Title: Gravitational waves from compact binaries with comparable masses using black hole perturbation theory

Date: Jun 11, 2013 11:00 AM

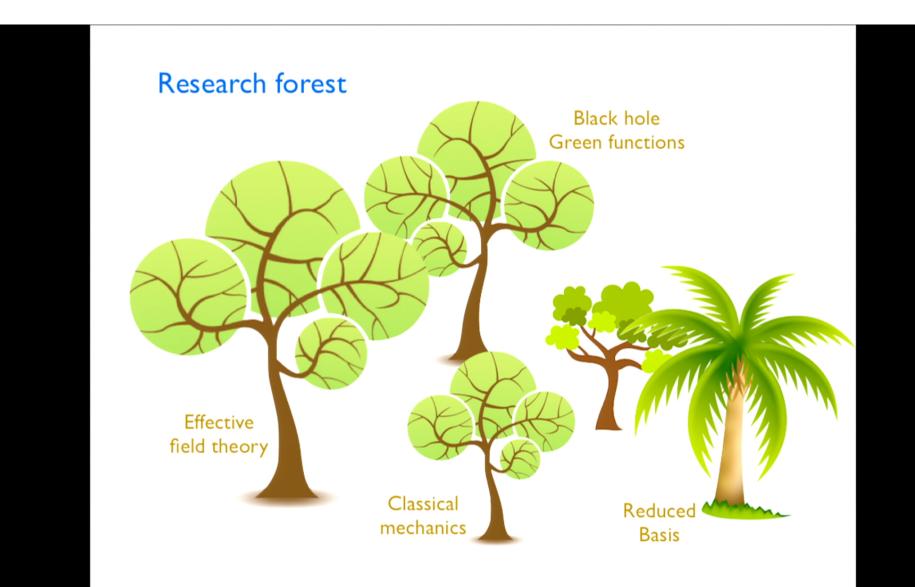
URL: http://pirsa.org/13060009

Gravitational waves from compact binaries with comparable masses using black hole perturbation theory

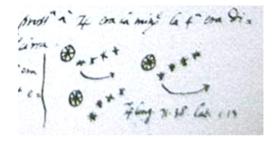
Chad Galley

Theoretical Astrophysics, California Institute of Technology

Perimeter Institute Strong Gravity seminar June 12, 2013



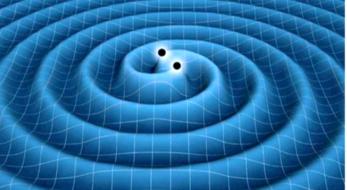
Astronomy highlights



from Galileo's notebook

Gravitational waves

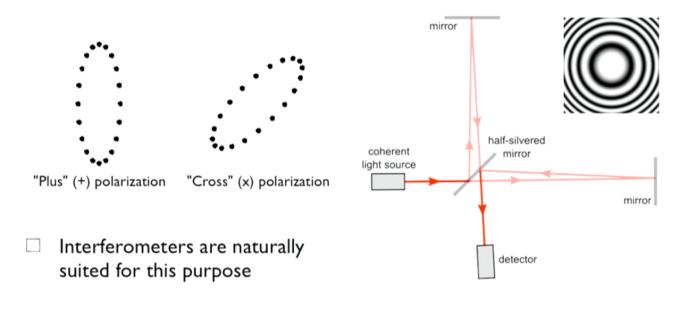
- Gravitational waves appear in Einstein's general relativity as ripples of space-time that propagate at the speed of light
- Are generated by dynamical processes in strong gravitational fields



- □ Propagate through the universe essentially undistorted
- We could "see" very deep into processes near black holes and neutron stars

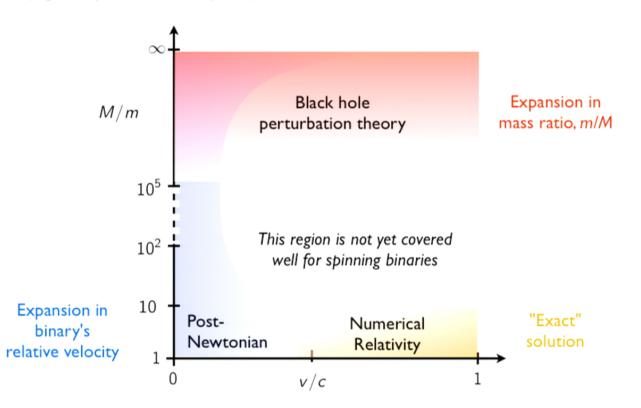
How can we detect gravitational waves?

