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Abstract: <span>Characterising gquantum non-locality using simple physical principles has become a hot topic in quantum foundations of
late.& nbsp; In the ssimpler case of local hidden variable models, the space of allowed correlations can be characterised by requiring that there exists
ajoint probability distribution over all possible experimental outcomes, from which the experimental probabilities arise as marginas.&nbsp; This
follows from Bel&€™s causality condition.&nbsp; But the existing characterisations of quantum correlations are far from being so
straightforward.<br>Motivated by a histories outlook, we propose the following condition:&nbsp; there exists a positive semi-definite matrix in
which the indices run over all possible experimental outcomes, from which the experimental probabilities arise as &€oanmarginalsé€e in a similar
way.&nbsp; This is a much simpler condition than the usual statement of the existence of a quantum model for the probabilities, and suggests an
underlying connection with Bell&€™s derivation of his bound on local correlations.&nbsp; | will outline existing proofs that this condition places
strong bounds on correlations consistent with QM, and ask whether it could completely characterise quantum non-locality<br></span>
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Bounding quantum correlations

 Some correlations allowed by QM violate Bell
locality (= are weird)

* Not all correlations allowed by the “no-
signalling condition” are allowed by QM

* Task: Look for simple/physically compelling
principle(s) behind this limitation of QM

* Principles for QM have many uses:
understanding, reformulating, testing,

generalising...
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What correlations?

2 Outcomes
given setting

A 2 Settings B
P,,(a,b)

A behaviour for a Bell scenario specifies the
probabilities for all global outcomes given the global
setting.
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Classical correlations

Existence of

’ a JPD ‘

Bell Local

Inequalities Causality
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The 3 C’s: classical case
Now consider a sample space of all the
outcomes of all possible local experiments:
Q;={apar1bob1} ={—1,1} x {—1,1} x {—1,1} x {—1.,1}

Joint Probability Distribution (JPD) :
Pj(apay boby),

P.,(arby,) = Pj(arb,) = E Pjy(agay bg by)

(I.J/b&/

Non-Contextuality
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The 3 C’s

Consider the Correlators, assuming the
existence of a JPD:

Ey, = E ab P, (ab) = E b, Pj(agayp bgby)

ab ap a1 bo by

Now,
| Eoo + Eor + Evo — Eq1| =

| Z Pj((l() a b() 1)1) [((1.() -+ a )b() —+ ((I.() — ] )bl” < 2

L() (L) b” 1)1

Correlations
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The 3 C’s

Motivation for assuming a JPD?

P(A|CYP(B|C) = P(AN B|C) e LVLTTAT

for all full specifications of the past

Causality
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The 3 C’s

Theorem: all these are equivalent:
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Ordinary Quantum Models

An “ordinary quantum model” (OQM) for a behaviour gives a
state and (spacelike commuting) Von Neumann measurements

on some Hilbert space that reproduce the probabilities:

RI_:;U ((Lb) — t’r‘(P(.LPI) /))

This can’t do everything:

E.::y - E ab Pl.‘_lj (”-b) I‘;;l — E l p:'y ((I.[))

(IlrJ ('{)

The PR box: Epy = (—1)™Y, Efl — EyB e )
Eoo + Eor + Eho — E11 = 4
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Quantum behaviours

E.y = > abPy,(ab) EA = E a ., (ab)

ab
ab

What does QM imply about Bell experiments?
Eoo + Eo1 + E10 — E11| < 2V2

irsa: 13050073 Page 12/36



Quantum behaviours

E.y = » abPy,(ab) EA = E a ., (ab)
ab
ab

What does QM imply about Bell experiments?
Eoo + Eo1 + E10 — E11| < 2V2

IA
3

Larcsin(foo) + arcesin( oy ) + arcesin(fS0) — aresin(/fdy )|
Q_l: | el.r('sin(];}](;) ~+ u.r('sin(];m) -+ ;\1‘('.~si11([5m) — al.l‘(':-;ill(l;‘l | <

Evy — E}EP
\/(1 — EA2)(1 — EB?)

1_:1-".‘1 —
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The NPA hierarchy

An “ordinary quantum model” (OQM) for a behaviour
gives a state and (spacelike commuting) Von Neumann
measurements that reproduce the probabilities.

Consider Fzy — Tr(Pzppj)
where i,j range over the set of all projectors from the OQM.
Iasb, = P, (ab)
L'a.a, = FPx (a)dqa
I' >0

Quantum mechanics —> the existence of a
matrix with these properties <= Q-1.
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The NPA hierarchy

An “ordinary quantum model” (OQM) for a behaviour
gives a state and (spacelike commuting) Von Neumann

measurements that reproduce the probabilities.
" n oo 7 Y1
Now consider 15 = Tr(S;" p 5_7' )

where ji,j range over the set of all length n sequences of
projectors from the OQM. These expressions also form a
matrix with special properties.

The existence of such a matrix << Q-n. Satisfaction

of all Q-n &< the existence of an OQM.
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Bounding quantum correlations

* Task: Look for simple/physically compelling
principle(s) behind this limitation of QM

* Principles for QM have many uses:
understanding, reformulating, testing,
generalising...

