black branes is

$$
\delta^{2} M-\frac{\kappa}{8 \pi} \delta^{2} A-\sum_{i} \Omega_{i} \delta^{2} J_{i}<0
$$

for arbitrary axisymmetric perturbations with
$\delta M=\delta J_{i}=0$. The Gubser-Mitra conjecture follows as a consequence of this criterion.

Local Penrose Inequality

Suppose one has a family of stationary, axisymmetric black holes parametrized by M and angular momenta J_{1}, \ldots, J_{N}. Consider a one-parameter family $g_{a b}(\lambda)$ of axisymmetric spacetimes, with $g_{a b}(0)$ being a member of this family with surface gravity $\kappa>0$. Consider initial data on a hypersurface Σ passing through the bifurcation surface B. By the linearized Raychauduri equation, to first order in λ, the event horizon coincides with the apparent horizon on Σ. They need not coincide to second order in λ, but since B is an extremal surface in the background spacetime, their areas must agree to second order. Let \mathcal{A} denotes the area of the apparent horizon of
the perturbed spacetime, \bar{A} denotes the the event horizon area of the stationary black hole with the same mass and angular momentum as the perturbed spacetime. Suppose that to second order, we have

$$
\delta^{2} \mathcal{A}>\delta^{2} A
$$

Since (i) the area of the event horizon can only increase with time (by cosmic censorship), (ii) the final mass of the black hole cannot be larger than the initial total mass (by positivity of Bondi flux), (iii) its final angular momenta must equal the initial angular momenta (by axisymmetry), and (iv) $\bar{A}\left(M, J_{1} \ldots, J_{N}\right.$ is an increasing function of M at fixed J_{i} (by the first law of black hole
the perturbed spacetime, \bar{A} denotes the the event horizon area of the stationary black hole with the same mass and angular momentum as the perturbed spacetime. Suppose that to second order, we have

$$
\delta^{2} A>\delta^{2} A
$$

Since (i) the area of the event horizon can only increase with time (by cosmic censorship), (ii) the final mass of the black hole cannot be larger than the initial total mass (by positivity of Bondi flux), (iii) its final angular momenta must equal the initial angular momenta (by axisymmetry), and (iv) $\bar{A}\left(M, J_{1}, \ldots, J_{N}\right.$ is an increasing function of M at fixed J_{i} (by the first law of black hole

Our Results

We consider perturbations γ of a static or stationary-axisymmetric black hole or black brane with bifurcate Killing horizon and consider the canonical energy of the perturbation defined by

$$
\mathcal{E}=\int_{\Sigma} \omega\left(g ; \gamma, £_{t} \gamma\right)
$$

where Σ extends from the bifurcation surface to infinity. We show that the necessary and sufficient condition for stability of a black hole (or black brane) with respect to axisymmetric perturbations is positivity of \mathcal{E} on a Hilbert space, \mathcal{V}, of perturbations with vanishing perturbed mass, angular momentum, and linear momentum.

$$
\delta M=\delta J_{i}=\delta P_{i}=0
$$

We will also show that for axisymmetric perturbations

$$
\mathcal{E}=\delta^{2} M-\frac{\kappa}{8 \pi} \delta^{2} A-\sum_{i} \Omega_{i} \delta^{2} J_{i}
$$

In other words, dynamical stability is equivalent to thermodynamic stability for perturbations with $\delta M=\delta J_{i}=\delta P_{i}=0$. The "change of mass" perturbation of Schwarzschild- for which $\mathcal{E}<0$ - does not "count" for testing stability because, obviously, $\delta M \neq 0$.
However, if a black hole has a perturbation with $\mathcal{E}<0$ with $\delta M \neq 0$ and/or $\delta J_{i} \neq 0$, we prove that there exists a sufficiently long wavelength perturbation of any

$$
\delta M=\delta J_{i}=\delta P_{i}=0 .
$$

We will also show that for axisymmetric perturbations

$$
\mathcal{E}=\delta^{2} M-\frac{\kappa}{8 \pi} \delta^{2} \Lambda-\sum_{i} \Omega_{i} \delta^{2} J_{i}
$$

