Title: Characterizing quantum non-locality: a histories approach

Date: May 31, 2013 02:00 PM

URL: http://pirsa.org/13050073

Abstract: Characterising quantum non-locality using simple physical principles has become a hot topic in quantum foundations of late. In the simpler case of local hidden variable models, the space of allowed correlations can be characterised by requiring that there exists a joint probability distribution over all possible experimental outcomes, from which the experimental probabilities arise as marginals. This follows from Bell's causality condition. But the existing characterisations of quantum correlations are far from being so straightforward.

by Motivated by a histories outlook, we propose the following condition: there exists a positive semi-definite matrix in which the indices run over all possible experimental outcomes, from which the experimental probabilities arise as â€æmarginals― in a similar way. This is a much simpler condition than the usual statement of the existence of a quantum model for the probabilities, and suggests an underlying connection with Bell's derivation of his bound on local correlations. I will outline existing proofs that this condition places strong bounds on correlations consistent with QM, and ask whether it could completely characterise quantum non-locality

by cylindrical probabilities arise as far from being so straightforward.

Bounding quantum nonlocality by generalising Bell locality

Joe Henson
Joint work with Fay Dowker and
Petros Walden

Imperial College London

Bounding quantum correlations

- Some correlations allowed by QM violate Bell locality (= are weird)
- Not all correlations allowed by the "nosignalling condition" are allowed by QM
- Task: Look for simple/physically compelling principle(s) behind this limitation of QM
- Principles for QM have many uses: understanding, reformulating, testing, generalising...

What correlations?

A **behaviour** for a Bell scenario specifies the probabilities for all global outcomes given the global setting.

Classical correlations

Pirsa: 13050073 Page 5/36

The 3 C's: classical case

Now consider a sample space of all the outcomes of all possible local experiments:

$$\Omega_J = \{a_0 \, a_1 \, b_0 \, b_1\} = \{-1, 1\} \times \{-1, 1\} \times \{-1, 1\} \times \{-1, 1\}$$

Joint Probability Distribution (JPD) :

$$P_J(a_0 a_1 b_0 b_1),$$

$$P_{xy}(a_x b_y) = P_J(a_x b_y) = \sum_{a_{\neq}b_{\neq}} P_J(a_0 a_1 b_0 b_1)$$

Non-Contextuality

Consider the Correlators, assuming the existence of a JPD:

$$E_{xy} = \sum_{ab} ab P_{xy}(ab) = \sum_{a_0 \ a_1 \ b_0 \ b_1} a_x b_y P_J(a_0 \ a_1 \ b_0 \ b_1)$$

Now,

$$|E_{00} + E_{01} + E_{10} - E_{11}| =$$

$$|\sum_{a_0 \ a_1 \ b_0 \ b_1} P_J(a_0 \ a_1 \ b_0 \ b_1) \left[(a_0 + a_1)b_0 + (a_0 - a_1)b_1 \right] | \le 2$$

Correlations

Motivation for assuming a JPD?

$$P(A|C)P(B|C) = P(A \cap B|C)$$

for all full specifications of the past

Theorem: all these are equivalent:

Ordinary Quantum Models

An "ordinary quantum model" (OQM) for a behaviour gives a state and (spacelike commuting) Von Neumann measurements on some Hilbert space that reproduce the probabilities:

$$P_{xy}(ab) = tr(P_a P_b \rho)$$

This can't do everything:

$$E_{xy} = \sum_{ab} ab P_{xy}(ab) \qquad E_x^A = \sum_{ab} a P_{xy}(ab)$$

The PR box:

$$E_{xy} = (-1)^{xy}, \quad E_x^A = E_y^B = 0$$

 $E_{00} + E_{01} + E_{10} - E_{11} = 4$

Ordinary Quantum Models

An "ordinary quantum model" (OQM) for a behaviour gives a state and (spacelike commuting) Von Neumann measurements on some Hilbert space that reproduce the probabilities:

$$P_{xy}(ab) = tr(P_a P_b \rho)$$

This can't do everything:

$$E_{xy} = \sum_{ab} ab P_{xy}(ab) \qquad E_x^A = \sum_{ab} a P_{xy}(ab)$$

The PR box:

$$E_{xy} = (-1)^{xy}, \quad E_x^A = E_y^B = 0$$

 $E_{00} + E_{01} + E_{10} - E_{11} = 4$

Pirsa: 13050073 Page 11/36

Quantum behaviours

$$E_{xy} = \sum_{ab} ab P_{xy}(ab) \qquad E_x^A = \sum_{ab} a P_{xy}(ab)$$

What does QM imply about Bell experiments?

