Title: Negativity, Contextuality, Magic and the Power of Quantum Computation

Date: May 29, 2013 11:00 AM

URL: http://pirsa.org/13050084

Abstract:

Pirsa: 13050084 Page 1/52

Pirsa: 13050084 Page 2/52

Pirsa: 13050084 Page 3/52

Pirsa: 13050084 Page 4/52

Pirsa: 13050084 Page 5/52

Pirsa: 13050084 Page 6/52

Pirsa: 13050084 Page 7/52

Pirsa: 13050084 Page 8/52

Pirsa: 13050084 Page 9/52

Pirsa: 13050084 Page 10/52

Pirsa: 13050084 Page 11/52

Pirsa: 13050084 Page 12/52

Pirsa: 13050084 Page 13/52

Pirsa: 13050084 Page 14/52

Pirsa: 13050084 Page 15/52

Pirsa: 13050084 Page 16/52

Pirsa: 13050084 Page 17/52

Pirsa: 13050084 Page 18/52

Pirsa: 13050084

File Edit Search View Typeset Scripts Window Help

Quasi-Probability Representations

Probably the most well-known quasi-probability representations for quantum theory is the Wigner function:

$$\mu_{
ho}^{\mathrm{Wigner}}(q,p) = rac{1}{(2\pi)^2} \int_{\mathbb{R}^2} d\xi d\eta \; \mathrm{Tr} \left[
ho e^{i\xi(Q-q)+i\eta(P-p)}
ight]$$

- This function on the classical phase space (eg, \mathbb{R}^2 for 1 particle in 1d) is called a quasi-probability representation because it is known that the function $\mu_{\rho}^{\mathrm{Wigner}}(q,p)$ takes on negative values for a broad class of quantum states.
- This function gives an *equivalent formulation* of quantum mechanics in the sense that one can reproduce all the quantum predictions using only these real-valued phase-space functions:

$$extstyle extstyle extstyle Pr(q \in \Delta) = \int_{\Delta} dq \int dp \mu_{
ho}^{ ext{Wigner}}(q,
ho)$$

Pirsa: 13050084 Page 20/52

Pirsa: 13050084 Page 21/52

We can define the general class of quasi-probability representation of QM as any pair of affine maps:

$$\mu_{\rho}: \rho \to \mu_{\rho}$$

$$\xi_k: E_k \to \xi_k$$

with $\mu_{\rho}:\Lambda \to \mathbb{R}$ and $\xi_k:\Lambda x\mathbb{K} \to \mathbb{R}$ (with $k\in \mathbb{K}$ an index labeling measurement outcomes), that satisfy the law of total probability

$$\Pr(k) = \int_{\Lambda} d\lambda \xi_k(\lambda) \mu_{\rho}(\lambda) = \operatorname{Tr}(E_k \rho)$$

Pirsa: 13050084 Page 22/52

Frames and Quasi-probability representations

The freedom in choosing (i) an ontic space Λ and (ii) a pair of affine maps satisfying the law of total probability is equivalent to selecting a frame of operators and a dual frame.

- In finite-dimensional Hilbert space a frame of operators $\{F(\lambda)\}$ is just a spanning set, viz. an overcomplete basis, indexed by $\lambda \in \Lambda$.
- Taking $\{F(\lambda)\}$ to be a frame of Hermitian operators and $\{F^*(\lambda)\}$ a Hermitian frame dual to $\{F(\lambda)\}$ gives a quasi-probability representation where

$$\mu_{\rho}(\lambda) = \operatorname{Tr}(F(\lambda)\rho)$$

$$\xi_k(\lambda) = \operatorname{Tr}(F^*(\lambda)\rho)$$

• Note: For any operator A, a dual frame satisfies

$$A = \int d\lambda F^*(\lambda) \text{Tr}(F(\lambda)A)$$

,dQexp(-d(P

Frames and Quasi-probability representations

The freedom in choosing (i) an ontic space Λ and (ii) a pair of affine maps satisfying the law of total probability is equivalent to selecting a frame of operators and a dual frame.