In other words, dynamical stability is equivalent to thermodynamic stability for perturbations with $\delta M=\delta J_{i}=\delta P_{i}=0$. The "change of mass" perturbation of Schwarzschild- for which $\mathcal{E}<0$ - does not "count" for testing stability because, obviously, $\delta M \neq 0$.
However, if a black hole has a perturbation with $\mathcal{E}<0$ with $\delta M \neq 0$ and $/$ or $\delta J_{i} \neq 0$, we prove that there exists a sufficiently long wavelength perturbation of any

$$
\delta M=\delta J_{i}=\delta P_{i}=0 .
$$

We will also show that for axisymmetric perturbations

$$
\mathcal{E}=\delta^{2} M-\frac{\kappa}{8 \pi} \delta^{2} \Lambda-\sum_{i} \Omega_{i} \delta^{2} J_{i}
$$

In other words, dynamical stability is equivalent to thermodynamic stability for perturbations with $\delta M=\delta J_{i}=\delta P_{i}=0$. The "change of mass" perturbation of Schwarzschild- for which $\mathcal{E}<0$ - does not "count" for testing stability because, obviously, $\delta M \neq 0$.
However, if a black hole has a perturbation with $\mathcal{E}<0$ with $\delta M \neq 0$ and/or $\delta J_{i} \neq 0$, we prove that there exists a sufficiently long wavelength perturbation of any
corresponding black brane for which $\mathcal{E}<0$ but $\delta M=\delta J_{i}=0$. This proves the Gubser-Mitra conjecture. Thus, for example, the calculation that $\partial^{2} A / \partial M^{2}=32 \pi>0$ for Schwarzschild tells one nothing about the stability of Schwarzschild black hole, but it proves the instability of the Schwarzshild black string to sufficiently long wavelength perturbations.

Finally, we prove that if one can find a perturbation of a black hole for which $\delta^{2} \mathcal{A}>\delta^{2} \bar{A}$, if and only if one can find a perturbation for which $\delta M=\delta J_{i}=\delta P_{i}=0$ and $\mathcal{E}<0$. This proves that satisfaction of the local Penrose inequality is equivalent to dynamical stability.

Variational Formulas

Lagrangian for vacuum general relativity:

$$
L_{a_{1} \ldots a_{D}}=\frac{1}{16 \pi} R \epsilon_{a_{1} \ldots a_{D}} .
$$

First variation:

$$
\delta L=E \cdot \delta g+d \theta \text {, }
$$

with

$$
\theta_{a_{1} \ldots a_{d-1}}=\frac{1}{16 \pi} g^{a c} g^{b d}\left(\nabla_{d} \delta g_{b c}-\nabla_{c} \delta g_{b d}\right) \epsilon_{c a_{1} \ldots a_{d-1}}
$$

Symplectic current (($D-1$)-form):

$$
\omega\left(g ; \delta_{1} g ; \delta_{2} g\right)=\delta_{1} \theta\left(g ; \delta_{2} g\right)-\delta_{2} \theta\left(g ; \delta_{1} g\right) .
$$

Variational Formulas

Lagrangian for vacuum general relativity:

$$
L_{a_{1} \ldots a_{D}}=\frac{1}{16 \pi} R \epsilon_{a_{1} \ldots a_{D}} .
$$

First variation:

$$
\delta L=E \cdot \delta g+d \theta \text {. }
$$

with

$$
\theta_{a_{1} \ldots a_{d-1}}=\frac{1}{16 \pi} g^{a c} g^{b d}\left(\nabla_{d} \delta g_{b c}-\nabla_{c} \delta g_{b d}\right) \epsilon_{c a_{1} \ldots a_{d-1}}
$$