$$|E_{00} + E_{01} + E_{10} - E_{11}| \le 2\sqrt{2}$$

Quantum behaviours

$$E_{xy} = \sum_{ab} ab P_{xy}(ab) \qquad E_x^A = \sum_{ab} a P_{xy}(ab)$$

What does QM imply about Bell experiments?

$$|E_{00} + E_{01} + E_{10} - E_{11}| \le 2\sqrt{2}$$

 $|\arcsin(E_{00}) + \arcsin(E_{01}) + \arcsin(E_{10}) - \arcsin(E_{11})| \le \pi$

Q-1: $|\arcsin(\tilde{E}_{00}) + \arcsin(\tilde{E}_{01}) + \arcsin(\tilde{E}_{10}) - \arcsin(\tilde{E}_{11})| \leq \pi$

$$\tilde{E}_{xy} = \frac{E_{xy} - E_x^A E_y^B}{\sqrt{(1 - E_x^{A2})(1 - E_y^{B2})}}$$

The NPA hierarchy

An "ordinary quantum model" (OQM) for a behaviour gives a state and (spacelike commuting) Von Neumann measurements that reproduce the probabilities.

$$\Gamma_{ij} = \operatorname{Tr}(P_i \rho P_j)$$

where i,j range over the set of all projectors from the OQM.

$$\Gamma_{a_x b_y} = P_{xy}(ab)$$

$$\Gamma_{a_x \bar{a}_x} = P_x(a)\delta_{a\bar{a}}$$

$$\Gamma > 0$$

Quantum mechanics \Longrightarrow the existence of a matrix with these properties \Longleftrightarrow Q-1.

The NPA hierarchy

An "ordinary quantum model" (OQM) for a behaviour gives a state and (spacelike commuting) Von Neumann measurements that reproduce the probabilities.

$$\Gamma_{ij} = \operatorname{Tr}(P_i \rho P_j)$$

where i,j range over the set of all projectors from the OQM.

$$\Gamma_{a_x b_y} = P_{xy}(ab)$$

$$\Gamma_{a_x \bar{a}_x} = P_x(a)\delta_{a\bar{a}}$$

$$\Gamma > 0$$

Quantum mechanics \Longrightarrow the existence of a matrix with these properties \Longleftrightarrow Q-1.

The NPA hierarchy

An "ordinary quantum model" (OQM) for a behaviour gives a state and (spacelike commuting) Von Neumann measurements that reproduce the probabilities.

$$\Gamma_{ij}^n = \operatorname{Tr}(S_i^n \rho S_j^{n\dagger})$$

where *i,j* range over the set of all **length** *n* **sequences** of projectors from the OQM. These expressions also form a matrix with special properties.

The existence of such a matrix \Leftrightarrow Q-n. Satisfaction of all Q-n \Leftrightarrow the existence of an OQM.

Bounding quantum correlations

- Task: Look for simple/physically compelling principle(s) behind this limitation of QM
- Principles for QM have many uses: understanding, reformulating, testing, generalising...
- Use a generalisation of the 3 C's ???

Pirsa: 13050073 Page 17/36

Probabilities of sequences of Events

Probability for a sequence of measurement outcomes:

$$\mu(M_1,\ldots,M_f)=\operatorname{Tr}(P_f\ldots P_1\,\rho\,P_1\ldots P_f)$$

Pirsa: 13050073 Page 18/36

Probabilities of sequences of Events

Probability for a sequence of measurement outcomes:

$$\mu(M_1,\ldots,M_f)=\operatorname{Tr}(P_f\ldots P_1\,\rho\,P_1\ldots P_f)$$

Can be thought of as a function from subsets of a history space Ω to the reals.

$$M_1$$

$$\mu(A) = \int_{\gamma \in A} \int_{\bar{\gamma} \in A} d\nu(\gamma) d\nu(\bar{\gamma}) \ \rho(\gamma(0), \bar{\gamma}(0)) \ e^{-iS(\gamma)} e^{iS(\bar{\gamma})} \ \delta(\gamma(f), \bar{\gamma}(f))$$

Pirsa: 13050073 Page 19/36

Probabilities of sequences of Events

Probability for a sequence of t = f measurement outcomes :

$$\mu(M_1,\ldots,M_f)=\operatorname{Tr}(P_f\ldots P_1\,\rho\,P_1\ldots P_f)$$

Can be thought of as a function from subsets of a history space Ω to the reals.

$$\mu(A) = \int_{\gamma \in A} \int_{\bar{\gamma} \in A} d\nu(\gamma) d\nu(\bar{\gamma}) \; \rho(\gamma(0), \bar{\gamma}(0)) \; e^{-iS(\gamma)} e^{iS(\bar{\gamma})} \; \delta(\gamma(f), \bar{\gamma}(f))$$

t = 0

What is essential?