- In finite-dimensional Hilbert space a frame of operators $\{F(\lambda)\}$ is just a spanning set, viz. an overcomplete basis, indexed by $\lambda \in \Lambda$.
- Taking $\{F(\lambda)\}$ to be a frame of Hermitian operators and $\{F^*(\lambda)\}$ a Hermitian frame dual to $\{F(\lambda)\}$ gives a quasi-probability representation where

$$\mu_{\rho}(\lambda) = \operatorname{Tr}(F(\lambda)\rho)$$

$$\xi_k(\lambda) = \operatorname{Tr}(F^*(\lambda)\rho)$$

• Note: For any operator A, a dual frame satisfies

$$A = \int d\lambda F^*(\lambda) \mathrm{Tr}(F(\lambda)A)$$

daexpl-d(P)

Pirsa: 13050084 Page 25/52

Pirsa: 13050084 Page 26/52

Pirsa: 13050084 Page 27/52

Pirsa: 13050084 Page 28/52

Edit Search View Typeset Scripts Window Help

Clifford/Stabilizer Subtheory

Let p be a prime number and define the boost and shift operators:

$$egin{array}{lcl} X \left| j
ight
angle &=& \left| j+1 \mod p
ight
angle \\ Z \left| j
ight
angle &=& \omega^{j} \left| j
ight
angle, \; \omega = \exp \left(rac{2\pi i}{p}
ight) \end{array}$$

The generalized Pauli (Heisenberg-Weyl) operators in prime dimension:

$$T_{(a_1,a_2)} = \begin{cases} i^{a_1 a_2} Z^{a_1} X^{a_2} & (a_1, a_2) \in \mathbb{Z}_2 \times \mathbb{Z}_2 \\ \omega^{-\frac{a_1 a_2}{2}} Z^{a_1} X^{a_2} & (a_1, a_2) \in \mathbb{Z}_p \times \mathbb{Z}_p, \ p \neq 2 \end{cases}$$

where \mathbb{Z}_p are the integers modulo p.

For Hilbert space $H_a \otimes H_b \otimes \cdots \otimes H_u$ we have:

$$T_{(a_1,a_2)\oplus(b_1,b_2)\cdots\oplus(u_1,u_2)}\equiv T_{(a_1,a_2)}\otimes T_{(b_1,b_2)}\cdots\otimes T_{(u_1,u_2)}.$$

5/29/2013

ile Edit Search View Typeset Scripts Window Help

Discrete Wigner Representation for Odd Dimension

Consider a frame of phase space point operators

$$A_0 = \frac{1}{d} \sum_{\boldsymbol{u}} T_{\boldsymbol{u}}, A_{\boldsymbol{u}} = T_{\boldsymbol{u}} A_0 T_{\boldsymbol{u}}^{\dagger}.$$

The Gross-Wootters discrete Wigner function (DWF) of a state $\rho \in L(\mathbb{C}^{p^n})$, with $d = p^n$ and p odd, is a quasi-probability distribution over $\Lambda = \mathbb{Z}_p^n \times \mathbb{Z}_p^n$, i.e., a set of $d \times d$ points, where

$$W_{\rho}(\boldsymbol{u}) = \frac{1}{d} \operatorname{Tr}(A_{\boldsymbol{u}}\rho),$$

The DWF for a quantum measurement operator E_k is then the conditional (quasi-)probability function over Λ ,

$$W_{E_k}(\boldsymbol{u}) = \operatorname{Tr}(A_{\boldsymbol{u}}E_k).$$

11:48 AM 5/29/2013

Discrete Wigner Representation for Odd Dimension

- The phase space point operators in dimension p^n are tensor products of n copies of the p dimensional system phase space point operators, eg. $A_{(0,0)\oplus(0,0)}=A_{(0,0)}\otimes A_{(0,0)}$.
- The phase space point operators $A_{\boldsymbol{u}}$ are Hermitian so the discrete Wigner representation is real-valued.
- There are d^2 such operators for d-dimensional Hilbert space, corresponding to the d^2 phase space points $u \in \Lambda$.
- Of course, the Born rule is reproduced by the law of total probability

$$\Pr(k) = \sum_{\boldsymbol{u}} W_{\rho}(\boldsymbol{u}) W_{E_k}(\boldsymbol{u}) = \operatorname{Tr}(\rho E_k)$$