Symplectic current ((D-1)-form):

$$
\omega\left(g ; \delta_{1} g, \delta_{2} g\right)=\delta_{1} \theta\left(g ; \delta_{2} g\right)-\delta_{2} \theta\left(g ; \delta_{1} g\right) .
$$

Variational Formulas

Lagrangian for vacuum general relativity:

$$
L_{a_{1} \ldots a_{D}}=\frac{1}{16 \pi} R \epsilon_{a_{1} \ldots a_{D}} .
$$

First variation:

$$
\delta L=E \cdot \delta g+d \theta,
$$

with

$$
\theta_{a_{1} \ldots a_{d-1}}=\frac{1}{16 \pi} g^{a c} g^{b d}\left(\nabla_{d} \delta g_{b c}-\nabla_{c} \delta g_{b d}\right) \epsilon_{c a_{1} \ldots a_{d-1}}
$$

Symplectic current (($D-1$)-form):

$$
\omega\left(g ; \delta_{1} g, \delta_{2} g\right)=\delta_{1} \theta\left(g ; \delta_{2} g\right)-\delta_{2} \theta\left(g ; \delta_{1} g\right) .
$$

Variational Formulas

Lagrangian for vacuum general relativity:

$$
L_{a_{1} \ldots a_{D}}=\frac{1}{16 \pi} R \epsilon_{a_{1} \ldots a_{D}} .
$$

First variation:

$$
\delta L=E \cdot \delta g+d \theta,
$$

with

$$
\theta_{a_{1} \ldots a_{d-1}}=\frac{1}{16 \pi} g^{a c} g^{b d}\left(\nabla_{d} \delta g_{b c}-\nabla_{c} \delta g_{b d}\right) \epsilon_{c a_{1} \ldots a_{d-1}}
$$

Symplectic current (($D-1$)-form):

$$
\omega\left(g ; \delta_{1} g ; \delta_{2} g\right)=\delta_{1} \theta\left(g ; \delta_{2} g\right)-\delta_{2} \theta\left(g ; \delta_{1} g\right) .
$$

Symplectic form:

$$
\begin{aligned}
W_{\Sigma}\left(g ; \delta_{1} g, \delta_{2} g\right) & \equiv \int_{\Sigma} \omega\left(g ; \delta_{1} g, \delta_{2} g\right) \\
& =-\frac{1}{32 \pi} \int_{\Sigma}\left(\delta_{1} h_{a b} \delta_{2} p^{a b}-\delta_{2} h_{a b} \delta_{1} p^{a b}\right)
\end{aligned}
$$

with

$$
p^{a b} \equiv h^{1 / 2}\left(K^{a b}-h^{a b} K\right)
$$

Noether current:

$$
\begin{aligned}
\mathcal{J}_{X} & \equiv \theta\left(g, £_{X} g\right)-X \cdot L \\
& =X \cdot C+d Q_{X}
\end{aligned}
$$

Symplectic form:

$$
\begin{aligned}
W_{\Sigma}\left(g ; \delta_{1} g, \delta_{2} g\right) & \equiv \int_{\Sigma} \omega\left(g ; \delta_{1} g, \delta_{2} g\right) \\
& =-\frac{1}{32 \pi} \int_{\Sigma}\left(\delta_{1} h_{a b} \delta_{2} p^{a b}-\delta_{2} h_{a b} \delta_{1} p^{a b}\right),
\end{aligned}
$$

with

$$
p^{a b} \equiv h^{1 / 2}\left(K^{a b}-h^{a b} K\right)
$$

Noether current:

$$
\begin{aligned}
\mathcal{J}_{X} & \equiv \theta\left(g, £_{X} g\right)-X \cdot L \\
& =X \cdot C+d Q_{X}
\end{aligned}
$$

Fundamental variational identity:

$$
\begin{aligned}
\omega\left(g ; \delta g, E_{X} g\right)= & X \cdot[E(g) \cdot \delta g]+X \cdot \delta C \\
& +d\left[\delta Q_{X}(g)-X \cdot \theta(g ; \delta g)\right]
\end{aligned}
$$