Consider the probability for a an outcome of a sequence of measurements, e.g. double slit:

A = "Particle went through slit 1 and ended up at point x". B = "Particle went through slit 2 and ended up at point x". A or B = "Particle ended up at point x."

$$\mu(A) + \mu(B) \neq \mu(A \cup B)$$

However,
$$\mu(A)+\mu(B)+\mu(C)\\ -\mu(A\cup B)-\mu(A\cup C)-\mu(B\cup C)\\ +\mu(A\cup B\cup C)=0$$

$$\mu(\Omega)=1\\ \mu(A)\geq 0\quad\forall\, A\subset\Omega$$

What is essential?

Consider the probability for a an outcome of a sequence of measurements, e.g. double slit:

A = "Particle went through slit 1 and ended up at point x". B = "Particle went through slit 2 and ended up at point x". A or B = "Particle ended up at point x."

$$\mu(A) + \mu(B) \neq \mu(A \cup B)$$

However,
$$\mu(A)+\mu(B)+\mu(C)\\ -\mu(A\cup B)-\mu(A\cup C)-\mu(B\cup C)\\ +\mu(A\cup B\cup C)=0$$

$$\mu(\Omega)=1\\ \mu(A)\geq 0\quad\forall\, A\subset\Omega$$

Pairwise Interference

In quantum theory, defining

$$D(A,B) = \text{Tr}(P_f^{t=T} \dots P_A^{t=t^*} \dots P_1^{t=0} \rho P_1^{t=0} \dots P_B^{t=t^*} \dots P_f^{t=T})$$

$$\mu(A) = D(A, A)$$
 $\mu(B) = D(B, B)$
 $\mu(A \cup B) = D(A, A) + D(B, B) + D(A, B) + D(B, A)$

Pirsa: 13050073 Page 23/36

The Decoherence Functional

Equivalent formulation: $\mu(A) = D(A; A)$

Where:
$$D(A;B)=D^*(B;A)$$
 $D(\Omega;\Omega)=1$ $D(A;A)\geq 0 \quad \forall\, A\subset \Omega$ $D(A\sqcup B;C)=D(A;C)+D(B;C)$

But this is not closed under composition. We need:

$$D(\gamma, \bar{\gamma}) = D \ge 0$$

The Decoherence Functional

Equivalent formulation: $\mu(A) = D(A; A)$

Where: $D(A; B) = D^*(B; A)$

 $D(\Omega;\Omega)=1$

 $D(A;A) \ge 0 \quad \forall A \subset \Omega$

 $D(A \sqcup B; C) = D(A; C) + D(B; C)$

But this is not closed under composition. We need:

$$D(\gamma, \bar{\gamma}) = D \ge 0$$

Pirsa: 13050073 Page 25/36

Back to Bell

$$\Omega_J = \{a_0 \, a_1 \, b_0 \, b_1\} = \{-1, 1\} \times \{-1, 1\} \times \{-1, 1\} \times \{-1, 1\}$$

Joint Probability Distribution (JPD) :

$$P_{xy}(a_x b_y) = P_J(a_x b_y) = \sum_{a_{\mathscr{L}} b_{\mathscr{L}}} P_J(a_0 \, a_1 \, b_0 \, b_1)$$

Joint Quantum measure (JQM):

$$P_{xy}(a_x b_y) = \mu_J(a_x b_y)$$

Non-Contextuality

Back to Bell

$$\Omega_J = \{a_0 \, a_1 \, b_0 \, b_1\} = \{-1, 1\} \times \{-1, 1\} \times \{-1, 1\} \times \{-1, 1\}$$

Joint Probability Distribution (JPD) :

$$P_{xy}(a_x b_y) = P_J(a_x b_y) = \sum_{a_{\cancel{x}} b_{\cancel{y}}} P_J(a_0 a_1 b_0 b_1)$$

Joint Quantum measure (JQM):

$$P_{xy}(a_x b_y) \delta(a_x, \bar{a}_x) \delta(b_y, \bar{b}_y) = \mu_J(a_x b_y) \delta(a_x, \bar{a}_x) \delta(b_y, \bar{b}_y)$$

$$= \sum_{a_{x'}, \bar{a}_{x'}, b_{y'}, \bar{b}_{y'}} D_J(a_0 \, a_1 \, b_0 \, b_1; \bar{a_0} \, \bar{a_1} \, \bar{b_0} \, \bar{b_1}),$$

