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Motivation

e There are a variety of conceptual features of quantum
mechanics which are *presumed* to be "non-classical":

o very old ideas: superposition, entanglement, collapse of the
wavefunction, etc

o less old ideas: non-locality, contextuality, negative
quasi-probability, etc
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Motivation

Big Picture

e There are a variety of conceptual features of quantum
mechanics which are *presumed* to be "non-classical":

o very old ideas: superposition, entanglement, collapse of the
wavefunction, etc

o less old ideas: non-locality, contextuality, negative
quasi-probability, etc

e For some, these features are confounding to the point of
denying their validity!

e many-worlds theorists deny collapse
o dynamical collapsicans deny macro superposition
e ...and Bill Unruh denied non-locality just two days ago!
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Motivation

e Meanwhile, with the advent of quantum information, there are
clearly defined operational advantages to quantum theory:
o exponential speed-up with quantum computation, secure

quantum communication and improved success probability at
CHSH games, etc
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e Meanwhile, with the advent of quantum information, there are
clearly defined operational advantages to quantum theory:
o exponential speed-up with quantum computation, secure

quantum communication and improved success probability at
CHSH games, etc

e What are the necessary and sufficient resources required for
these operational advantages of quantum information?
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Motivation

e Meanwhile, with the advent of quantum information, there are
clearly defined operational advantages to quantum theory:
o exponential speed-up with quantum computation, secure

quantum communication and improved success probability at
CHSH games, etc

e What are the necessary and sufficient resources required for
these operational advantages of quantum information?

o It is already clear that non-locality is a key resource for
quantum communication (given LOCC paradigm), but the
resource requirements for quantum speed-up are not well
understood (eg, MBQC, standard circuit model, DQC1 model)

o Also a practical issue: identifying essential quantum resources
could simplify the design requirements for prototype quantum
computers
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Motivation

Here are the questions | will address today

e Which aspects of quantum theory are required for the power of
quantum computation?

o Can we identify whether any of the older conceptual notions of
non-classicality correspond to the resources required for the
operational advantages of quantum computation?

e Can finding the conditions for these operational advantages
clarify which conceptual features are truly non-classical and
which are not?

e Can this approach clarify whether quantum states are
"physical states" or "states of incomplete knowledge" or both?

A broader hope:

e Help clarify conceptual role of quantum physics to guide the

construction of a quantum theory of gravity
7 & LI (H ] O e |-
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Qutline of Results

| will describe a paradigm (which is *oddly* limited to systems of
odd-prime dimensional qudits) for which:

o Negativity of the DWF occurs if and only if the corresponding
quantum state exhibits contextuality (using the

graph-theoretic formulation of Cabello, Severini and Winter)

o Negativity/Contextuality of a distinguished discrete Wigner
function (DWF) is operationally relevant: it defines a
necessary (and possibly sufficient) condition for universal
quantum computation

11:28 AM
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Qutline of Results

For our quantum landscapes theme, there are some useful insights:

e The non-negative states, transformations and measurements of
the DWF define a classical probabilistic model for a large and
convex subtheory of quantum theory

e The non-negative subtheory is the “maximally classical"
quantum subtheory that includes the stabilizer subtheory =
stabilizer operations + bound magic states

e The classical probabilistic model for this quantum subtheory:

o includes entanglement - and offers a geometric explanation of
it as a generic consequence of interpreting quantum states as
states of incomplete knowledge

i
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Qutline of Results

For our quantum landscapes theme, there are some useful insights:

e The non-negative states, transformations and measurements of
the DWF define a classical probabilistic model for a large and
convex subtheory of quantum theory

e The non-negative subtheory is the “maximally classical"
quantum subtheory that includes the stabilizer subtheory =
stabilizer operations + bound magic states

e The classical probabilistic model for this quantum subtheory:

o includes entanglement - and offers a geometric explanation of
it as a generic consequence of interpreting quantum states as
states of incomplete knowledge
includes macro superposition, the collapse of the wavefunction,
quantum teleportation, the no cloning principle, and other
"confounding" quantum features (as in Spekkens toy theory,
the ERL subtheory, etc) . ..is there #$%®@ on the road?

11:30 AM
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Resources for Quantum Computation?

Some Candidates

e Entanglement? ...Provably necessary in circuit model, but
absent in DQC1.

e Purity/Coherence/Superposition? ... Unclear.
e Discord? ... Ok, probably not discord.

o Negative Wigner function and contextuality? ... Yes!

Pirsa: 13050084
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Resources for Quantum Computation?