By measuring slight displacements of separated masses as a GW stretches and contracts the intervening space-time



Snapshot of gravitational wave theory

(e.g., for quasi-circular inspirals)



Issues to consider with larger mass ratios

- □ Higher order perturbative corrections are needed for accuracy
 - How many orders are needed? Is series asymptotic?...
- □ The finite size of smaller object becomes increasingly important
 - To what extent does the finite size matter?

Motion of an extended mass in EFT

□ For an otherwise spherical extended mass:

General coordinate invariance

Rotation invariance, SO(3)

Reparametrization invariance

□ EFT action for extended mass & general relativity is

$$S[z^{\mu}, h_{\alpha\beta}] = S_{\mathsf{EH}}[h_{\alpha\beta}] - m \int d\tau \sqrt{1 - h_{\alpha\beta}(z)u^{\alpha}u^{\beta}} + C_{\mathsf{E}} \int d\tau \, \mathcal{E}_{\alpha\beta}(z) \mathcal{E}^{\alpha\beta}(z) + \cdots$$

Many such terms but each enter at a definite order in R/M

Finite-size effects

$$S[z^{\mu}, h_{\alpha\beta}] = S_{\mathsf{EH}}[h_{\alpha\beta}] - m \int d\tau \sqrt{1 - h_{\alpha\beta}(z)u^{\alpha}u^{\beta}} + C_{\mathsf{E}} \int d\tau \, \mathcal{E}_{\alpha\beta}(z) \mathcal{E}^{\alpha\beta}(z) + \cdots$$

Effacement Principle CRG & Hu, (2009)

Geodesic deviation due to the finite size of the non-spinning extended object begins at fourth order in m/M

 $C_E \sim m^5$

Deriving self-force expressions

Self-force can be derived by integrating out the gravitational perturbation h at the level of the action using Feynman diagrams

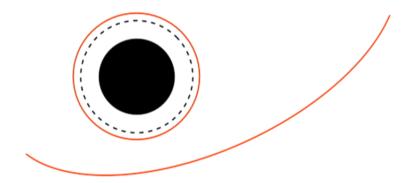
Gravitational self-force in the ultra-relativistic regime

CRG & Porto (2013)

Motivations:

- What is the nature of self-force at ultra-relativistic speeds?

- Does the perturbation theory simplify at all?
- Can help to calibrate semi-analytical models of binary black hole mergers (e.g., Effective One Body models *Buonanno & Damour (2000)*)
- Contexts:
 - Circular orbit near Schwarzschild light ring
 - Fast "fly-by's"



Power counting

□ Ultra-relativistic speeds parametrized by boost factor

$$\gamma = rac{1}{\sqrt{- {m g}_{lphaeta} m v^lpha m v^eta}} \hspace{1.5cm} m v^\mu = rac{d z^\mu}{d t} = ig(1, ec vig) \sim 1$$

 \Box Power counting shows that

$$h_{lphaeta} \sim \gamma q = rac{\gamma m}{M} \equiv \epsilon$$

$$S[z^{\mu}, h_{lphaeta}] = S_{\mathsf{EH}}[h_{lphaeta}] - m \int d au \sqrt{1 - \gamma^2 h_{lphaeta}(z) v^{lpha} v^{eta}} + \text{finite size corrections}$$

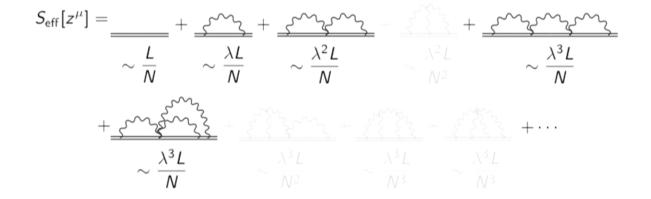
 $\sim \gamma^2 \epsilon = \gamma^3 q \ll 1$

- As the boost factor increases we require the gravitational perturbation to decrease in amplitude □ In the ultra-relativistic regime the perturbation series simplifies

$$L \sim \gamma m M \sim -m \int d\tau$$
 $N = \gamma^2$

□ In the ultra-relativistic regime the perturbation series simplifies

$$L \sim \gamma m M \sim -m \int d\tau$$
 $N = \gamma^2$



Dominant contributions in ultra-relativistic regime are LO in 1/N

Only diagrams without interactions in the bulk contribute in the ultra-relativistic regime

BH perturbation theory and comparable masses

□ What needs to be calculated in the general 2-body problem?