Non-Contextuality

Existence of a JQM => Q1

$$P_{xy}(a_x b_y) \delta(a_x, \bar{a}_x) \delta(b_y, \bar{b}_y) = \sum_{a_x, \bar{a}_x, b_y, \bar{b}_y} D_J(a_0 \, a_1 \, b_0 \, b_1; \bar{a_0} \, \bar{a_1} \, \bar{b_0} \, \bar{b_1}),$$

$$\Gamma_{a_x \bar{a}_{\bar{x}}} := \sum_{\text{everything but } a_x \bar{a}_{\bar{x}}} D_J(a_0 \, a_1 \, b_0 \, b_1; \bar{a_0} \, \bar{a_1} \, \bar{b_0} \, \bar{b_1}),$$

$$\Gamma_{b_y \bar{b}_{\bar{y}}} := \sum_{\text{everything but } b_y \bar{b}_{\bar{y}}} D_J(a_0 \, a_1 \, b_0 \, b_1; \bar{a_0} \, \bar{a_1} \, \bar{b_0} \, \bar{b_1}),$$

$$\Gamma_{a_x \bar{b}_{\bar{y}}} := \sum_{\text{everything but } a_x \bar{b}_{\bar{y}}} D_J(a_0 \, a_1 \, b_0 \, b_1; \bar{a_0} \, \bar{a_1} \, \bar{b_0} \, \bar{b_1}),$$

$$\Gamma_{a_x b_y} = P_{xy}(ab); \quad \Gamma_{a_x \bar{a}_x} = P_x(a)\delta_{a\bar{a}}; \quad \Gamma \ge 0$$

Q1 vs IC

Recovering part of the quantum boundary from information causality

Jonathan Allcock, Nicolas Brunner, Marcin Pawlowski, Valerio Scarani Journal reference: Phys. Rev. A 80, 040103(R) (2009)
DOI: 10.1103/PhysRevA.80.040103

Cite as: arXiv:0906.3464 [quant-ph]

Q4 => Existence of a JQM

Given an Ordinary Quantum Model, can define joint QM:

$$D_{J}(a_{0} \, a_{1} \, b_{0} \, b_{1}; \bar{a_{0}} \, \bar{a_{1}} \, \bar{b_{0}} \, \bar{b_{1}})$$

$$= Tr(P_{a_{0}} P_{a_{1}} P_{b_{0}} P_{b_{1}} \, \rho \, P_{\bar{b}_{1}} P_{\bar{b}_{0}} P_{\bar{a}_{1}} P_{\bar{a}_{0}})$$
4 operators

I.e. requiring the existence of a JQM is requiring that there exists a matrix with **some** of the properties of the matrix defined by all sequences of 4 projectors from the OQM.

Q4 requires that there exists a matrix with **all** of those properties.

A JQM does not imply an OQM?

$$E_{xy} = \sum_{ab} ab P_{xy}(ab) \quad E_x^A = \sum_{ab} a P_{xy}(ab)$$

Computation evidence: semidefinite programing algorithm spits out a JQM such that

$$E_x^A = 0.2$$

$$|E_{00} + E_{01} + E_{10} - E_{11}| \approx 2\sqrt{2}$$

QM does not allow this.

Pirsa: 13050073 Page 31/36

A JQM does not imply an OQM?

$$E_{xy} = \sum_{ab} ab P_{xy}(ab) \qquad E_x^A = \sum_{ab} a P_{xy}(ab)$$

Computation evidence: semidefinite programing algorithm spits out a JQM such that

$$E_x^A = 0.2$$

$$|E_{00} + E_{01} + E_{10} - E_{11}| \approx 2\sqrt{2}$$

QM does not allow this.

Correlations

Motivation for assuming a JPD?

$$P(A|C)P(B|C) = P(A \cap B|C)$$

for all full specifications of the past.

Let's try:
$$\mu(A \cap C)\mu(B \cap C) = \mu(A \cap B \cap C)\mu(C)$$

JQM implies this, but is not implied by it.

Loose ends

- More results on correlations and JQM?
- What are the relations between various principles for restricting correlations?
- Can the gap between JQMs and ordinary QM be tested?
- Other interesting physical/informational consequences of the generalisation?
- Is there a "limited causality" condition equivalent to the existence of a JQM?

Pirsa: 13050073 Page 35/36

Loose ends

- More results on correlations and JQM?
- What are the relations between various principles for restricting correlations?
- Can the gap between JQMs and ordinary QM be tested?
- Other interesting physical/informational consequences of the generalisation?
- Is there a "limited causality" condition equivalent to the existence of a JQM?

Pirsa: 13050073 Page 36/36