Some Candidates

e Entanglement? ...Provably necessary in circuit model, but
absent in DQC1.

e Purity/Coherence/Superposition? ... Unclear.
e Discord? ... Ok, probably not discord.

e Negative Wigner function and contextuality? ... Yes!

Quantum Resources

Resources arise naturally under operational restrictions, e.g.,
fundamental or practical restrictions on the quantum formalism.

11:32 AM
5/29/2013
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Resources for Quantum Computation?

Some Candidates

e Entanglement? ...Provably necessary in circuit model, but
absent in DQC1.

e Purity/Coherence/Superposition? ... Unclear.
e Discord? ... Ok, probably not discord.

e Negative Wigner function and contextuality? ... Yes!

Quantum Resources

Resources arise naturally under operational restrictions, e.g.,
fundamental or practical restrictions on the quantum formalism.

Quantum Resources from operational restrictions

Limitations of fault-tolerant stabilizer computation give a set of
resource-constraints for quantum computation!

11:33 AM
5/29/2013
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Resources for Fault Tolerance

Eastin-Knill, 2009

A transversal (and hence fault-tolerant) encoded gate set can not
be universal.

11:33 AM
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Resources for Fault Tolerance

Eastin-Knill, 2009

A transversal (and hence fault-tolerant) encoded gate set can not
be universal.

Fault Tolerance with Stabilizer Operations

e Stabilizer operations are a typical choice of for fault tolerant

gates - they form a subgroup of the unitary group.

Stabilizer operations are not universal - this set is efficiently
simulatable by the Gottesman-Knill theorem.

This defines a natural restriction on the set of quantum
operations.

Thus an additional resource is needed for universal quantum
computation - consumption of resource states.

11:34 AM
5/29/2013
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Magic State Computing (Bravyi, Kitaev 2005)

Magic State Model

e Operational restriction: only stabilizer operations (states,
gates and projective measurement) can be realized

e Additional resource: preparation of non-stabilizer "magic"
state pr

Magic State Distillation

e Convert several noisy magic states pr to produce a few very
pure magic states pr

e Consume pure magic states ggr to perform non-stabilizer
unitary gates (using only fault tolerant stabilizer operations)

11:35 AM
5/29/2013
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Magic State Computing (Bravyi, Kitaev 2005)

Magic State Model

e Operational restriction: only stabilizer operations (states,
gates and projective measurement) can be realized

e Additional resource: preparation of non-stabilizer "magic"
state pr

Magic State Distillation

e Convert several noisy magic states pr to produce a few very
pure magic states pr

e Consume pure magic states pgr to perform non-stabilizer
unitary gates (using only fault tolerant stabilizer operations)

11:36 AM
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Quasi-Probability Representations

Probably the most well-known quasi-probability representations for
quantum theory is the Wigner function:

1 i(0—a)+in(P—
ngner(q, )_ - [pelﬁ(Q q)+in(P P)]

e This function on the classical phase space (eg, R? for 1
particle in 1d) is called a quasi-probability representation
because it is known that the function 1)’ #""(g, p) takes on
negative values for a broad class of qﬁﬁantum states.

e This function gives an equivalent formulation of quantum
mechanics in the sense that one can reproduce all the quantum
predictions using only these real-valued phase-space functions:

Pr(q € A) / dq f dpy,) 5" (q, p)

11:38 AM
5/29/2013
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Non-uniqueness

The Wigner function is highly non-unique!
o (i) The choice A = R? is non-unique.

e (ii) The choice of map taking quantum states to real-valued
functions is non-unique.

e (iii) The (often implicit) choice of map taking measurements
to conditional probabilities is generally non-unique.

Indeed there are many, many examples of quasi-probability
representation that have been defined in the last 70 years: the
Husimi function, the P-representation, the Q-representation, and
more recently a variey of representations for finite dimensional
quantum systems, eg Wootters representation.

11:38 AM
5/29/2013
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General Class of Quasi-probability Representations

We can define the general class of quasi-probability representation
of QM as any pair of affine maps:

fp 't p =

§k - Ex — &k

with p1, : A = R and £ : AXK — R (with k € K an index labeling
measurement outcomes), that satisfy the law of total probability

Pr(k) = | dAG(Ny(N) = Te(Eep)

_ 11:40 AM
v
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Frames and Quasi-probability representations

The freedom in choosing (i) an ontic space A and (ii) a pair of
affine maps satisfying the law of total probability is equivalent to
selecting a frame of operators and a dual frame.

e In finite-dimensional Hilbert space a frame of operators

{F(\)} is just a spanning set, viz. an overcomplete basis,
indexed by A € A.