ADM conserved quantities:

$$
\delta H_{X}=\int_{\infty}\left[\delta Q_{X}(g)-X \cdot \theta(g ; \delta g)\right]
$$

For a stationary black hole, choose X to be the horizon Killing field

$$
K^{a}=t^{a}+\sum \Omega_{i} \varphi_{i}^{a}
$$

Integration of the fundamental identity yields the first

Fundamental variational identity:

$$
\begin{aligned}
\omega\left(g ; \delta g, E_{X} g\right)= & X \cdot[E(g) \cdot \delta g]+X \cdot \delta C \\
& +d\left[\delta Q_{X}(g)-X \cdot \theta(g ; \delta g)\right]
\end{aligned}
$$

ADM conserved quantities:

$$
\delta H_{X}=\int_{\infty}\left[\delta Q_{X}(g)-X \cdot \theta(g ; \delta g)\right]
$$

For a stationary black hole, choose X to be the horizon Killing field

$$
K^{a}=t^{a}+\sum \Omega_{i} \varphi_{i}^{a}
$$

Integration of the fundamental identity yields the first

Fundamental variational identity:

$$
\begin{aligned}
\omega\left(g ; \delta g, E_{X} g\right)= & X \cdot[E(g) \cdot \delta g]+X \cdot \delta C \\
& +d\left[\delta Q_{X}(g)-X \cdot \theta(g ; \delta g)\right]
\end{aligned}
$$

ADM conserved quantities:

$$
\delta H_{X}=\int_{\infty}\left[\delta Q_{X}(g)-X \cdot \theta(g ; \delta g)\right]
$$

For a stationary black hole, choose X to be the horizon Killing field

$$
K^{a}=t^{a}+\sum \Omega_{i} \varphi_{i}^{a}
$$

Integration of the fundamental identity yields the first

Fundamental variational identity:

$$
\begin{aligned}
\omega\left(g ; \delta g, E_{X} g\right)= & X \cdot[E(g) \cdot \delta g]+X \cdot \delta C \\
& +d\left[\delta Q_{X}(g)-X \cdot \theta(g ; \delta g)\right]
\end{aligned}
$$

ADM conserved quantities:

$$
\delta H_{X}=\int_{\infty}\left[\delta Q_{X}(g)-X \cdot \theta(g ; \delta g)\right]
$$

For a stationary black hole, choose X to be the horizon Killing field

$$
K^{a}=t^{a}+\sum \Omega_{i} \phi_{i}^{a}
$$

Integration of the fundamental identity yields the first

Fundamental variational identity:

$$
\begin{aligned}
\omega\left(g ; \delta g, E_{X} g\right)= & X \cdot[E(g) \cdot \delta g]+X \cdot \delta C \\
& +d\left[\delta Q_{X}(g)-X \cdot \theta(g ; \delta g)\right]
\end{aligned}
$$

ADM conserved quantities:

$$
\delta H_{X}=\int_{\infty}\left[\delta Q_{X}(g)-X \cdot \theta(g ; \delta g)\right]
$$

For a stationary black hole, choose X to be the horizon Killing field

$$
K^{a}=t^{a}+\sum \Omega_{i} \phi_{i}^{a}
$$

Integration of the fundamental identity yields the first

Horizon Gauge Conditions

Consider stationary black holes with surface gravity $\kappa>0$, so the event horizon is of "bifurcate type," with bifurcation surface B. Consider an arbitrary perturbation $\gamma=\delta g$. Gauge condition that ensures that the location of the horizon does not change to first order:

$$
\left.\delta \vartheta\right|_{B}=0 .
$$

Additional gauge condition that we impose:

$$
\left.\delta \epsilon\right|_{B}=\frac{\delta A}{A} \epsilon .
$$

Fundamental variational identity:

$$
\begin{aligned}
\omega\left(g ; \delta g, E_{X} g\right)= & X \cdot[E(g) \cdot \delta g]+X \cdot \delta C \\
& +d\left[\delta Q_{X}(g)-X \cdot \theta(g ; \delta g)\right]
\end{aligned}
$$