11:50 AN 5/29/201

Pirsa: 13050084

Pirsa: 13050084 Page 32/52

- A state ρ has positive representation if $W_{\rho}(\boldsymbol{u}) \geq 0 \ \forall \boldsymbol{u} \in \mathbb{Z}_{p}^{n} \times \mathbb{Z}_{p}^{n}$ and negative representation otherwise.
- When $W_{\rho}(\mathbf{u}) \geq 0 \ \forall \mathbf{u} \in \mathbb{Z}_{p}^{n} \times \mathbb{Z}_{p}^{n}$ this function can be interpreted as a probability distribution over Λ .
- A measurement with POVM $M = \{E_k\}$ has positive representation if $W_{E_k}(\boldsymbol{u}) \geq 0 \ \forall \boldsymbol{u} \in \mathbb{Z}_p^n \times \mathbb{Z}_p^n, \ \forall E_k \in M$ and negative representation otherwise.
- When $W_{E_k}(\boldsymbol{u}) \geq 0 \ \forall \boldsymbol{u}$ this function can be interpreted as the (conditional) probability of getting outcome k given that the system is actually at point \boldsymbol{u} , $W_{E_k}(\boldsymbol{u}) = \Pr(\text{outcome } k | \text{location } \boldsymbol{u})$.

Typeset Scripts Window Help

Pirsa: 13050084 Page 33/52

Discrete Wigner Representation for Odd Dimension

- ① Discrete Hudson's theorem (Gross, 2006): a pure state $|S\rangle$ has positive representation if and only if it is a stabilizer state. Hence for any state in STAB we know $\text{Tr}(A_{\boldsymbol{u}}S) \geq 0 \ \forall \boldsymbol{u}$.
- Clifford unitaries act as permutations of phase space. This means that if U is a Clifford then,

$$W_{U\rho U^{\dagger}}(\mathbf{v}) = W_{\varrho}(\mathbf{v}'),$$

for each point \boldsymbol{v} .

- Hence Clifford operations preserve non-negativity.
- Onte: only a small subset of the possible permutations of phase space correspond to Clifford operations.

Typeset Scripts Window Help

Pirsa: 13050084 Page 34/52

Observation

Negative Wigner representation is a resource that can not be created by stabilizer operations.

Proof

Let $\rho \in L(\mathbb{C}_{d^n})$ be an n qudit quantum state with positive Wigner representation. Observe the following:

- $U\rho U^{\dagger}$ is positively represented for any Clifford (stabilizer) unitary U.
- 2 $\rho \otimes S$ is positively represented for any stabilizer state S.
- **3** state-update, $M\rho M^{\dagger}/\text{Tr}\left(M\rho M^{\dagger}\right)$, is positively represented for any stabilizer projector M.

5/29/2013

Pirsa: 13050084 Page 35/52

Pirsa: 13050084 Page 36/52

Pirsa: 13050084 Page 37/52

Pirsa: 13050084 Page 38/52

Pirsa: 13050084 Page 39/52

Pirsa: 13050084 Page 40/52

State-dependent contextuality

Define an operator $\Sigma_{\Gamma} = \sum_{\Pi \in \Gamma} \Pi$

- Cabello, Severini and Winter (2010) show that
 - The maximum classical (non-contextual) assignment is

$$\langle \Sigma_{\Gamma} \rangle_{\mathsf{max}}^{\mathsf{NCHV}} = \alpha(\Gamma)$$

where $\alpha(\Gamma)$ is the independence number of the graph.

- An independent set of a graph is a set of vertices, no two of which are adjacent. The independence number $\alpha(\Gamma) \in \mathbb{N}$ is the size of the largest such set.
- The maximum quantum value

$$\langle \Sigma_{\Gamma}
angle_{\mathsf{max}}^{\mathsf{QM}} = \vartheta(\Gamma)$$

where $\vartheta(\Gamma) \in \mathbb{R}$ is the Lovasz theta number which is the solution of a certain semidefinite program.