e Taking {F(A)} to be a frame of Hermitian operators and
{F*(\)} a Hermitian frame dual to {F(\)} gives a
quasi-probability representation where

pp(A) = Tr(F(A)p)

§k(A) = Tr(F*(A)p)

e Note: For any operator A, a dual frame satisfies

A= / dAF* () Tr(F(A)A)

Pirsa: 13050084 Page 23/52
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Frames and Quasi-probability representations

The freedom in choosing (i) an ontic space A and (ii) a pair of
affine maps satisfying the law of total probability is equivalent to
selecting a frame of operators and a dual frame.

e In finite-dimensional Hilbert space a frame of operators

{F(\)} is just a spanning set, viz. an overcomplete basis,
indexed by A € A.

e Taking {F(A)} to be a frame of Hermitian operators and
{F*(\)} a Hermitian frame dual to {F(\)} gives a
quasi-probability representation where

pp(A) = Tr(F(A)p)
§k(A) = Tr(F*(A)p)

e Note: For any operator A, a dual frame satisfies

A / dAF* (N Tr(F(A)A) ——
7 W L] | e
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No go theorem

No-Go Theorem for a Fully Non-Negative Quasi-Probability
Representation:

e It is impossible to construct a quasi-probability representation
for QM for which all states and all measurements are
represented by non-negative functions, ie, for which all of

quantum theory is represented as a classical probability theory.

e Can prove using the theory of frames® a frame of non-negative

operators can not have a dual frame consisting of non-negative
operators.

Refs: Ferrie and Emerson (J. Phys. A, 2008), Spekkens (PRL,
2008).

W T | = F . Teoaege i
| e'/“ il o | EEB |- oKD v ;jzgf:rm

Pirsa: 13050084 Page 25/52



File Edit Search View Typeset Scripts Window Help

Choice of Quasi-Probability Representation

For different choice of quasi-probability representation,
different sets of states and/or measurements will be
non-negative (viz classical)

Can align the choice of frame and dual frame to capture
operationally important restrictions with subsets of
non-negatively represented states and measurements

This is the approach taken by David Gross (2006) to represent
the Clifford subtheory non-negatively&ffor odd-dimensional
qudits)

The Clifford/stabilizer subtheory is central to quantum error
correction and fault-tolerance; the stabilizer subtheory admits
an efficient classical simulation scheme (Gottesman-Knill
theorem) and therefore offers no quantum speed-up.

11:43 AM
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Choice of Quasi-Probability Representation

For different choice of quasi-probability representation,
different sets of states and/or measurements will be
non-negative (viz classical)

Can align the choice of frame and dual frame to capture
operationally important restrictions with subsets of
non-negatively represented states and measurements

This is the approach taken by David Gross (2006) to represent
the Clifford subtheory non-negatively&ffor odd-dimensional
qudits)

The Clifford/stabilizer subtheory is central to quantum error
correction and fault-tolerance; the stabilizer subtheory admits
an efficient classical simulation scheme (Gottesman-Knill
theorem) and therefore offers no quantum speed-up.
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Slice of the Quantum State Space and Stabilizer Polytope

quantum states

bound magic states
stabilizer states

-0.2 : : ' ' -
B2 o1 0 o1 o2 03 04X

Figure: Slice defined by fixing six entries of the Wigner function and
varying the remaining through their possible values to create the plot.

_ 11:45 AM
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Clifford /Stabilizer Subtheory

Let p be a prime number and define the boost and shift operators:
Xlj) = |j+1 modp)

: P 27i
Zj) W [j), w=exp (7)

The generalized Pauli (Heisenberg-Weyl) operators in prime
dimension:

. B [9132 731 X 32 (al, 323‘6 Ly X Lo
(a1,32) w7 X% (a1,a2) € Zp X Zp, p # 2

where Z, are the integers modulo p.
For Hilbert space H, ® Hp ® -+ @ H, we have:

T(a1,az)®(b1,b2)"-®(U1,uz) = T(al,az) ® T(b1,b2) e ® T(f—u,uz)‘

11:47 AM
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Discrete Wigner Representation for Odd Dimension

Consider a frame of phase space point operators
1
Ay = EZ Tu, Au= TuAgT).
u

The Gross-Wootters discrete Wigner function (DWF) of a state
p € L(CP"), with d = p" and p odd, is a quasi-probability
distribution over A = Zp x Ly, i.e., a set of d x d points, where
1 “
Wy (u) = gTr(Aup),
The DWF for a quantum measurement operator Ej is then the
conditional (quasi-)probability function over A,

We, (u) = Tr(AuEx).