BH perturbation theory and comparable masses

□ What needs to be calculated in the general 2-body problem?

□ Need to include spin of the small mass Yee & Bander (1993); Porto (2006)

$$s = - + \frac{s}{s} + \frac{s}{s}$$

Possibly need to include effects from the finite size of the small mass CRG & Hu (2009)

Method

Zenginoglu & CRG (2013)

Model

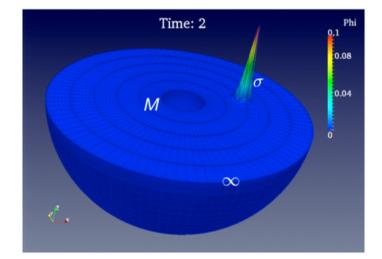
$$\Box_x G_{\mathsf{ret}}(x,x') pprox rac{4\pi}{\sqrt{-g}} rac{1}{(2\pi\sigma^2)^2} \exp\left[-rac{(x-x')^2}{2\sigma^2}
ight]$$

Problem has 3 scales

- Width of Gaussian $\sigma \sim 0$

[

- Mass of black hole $M\sim 1$
- Ideal observer $\mathsf{obs}\sim\infty$



Method

Zenginoglu & CRG (2013)

Model

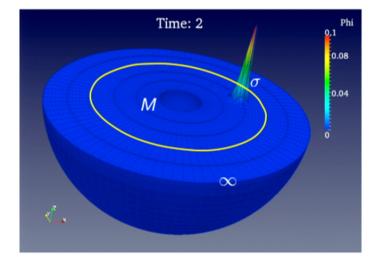
$$\Box_x G_{\mathsf{ret}}(x,x') pprox rac{4\pi}{\sqrt{-g}} rac{1}{(2\pi\sigma^2)^2} \exp\left[-rac{(x-x')^2}{2\sigma^2}
ight]$$

Problem has 3 scales

- Width of Gaussian $\sigma \sim 0$
- Mass of black hole $M\sim 1$
- Ideal observer $\mathsf{obs}\sim\infty$

Used a layered hyperboloidal compactification

Zenginoglu (2008); Zenginoglu (2011)



Method

Zenginoglu & CRG (2013)

Model

$$\Box_{x}G_{\rm ret}(x,x')\approx\frac{4\pi}{\sqrt{-g}}\frac{1}{(2\pi\sigma^{2})^{2}}\exp\left[-\frac{(x-x')^{2}}{2\sigma^{2}}\right]$$

Worldline convolution integrals

□ Worldline convolutions to compute

$$\phi_{
m reg}(au) \propto \lim_{\epsilon o 0^+} \int_{-\infty}^{ au-\epsilon} d au' \, G_{
m ret}(z(au), z(au'))$$
 $F^{(1)}_{\mu}(au) \propto \lim_{\epsilon o 0^+} \int_{-\infty}^{ au-\epsilon} d au' \,
abla_{\mu} \, G_{
m ret}(z(au), z(au'))$

Take-home points

- Gravitational waves comprise an important spectrum for probing strong gravity dynamics
 - Compact binary inspirals and mergers most anticipated sources

My goal:

- Calculate and utilize higher order self-force corrections in black hole perturbation theory to:
 - Find its practical domain of validity (up to what mass ratio?)
 - Complement existing approaches (numerical relativity & post-Newtonian)
 - Provide sufficiently accurate waveforms of spinning binaries (for LIGO)
 - Provide "tests" of general relativity using space-based detectors (for eLISA)
 - Understand the basic physics of black hole binaries

My approach:

 Derive higher order self-force expressions using effective field theory techniques

Conclusion & Outlook

- □ The Effective Field Theory (EFT) approach offers a systematic way to calculate formal self-force expressions
 - Regularization and renormalization are naturally incorporated
 - Finite size effects of the smaller mass are systematically accounted for
- □ EFT has already been "field-tested" with high order self-force calculations
 - To 3rd order in a nonlinear scalar field model CRG (2010a), (2010b)
 - To 4th order in the ultra-relativistic limit for gravity CRG & Porto (2013)
 - Need to complete 2nd order expressions with spin effects for gravity
- □ The resulting formal self-force expressions can be numerically evaluated using global approximations for the retarded Green function
 - Proof of principle already demonstrated at 1st order Casals, CRG + (in prep)
 - Work ongoing to improve numerical accuracy and precision
 - Need to compute Green function for Kerr and for gravity