File Edit Search View Typeset Scripts Window Help

Page 42/52

Search View Typeset Scripts Window

Graph of Stabilizer Projectors

We construct a set of stabilizer projectors for a system of two p-dimensional gudits such that:

$$\Sigma_{\mathsf{tot}} = \Sigma_{\mathsf{sep}} + \Sigma_{\mathsf{ent}} = p^3 \mathbb{I}_{p^2} - \left(A_{(0,0)} \otimes \mathbb{I}_p \right)$$

• Then for any state $\sigma \in \mathcal{H}_p$ we have

$$\operatorname{Tr}\left[\Sigma_{\operatorname{tot}}\left(
ho\otimes\sigma
ight)
ight]>
ho^{3}\iff\operatorname{Tr}\left[A_{(0,0)}
ho
ight]<0.$$

• First via numerical search for p = 3 and p = 5 and then via general proof we show that

$$\alpha(\Gamma_{\mathrm{tot}}) = p^3 \Rightarrow \langle \Sigma_{\mathrm{tot}} \rangle_{\mathsf{max}}^{\mathsf{NCHV}} = p^3$$

Pirsa: 13050084 Page 43/52 Search View Typeset Scripts Window

Graph of Stabilizer Projectors

We construct a set of stabilizer projectors for a system of two p-dimensional gudits such that:

$$\Sigma_{\mathsf{tot}} = \Sigma_{\mathsf{sep}} + \Sigma_{\mathsf{ent}} = p^3 \mathbb{I}_{p^2} - \left(A_{(0,0)} \otimes \mathbb{I}_p \right)$$

• Then for any state $\sigma \in \mathcal{H}_p$ we have

$$\operatorname{Tr}\left[\Sigma_{\operatorname{tot}}\left(
ho\otimes\sigma\right)\right]>
ho^{3}\iff\operatorname{Tr}\left[A_{(0,0)}
ho
ight]<0.$$

• First via numerical search for p = 3 and p = 5 and then via general proof we show that

$$lpha(\Gamma_{
m tot}) = p^3 \Rightarrow \langle \Sigma_{
m tot}
angle_{
m max}^{
m NCHV} = p^3$$

Q

Typeset Scripts Window

Graph of Stabilizer Projectors

Choosing $|\nu\rangle = \frac{|1\rangle - |p-1\rangle}{\sqrt{2}}$ we get

$$\operatorname{Tr}\left[A_{(0,0)}|\nu\rangle\langle\nu|\right]=-1,$$

and hence

$$\mathsf{Tr}\left[\Sigma_{\mathsf{tot}}|\psi_{\mathsf{max}}^{\mathsf{\Gamma}}\rangle\!\langle\psi_{\mathsf{max}}^{\mathsf{\Gamma}}|
ight] = \langle\Sigma_{\mathsf{tot}}
angle_{\mathsf{max}}^{\mathsf{QM}} = \mathit{p}^3 + 1,$$

for a maximal violation.

From the above it follows that:

- (i) a state is non-contextual if and only if it is positively represented in the discrete Wigner function,
- (ii) maximally negative states exhibit the maximum possible amount of contextuality

Entanglement from Epistemic Restriction

Entanglement without non-locality:

The two qutrit Bell state

$$|B\rangle = \frac{|00\rangle + |11\rangle + |22\rangle}{\sqrt{3}}$$

is an entangled stabilizer state

- Its density operator does *not* admit a convex decomposition into factored qutrit states
- But under stabilizer measurements it can not exhibit any form of contextuality
- Morever, its discrete Wigner function must admit the decomposition

$$W_{|B\rangle\langle B|} = \Sigma_I p_I W_I^A \otimes W_I^B$$

File Edit Search View

Pirsa: 13050084

Pirsa: 13050084

Pirsa: 13050084

Pirsa: 13050084 Page 49/52

Scope

Typeset Scripts Window Help

- Prepare ρ with positive representation
- Act on input with Clifford U_F (corresponding to linear size F)
- Perform measurement $\{E_k\}$ with positive representation

Simulation Protocol

- Sample phase space point (u, v) according to distribution $W_{\rho}(u,v)$
- Evolve phase space point according to $(u,v) o {\pmb F}^{-1}(u,v)$
- Sample from measurement outcome according to $\tilde{W}_{\{E_k\}}(u, \mathcal{Q})$

See also Positive Wigner functions render classical simulation of quantum computation efficient, A. Mari and J. Eisert

Pirsa: 13050084 Page 50/52

Pirsa: 13050084 Page 51/52

Pirsa: 13050084 Page 52/52