11:48 AM
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Discrete Wigner Representation for Odd Dimension

e The phase space point operators in dimension p” are tensor
products of n copies of the p dimensional system phase space
point operators, eg. A(g,0)x(0,0) = A(0,0) ® A(0,0)-

e The phase space point operators A, are Hermitian so the
discrete Wigner representation is real-valued.

e There are d? such operators for d-dimensional Hilbert space,
corresponding to the d? phase space_points u € A.

e Of course, the Born rule is reproduced by the law of total
probability

Pr(k) = ) W,(u)Wg,(u) = Tr(pEy)

11:50 AM
5/29/2013
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Example of Discrete Wigner Representation for Qutrits

“

Figure: Wigner representation of Figure: Wigner representation of
qutrit |0) state qutrit |0) — |1) state

11:50 AM
5/29/2013
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Discrete Wigner Representation for Odd Dimension

e A state p has positive representation if
W,(u) > 0 Vu € Z; x Z; and negative representation
otherwise.

When W,(u) > 0 Vu € Zj x Zj this function can be
interpreted as a probability distribution over A.
A measurement with POVM M = {E;} has positive

representation if Wg, (v) > 0 Vu € Z; x Z;, VE, € M and
negative representation otherwise.

When WE, (1) > 0 Vu this function can be interpreted as the
(conditional) probability of getting outcome k given that the
system is actually at point u,

Wk, (u) = Pr(outcome k|location u).

11:51 AM
5/29/2013
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Discrete Wigner Representation for Odd Dimension

Discrete Hudson's theorem (Gross, 2006): a pure state |S) has
positive representation if and only if it is a stabilizer state.
Hence for any state in STAB we know Tr(A,S) > 0 Vu.

Clifford unitaries act as permutations of phase space. This
means that if U is a Clifford then,

WUpUJf(V) = e;(vf)a

for each point v.
Hence Clifford operations preserve non-negativity.

Note: only a small subset of the possible permutations of
phase space correspond to Clifford operations.

 11:51 AM
v 5/29/2013
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Stabilizer Operations Preserve Positive Representation

Observation

Negative Wigner representation is a resource that can not be
created by stabilizer operations.

Let p € L(C4n) be an n qudit quantum state with positive Wigner
representation. Observe the following: ¢

Q@ UpUT is positively represented for any Clifford (stabilizer)
unitary U.

@ p® S is positively represented for any stabilizer state S.

© state-update, MpMT/Tr (MpMT), is positively represented for
any stabilizer projector M.

; 11:52 AM
5/29/2013
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A question

Positive Representation = Stabilizer State?

Do all non-stabilizer states have negative Wigner representation?

o\

N . -— e
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Stabilizer Polytope

Stabilizer Polytope

e Convex polytope with
stabilizer states as vertices

@ Can be defined from set
of “facets”

Wigner Facets

The Wigner simplex has d?
facets = small subset of
stabilizer polytope facets

Pirsa: 13050084

guantum states
bound magic states |
stabilizer states W
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Slice of the Quantum State Space and Stabilizer Polytope

quantum states

bound magic states
stabilizer states

0.2 : : ' ' :
92 o1 0 o1 02 o3 X

Figure: Slice defined by fixing six entries of the Wigner function and
varying the remaining through their possible values to create the plot.

_ 11:54 AM
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Magic States and Negative Quasi-Probability

Distillable Magic States for Odd Dimensional Qudits

e There is a large class of non-stabilizer quantum states (bound
magic states) that are not useful for magic state distillation.

e Hence negative quasi-probability is necessary condition for a
state to be distillable Q

e Is the boundary for negativity also a boundary for
contextuality?

11:55 AM
5/29/2013
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State-dependent contextuality

Consider the graph-based contextuality formalism introduced by
Cabello, Severini and Winter

e Consider a set of binary yes-no tests, which we quantum
mechanically represent by a set of rank-one projectors, I, with
eigenvalues A(M) € {1,0}.

Compatible tests are those whose representative projectors
commute, and a context is a set of mutually compatible tests.

Commuting rank-1 projectors cannot both take on the value
+1 i.e., the respective propositions are mutually exclusive and
cannot both be answered in the affirmative.

These (mutual orthogonality) relations can be represented by a
graph [ where connected vertices correspond to compatible
and exclusive tests.

11:56 AM
5/29/2013
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State-dependent contextuality

Define an operator I = > .M
e Cabello, Severini and Winter (2010) show that

¢ The maximum classical (non-contextual) assignment is
NCHV
(Er)max = ()

where a(I") is the independence number of the graph.