* Use a generalisation of the 3
C’'s ?7?7?
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Probabilities of sequences of Events

Probability for a sequence of M

measurement outcomes : |

p(My, ..., Mysg)=Toe(P¢... PrpPr...Py)
Mo

My
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Probabilities of sequences of Events

Probability for a sequence of =17
measurement outcomes :

w(Mi,...,My) =Tr(Ps...PpPy...Py)

Can be thought of as a function
from subsets of a history space Q
to the reals.
t = 0

p(A) = / \ / 1(]”(’3)r11/("*.?') p(7(0),5(0)) e e S (v (f), 7(f))
Jve A JFE S
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What is essential?

Consider the probability for a an outcome of a
sequence of measurements, e.g. double slit:

A = “Particle went through slit 1 and ended up at point x”.
B = “Particle went through slit 2 and ended up at point x”.
A or B = “Particle ended up at point x.”

(A + pu(B) # (AU B)

However, p(A) + pn(B) + p(C)
— (AU B) — pn(AUC) — pn(BUC)
+ (AU BUC) =0
pe(€2) =1
W(A) >0 VACQ
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However, p(A) + pn(B) + p(C)
— (AU B) — pn(AUC) — pn(BUC)
+ (AU BUC) =0
pe(€2) =1
1W(A) >0 VACOQ

Pirsa: 13050073 Page 22/36



Pairwise Interference

In quantum theory, defining

D(A,B) = Tr(P=T. . . PV . PI=0 p PI=0. . Pt ... PE=T)

1(A) = D(A, A)
p(B3) = D(3, 3)
(AU DB) = D(A, A) + D(B, B) + D(A, B) + D(3, A)
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The Decoherence Functional
Equivalent formulation: u(A) = D(A; A)

Where: D(A: B) = D"(B;A)
D(€2: Q) =1
D(A:A) =0 VACKQ
D(AUB;C) = D(A;C) + D(B; C)

But this is not closed under composition. We need:

D(v,7) =D =0
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Back to Bell
SZ,/ — {(I.-() 0 1)() b]} — {—l l} X {—J_ J_} X {—J_l} X {—J_J_}
Joint Probability Distribution (JPD) :

-l):'rr-y ((-1":1': by) = P] (af:l_: by) — E R] ((,I,() ] b() bl)

ayby

Joint Quantum measure (JQM) :

P, (a,b,) = g (aL.b,)
Non-ContextuaIity

irsa: 13050073 Page 26/36



Back to Bell
Uy = {agarbobr}y = {—1.1% x {—1,1} x {—1,1} x {—1,1}
Joint Probability Distribution (JPD) :
P.,(a.b,) = Pjy(a.b,) = Z Pjy(agay boby)

ayby
Joint Quantum measure (JQM) :

Pory(a,b,)o(a,, a.)o(b,,b,) = puy(arb,)d(a,. a.)é(b,,b,)
— E D j(agay bg by;dag ay bg by),

Ay @y Doy by

Non-ContextuaIity
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Existence of aJQM => Q1

P.,(a.b,)0(a,,a,)o(b,,b,)
E D j(agay bogby:agay by by),

iy by by

Lo g, :1= E D j(agay boby:agay bgby).

everything but a, a;

Fb_.,b” i E D']((l..() (] [)() [)1;(1_() (1 ()() b]),

everything but b, by

anby = E D ((I.() a1 bo by: ag ay bg by )._

everything but a, by

I

]-1(1‘_,: b, — Hz:y(a'b); 11(:.;,.5.;,. p— -l_):l:(a')(sru_z; I'>=0
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=4a

CHSH

Recovering part of the quantum boundary from
information causality
Jonathan Allcock, Nicolas Brunner, Marcin Pawlowski,

Valerio Scarani
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Q1 vs IC

PR

QM

1/2(PR+PR,)

1 1.5
~C0*Cp1*Cyo*Cy, = 4B

Journal reference
DOI:
Cite as

Phys. Rev. A 80, 040103(R) (2009)
10.1103/PhysRevA.80.040103
arXiv:0906.3464 [quant-ph])
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Q4 => Existence of a JQOM

Given an Ordinary Quantum Model, can define joint QM:
D'] (CL() a1 [)() bl; ao aq b() bl)

= T (Pag Pa, Poo Po, p Py, P

20

P(-_LLP(-_L())

I()

4 operators

l.e. requiring the existence of a JOM is requiring that there
exists a matrix with some of the properties of the matrix
defined by all sequences of 4 projectors from the OQM.

Q4 requires that there exists a matrix with all of those
properties.
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A JQM does not imply an OQM?
Eyy = Z ab P, (ab) Efl = E a P, (ab)

ab
ab

Computation evidence: semidefinite programing algorithm
spits out a JQM such that

Ed =0.2
| Foo + Eo1 + Fio0 — F11| = 22

QM does not allow this.

Co

ﬁ
&)
-
-
O
-
W
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The 3 C’s
Motivation for assuming a JPD? d“lll "

PAICYP(B|C) = P(AN B|C)
for all full specifications of the past.
Let'stry: (AN CYu(BNC) =pu(ANBNC)u(C)

JOM implies this, but is not implied by it.
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