ADM conserved quantities:

$$
\delta H_{X}=\int_{\infty}\left[\delta Q_{X}(g)-X \cdot \theta(g ; \delta g)\right]
$$

For a stationary black hole, choose X to be the horizon Killing field

$$
K^{a}=t^{a}+\sum \Omega_{i} \phi_{i}^{a}
$$

Integration of the fundamental identity yields the first

Fundamental variational identity:

$$
\begin{aligned}
\omega\left(g ; \delta g \cdot E_{X} g\right)= & X \cdot[E(g) \cdot \delta g]+X \cdot \delta C \\
& +d\left[\delta Q_{X}(g)-X \cdot \theta(g ; \delta g)\right]
\end{aligned}
$$

ADM conserved quantities:

$$
\delta H_{X}=\int_{\infty}\left[\delta Q_{X}(g)-X \cdot \theta(g ; \delta g)\right]
$$

For a stationary black hole, choose X to be the horizon Killing field

$$
K^{a}=t^{a}+\sum \Omega_{i} \phi_{i}^{a}
$$

Integration of the fundamental identity yields the first

Canonical Energy

Define the canonical energy of a perturbation $\gamma=\delta g$ by

$$
\mathcal{E} \equiv W_{\Sigma}\left(g ; \gamma, £_{t} \gamma\right)
$$

The second variation of our fundamental identity then yields (for axisymmetric perturbations)

$$
\mathcal{E}=\delta^{2} M-\sum_{i} \Omega_{i} \delta^{2} J_{i}-\frac{\kappa}{8 \pi} \delta^{2} A .
$$

More generally, can view the canonical energy as a bilinear form $\mathcal{E}\left(\gamma_{1}, \gamma_{2}\right)=W_{\Sigma}\left(g ; \gamma_{1}, £_{t} \gamma_{2}\right)$ on perturbations. \mathcal{E} can be shown to satisfy the following properties:

- \mathcal{E} is conserved, i.e., it takes the same value if evaluated on another Cauchy surface Σ^{\prime} extending from infinity to B.
- \mathcal{E} is symmetric, $\mathcal{E}\left(\gamma_{1}, \gamma_{2}\right)=\mathcal{E}\left(\gamma_{2}, \gamma_{1}\right)$
- When restricted to perturbations for which $\delta A=0$ and $\delta P_{i}=0$ (where P_{i} is the ADM linear momentum), \mathcal{E} is gauge invariant.
- When restricted to the subspace, \mathcal{V}, of perturbations for which $\delta M=\delta J_{i}=\delta P_{i}=0$ (and hence, by the first law of black hole mechanics $\delta A=0$), we have $\mathcal{E}\left(\gamma^{\prime}, \gamma\right)=0$ for all $\gamma^{\prime} \in \mathcal{V}$ if and only if γ is a perturbation towards another stationary and
- \mathcal{E} is conserved, i.e., it takes the same value if evaluated on another Cauchy surface Σ^{\prime} extending from infinity to B.
- \mathcal{E} is symmetric, $\mathcal{E}\left(\gamma_{1}, \gamma_{2}\right)=\mathcal{E}\left(\gamma_{2}, \gamma_{1}\right)$
- When restricted to perturbations for which $\delta A=0$ and $\delta P_{i}=0$ (where P_{i} is the ADM linear momentum), \mathcal{E} is gauge invariant.
- When restricted to the subspace, \mathcal{V}, of perturbations for which $\delta M=\delta J_{i}=\delta P_{i}=0$ (and hence, by the first law of black hole mechanics $\delta A=0$), we have $\mathcal{E}\left(\gamma^{\prime}, \gamma\right)=0$ for all $\gamma^{\prime} \in \mathcal{V}$ if and only if γ is a perturbation towards another stationary and
axisymmetric black hole.
Thus, if we restrict to perturbations in the subspace, \mathcal{V}^{\prime}, of perturbations in \mathcal{V} modulo perturbations towards other stationary black holes, then \mathcal{E} is a non-degenerate quadratic form. Consequently, on \mathcal{V}^{\prime}, either (a) \mathcal{E} is positive definite or (b) there is a $\psi \in \mathcal{V}^{\prime}$ such that $\mathcal{E}(\psi)<0$. If (a) holds, we have stability.