An independent set of a graph is a set of vertices, no two of
which are adjacent. The independéace number «(I") € N is the
size of the largest such set.

The maximum quantum value

(Zr) 3N = 9(T)

where J(I') € R is the Lovasz theta number which is the
solution of a certain semidefinite program.

 11:58 AM
v 5/29/2013
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Graph of Stabilizer Projectors

We construct a set of stabilizer projectors for a system of two
p-dimensional qudits such that:

2ot = Zsep + Zent = P3]Ip2 - (A(O,O) ® HP)

® Then for any state o € H, we have
Tr [Ztot (p @ 0)] > p° —qlr [A(O,O)p] 0.

e First via numerical search for p = 3 and p = 5 and then via
general proof we show that

a(Miot) = P3 = (ztot)NCHV = P3

max

 11:58 AM
" 5/29/2013
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Graph of Stabilizer Projectors

We construct a set of stabilizer projectors for a system of two
p-dimensional qudits such that:

2ot = Zsep + Zent = P3]Ip2 - (A(O,O) ® IIP)

e Then for any state o € H, we have
Tr[Zeot (p @ 0)] > p* <= Tr[Apop] <0.

e First via numerical search for p = 3 and p = 5 and then via
general proof we show that

a(Miot) = P3 = (ztot)NCHV = P3

max

_ 11:59 AM
" 5/29/2013
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Graph of Stabilizer Projectors

Choosing |v) = % we get

Tr [A(0,0)|u)(u|] = —1,

and hence

Tr | Ztot GhaVhaxd | = (Tot) S = p* + 1,

for a maximal violation.
From the above it follows that:

e (i) a state is non-contextual if and only if it is positively
represented in the discrete Wigner function, Q

e (ii) maximally negative states exhibit the maximum possible
amount of contextuality

, 12:00 PM
5/29/2013
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Entanglement from Epistemic Restriction

Entanglement without non-locality:

e The two qutrit Bell state

~[00) + |11) + |22)
N V3

1B)

is an entangled stabilizer state

e Its density operator does *not* admit a convex decomposition
into factored qutrit states

e But under stabilizer measurements it can not exhibit any form
of contextuality

e Morever, its discrete Wigner function must admit the Q
decomposition

WigyB| = Zipi Wh o wp

12:01 PM
5/29/2013
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Entanglement from Epistemic Restriction

e Note that W,A and W,B come from forbidden regions of the
single-qutrit Wigner probability simplex — that is, W,A and W.,‘B
are not valid single qutrit quantum states

S pW @ WP
SN 1Y )

[N

e Entanglement arises naturally from the epistemic restriction,
i.e. from incompleteness of quantum states!

12:03 PM
5/29/2013
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Extended Gottesman-Knill Theorem

e Prepare p with positive representation
e Act on input with Clifford Ur (corresponding to linear size F)

e Perform measurement { E;} with positive representation

Simulation Protocol

e Sample phase space point (u, v) according to distribution
Wy (u, v)
e Evolve phase space point according to (u,v) — F~(u,v)

e Sample from measurement outcome according to W{Ek}(u, )

See also Positive Wigner functions render classical simulation of quantum
computation efficient, A. Mari and J. Eisert

12:04 PM
5/29/2013
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Linear Optics

e There exist mixed states with positive Wigner representation
that are not convex combinations of gaussian states (Brocker
and Werner, 1995)

e Computations using linear optical transformations and
measurements as well as preparations with positive Wigner
function can be efficiently classically simulated.?

*Veitch, Wiebe, Ferrie and Emerson, NJP 2013)

Odd Dimension Infinite Dimension

Stabilizer Operations Linear Optics
Stabilizer States Gaussian States
Discrete Wigner Function | Wigner Function

Table: Comparison of Odd and Infinite Dimensional Formalisms

12:05 PM
5/29/2013

r:

Pirsa: 13050084 Page 51/52



File Edit Search

Pirsa: 13050084

View Typeset Scripts Window Help

Summary and Open Questions

is a resource for FT
stabilizer computation

e Bound states for magic
state distillation

e Extension of
Gottesman-Knill

e A state has negative
quasi-probability if and
only if it violates a
contextuality inequality

Negative Wigner function

Main Refs:
Veitch et al, NJP 14, 113011

Key Conceptual Point

Large convex subtheory with
superposition and collapse:
dynamical collapse, pilot-waves
and many worlds aren’t
needed, but incompleteness is!

Future Work

e Resource theory for
stabilizer formalism?
Already done.

e How to extend to otherLL

operational restrictions?

e Is contextuality sufficient
for distillability?
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