Flux Formulas

Let $\delta N_{a b}$ denote the perturbed Bondi news tensor at null infinity, \mathcal{I}^{+}, and let $\delta \sigma_{a b}$ denote the perturbed shear on the horizon, \mathcal{H}. If the perturbed black hole were to "settle down" to another stationary black hole at late times, then $\delta N_{a b} \rightarrow 0$ and $\delta \sigma_{a b} \rightarrow 0$ at late times. We show that - for axisymmetric perturbations - the change in canonical energy would then be given by

$$
\Delta \mathcal{E}=-\frac{1}{16 \pi} \int_{\mathcal{I}} \delta \tilde{N}_{c d} \delta \tilde{N}^{c d}-\frac{1}{4 \pi} \int_{\mathcal{H}}\left(K^{\prime a} \nabla_{a} u\right) \delta \sigma_{c d} \delta \sigma^{c d} \leq 0 .
$$

Thus, \mathcal{E} can only decrease. Therefore if one has a perturbation $\psi \in \mathcal{V}^{\prime}$ such that $\mathcal{E}(\psi)<0$, then ψ cannot "settle down" to a stationary solution at late times

- \mathcal{E} is conserved, i.e., it takes the same value if evaluated on another Cauchy surface Σ^{\prime} extending from infinity to B.
- \mathcal{E} is symmetric, $\mathcal{E}\left(\gamma_{1}, \gamma_{2}\right)=\mathcal{E}\left(\gamma_{2}, \gamma_{1}\right)$
- When restricted to perturbations for which $\delta A=0$ and $\delta P_{i}=0$ (where P_{i} is the ADM linear momentum), \mathcal{E} is gauge invariant.
- When restricted to the subspace, \mathcal{V}, of perturbations for which $\delta M=\delta J_{i}=\delta P_{i}=0$ (and hence, by the first law of black hole mechanics $\delta A=0$), we have $\mathcal{E}\left(\gamma^{\prime}, \gamma\right)=0$ for all $\gamma^{\prime} \in \mathcal{V}$ if and only if γ is a perturbation towards another stationary and
because $\mathcal{E}=0$ for stationary perturbations with $\delta M=\delta J_{I}=\delta P_{i}=0$. Indeed, $|\mathcal{E}(\psi)|$ should grow without bound, i.e., in case (b) we have instability:

Canonical Energy

Define the canonical energy of a perturbation $\gamma=\delta g$ by

$$
\mathcal{E} \equiv W_{\Sigma}\left(g ; \gamma, £_{t} \gamma\right)
$$

The second variation of our fundamental identity then yields (for axisymmetric perturbations)

$$
\mathcal{E}=\delta^{2} M-\sum_{i} \Omega_{i} \delta^{2} J_{i}-\frac{\kappa}{8 \pi} \delta^{2} A .
$$

More generally, can view the canonical energy as a bilinear form $\mathcal{E}\left(\gamma_{1}, \gamma_{2}\right)=W_{\Sigma}\left(g ; \gamma_{1}, £_{t} \gamma_{2}\right)$ on perturbations. \mathcal{E} can be shown to satisfy the following properties:

Instability of Black Branes

Theorem: Suppose a family of black holes parametrized by $\left(M, J_{i}\right)$ is thermodynamically unstable at $\left(M_{0}, J_{0 i}\right)$, i.e., there exists a perturbation within the black hole family for which $\mathcal{E}<0$. Then, for any black brane corresponding to ($M_{0}, J_{0 i}$) one can find a sufficiently long wavelength perturbation for which $\tilde{\mathcal{E}}<0$ and $\delta \tilde{M}=\delta \tilde{J}_{i}=\delta \tilde{P}_{i}=\delta \tilde{A}=\delta \tilde{T}_{i}=0$.
This result is proven by modifying the initial data for the perturbation to another black hole with $\mathcal{E}<0$ by multiplying it by $\exp (i k z)$ and then re-adjusting it so that the modified data satisfies the constraints. The new data will automatically satisfy

Instability of Black Branes

Theorem: Suppose a family of black holes parametrized by $\left(M, J_{i}\right)$ is thermodynamically unstable at $\left(M_{0}, J_{0 i}\right)$, i.e., there exists a perturbation within the black hole family for which $\mathcal{E}<0$. Then, for any black brane corresponding to ($M_{0}, J_{0 i}$) one can find a sufficiently long wavelength perturbation for which $\tilde{\mathcal{E}}<0$ and $\delta \tilde{M}=\delta \tilde{J}_{i}=\delta \tilde{P}_{i}=\delta \tilde{A}=\delta \tilde{T}_{i}=0$.
This result is proven by modifving the initial data for the perturbation to another black hole with $\mathcal{E}<0$ by multiplying it by $\exp (i k z)$ and then re-adjusting it so that the modified data satisfies the constraints. The new data will automatically satisfy

Instability of Black Branes

Theorem: Suppose a family of black holes parametrized by $\left(M, J_{i}\right)$ is thermodynamically unstable at $\left(M_{0}, J_{0 i}\right)$, i.e., there exists a perturbation within the black hole family for which $\mathcal{E}<0$. Then, for any black brane corresponding to ($M_{0}, J_{0 i}$) one can find a sufficiently long wavelength perturbation for which $\tilde{\mathcal{E}}<0$ and $\delta \tilde{M}=\delta \tilde{J}_{i}=\delta \tilde{P}_{i}=\delta \tilde{A}=\delta \tilde{T}_{i}=0$.
This result is proven by modifving the initial data for the perturbation to another black hole with $\mathcal{E},<0$ by multiplying it by $\exp (i k z)$ and then re-adjusting it so that the modified data satisfies the constraints. The new data will automatically satisfy

Flux Formulas

Let $\delta N_{a b}$ denote the perturbed Bondi news tensor at null infinity, \mathcal{I}^{+}, and let $\delta \sigma_{a b}$ denote the perturbed shear on the horizon, \mathcal{H}. If the perturbed black hole were to "settle down" to another stationary black hole at late times, then $\delta N_{a b} \rightarrow 0$ and $\delta \sigma_{a b} \rightarrow 0$ at late times. We show that - for axisymmetric perturbations the change in canonical energy would then be given by

$$
\Delta \mathcal{E}=-\frac{1}{16 \pi} \int_{\mathcal{I}} \delta \tilde{N}_{\mathrm{cd}} \delta \tilde{N}^{c d}-\frac{1}{4 \pi} \int_{\mathcal{H}}\left(K^{a} \nabla_{a} u\right) \delta \sigma_{c d} \delta \sigma^{a d} \leq 0 .
$$

Thus, \mathcal{E} can only decrease. Therefore if one has a perturbation $\psi \in \mathcal{V}^{\prime}$ such that $\mathcal{E}(\psi)<0$, then ψ cannot "settle down" to a stationary solution at late times

Conclusion

Dynamical stability of a black hole is equivalent to its thermodynamic stability with respect to perturbations for which $\delta M=\delta J_{i}=\delta P_{i}=0$.

Thus, the remarkable relationship between the laws of black hole physics and the laws of thermodynamics extends to dynamical stability.

Conclusion

Dynamical stability of a black hole is equivalent to its thermodynamic stability with respect to perturbations for which $\delta M=\delta J_{i}=\delta P_{i}=0$.

Thus, the remarkoble relationship between the laws of black hole physics and the laws of thermodynamics extends to dynamical stability.

