Abstract: The last few years have seen a spate of operational or information-theoretic
derivations (or \reconstructions") of\ nite-dimensional quantum mechanics [1].\ These rest of some strong assumptions. In particular, most assume the state of a composite system is entirely determined by the joint probabilities it assigns to the outcomes of measurements on the component systems. This condition, often called local tomography, is satis ed by neither real nor quaternionic quantum theory. If we are interested in the possibilities for theories more general than orthodox quantum mechanics, we might wish to relax this constraint.
In this talk I will discuss a weaker system of assumptions, involving correla-
tions between a probabilistic system and an isomorphic conjugate system, that leads to a representation of such systems in terms of euclidean Jordan algebras [2]. These have a well-known classi cation as direct sums of real, complex or quaternionic quantum systems, possibly the exceptional Jordan algebra, and spin factors. The last are a form of lbit", characterized by a family of two-valued observables, parametrized by antipodal vectors in a sphere of arbitrary dimension. Orthodox quantum mechanics can be singled out by imposing local tomography, plus the existence of a qubit as additional axioms [3]. However, there is a natural way to form non-signaling, but generally non-locally tomo-graphic, composites of systems based on special euclidean Jordan algebras (that is, excluding the exceptional one). This yields a probabilistic theory strictly, but not wildly, more general than orthodox\ nite-dimensional QM; one that elegantly uni es real, complex and quaternionic quantum theory, has a simple operational basis, and allows for a spectrum of bits more general than permitted in orthodox quantum theory. Parts of this talk reflect ongoing joint work with Howard Barnum, Matthew Graydon and Cozmin Ududec.
References:
[1] G. Chiribella, M. D'Ariano and P. Perinotti, Phys. Rev. A 84, (2011), 012311-
012350; B. Dakic and\ C. Brukner, in H. Halvorson (ed.), Deep Beauty, Cambridge,
2011; P. Goyal, Phys. Rev. A 78 (2008), 052120-052146; L. Hardy, arXiv:quant-
ph/0101012 (2001); L. Masanes and M. Mueller, New J. Phys. 13 (2011) ; J. Rau,
Annals of Physics 324 (2009) 2622\{2637;
[2] A. Wilce, Conjugates, correlation and quantum mechanics, arXiv:1206.2897 (2012)
[3] H. Barnum and A. Wilce, Local tomography and the Jordan structure of quantum
theory, arXiv:1202.4513, (2012)

- Conjugates, cation \& s.d. the Jordan Structure of $\wedge Q M$
(Parts joint w/ Howard Barnum (correct) \qquad a Matthew Graydon)
I. Intro (Pt of View)

II Probability Theory
III. Axiomatics for Jordan Models
IV. Composites of

"Reconstructows" of f.d. QM Som info. theonetic axious.

$$
\begin{aligned}
& L . \text { Hardy } \\
& D-B . \\
& M-M .
\end{aligned}
$$

"Reconstructrows" of f.d. QM Som info. theonetic axious.

$$
\begin{aligned}
& L . H \operatorname{tardy} \\
& D=B . \\
& M-M . \\
& C D P
\end{aligned}
$$

"Reconstructows" of f.d. QM Som info. theonetic axious.
L. Hardy

But:
$\mathbb{R}-Q M, \quad \mathbb{H}-Q M$ ane plausible theories.

But:
$\mathbb{R}-Q M, \quad \mathbb{H}-\mathbb{Q}$ ane plausible theories.
"Local "omograply" \rightarrow state of composite system determined by joint probs assigns to measurement outcomes on components.

But:
$\mathbb{R}-Q M, \mathbb{H}-Q M$ are plausible theories.
"Local "ograply" \rightarrow state of composite system determined by joint poss assigns to measmement outcomes on components.

But:
$\mathbb{R} \rightarrow X M, \mathbb{H} \ngtr Q M$ are plausible theories.
-Local Tomography" \rightarrow state of composite system determined by joint probs
assigns to measurement outcomes on components.
\mathbb{R} / \mathbb{I} QM.
\mathbb{R} - (filbert space $\mathcal{X}_{\mathbb{R}} \longleftrightarrow\left(x_{\mathbb{C}}, \frac{\zeta}{J}\right), \quad J^{2}=-1$
\mathbb{R} / \mathbb{I} QM.
\mathbb{R} - (filbert space $\mathcal{X}_{\mathbb{R}} \longleftrightarrow\left(\mathcal{X}_{\mathbb{C}}, \frac{\zeta}{J}\right), J^{2}=+\mathbb{1}$
\mathbb{H} - H. ${ }^{\text {b }}$ bert space $\mathcal{X X}_{\mathbb{E}}$
\mathbb{R} / \mathbb{I} @M.
\mathbb{R} - (filbert space $\mathcal{X}_{\mathbb{R}} \longleftrightarrow\left(\mathcal{X}_{\mathbb{C}}, \frac{J}{J}\right), \quad J^{2}=+\mathbb{1}$
\mathbb{H} - H. ${ }^{\prime}$ bert space $y_{\mathbb{H}} \longleftrightarrow\left(X_{C}, J\right), J^{2}=-\mathbb{1}$
\mathbb{R} / \mathbb{I} QM.
\mathbb{R} - (Hilbert space $\mathcal{X}_{\mathbb{R}} \longleftrightarrow\left(\mathcal{X}_{\mathbb{C}}, \frac{J}{J}\right), \quad J^{2}=+\mathbb{1}$
\mathbb{H} - H. ${ }^{\text {b bert space }} \mathcal{X X}_{\mathbb{H}} \longleftrightarrow\left(X_{\mathbb{C}}, J\right), \quad J^{2}=-\mathbb{1}$

$$
\{i, J, k=e J\}
$$

\mathbb{R} / \mathbb{I} Q M.
\mathbb{R} - (Albert space $\mathcal{J}_{\mathbb{R}} \leftrightarrow\left(\mathcal{X}_{\mathbb{C}}, \frac{\zeta}{J}\right), \quad J^{2}=+\mathbb{1}$
\mathbb{H} - H. $_{\text {l bert space }} \mathcal{X X}_{\mathbb{H}} \longleftrightarrow\left(x_{\mathbb{G}}, J\right), \quad J^{2}=-1$

$$
\begin{aligned}
& \left.\left.-\mathcal{H}_{1}, J_{1}\right) \quad\left(j X_{2}, J_{2}\right) \quad\{i, J, K=i J\}, \mathbb{H}^{\prime}\right\}
\end{aligned}
$$

$\mathbb{R} / \mathbb{I} H Q M$.
\mathbb{R} - (filbert space $\mathcal{J}_{\mathbb{R}} \longleftrightarrow\left(\mathcal{X}_{\mathbb{C}}, \frac{\zeta}{J}\right), \quad J^{2}=+\mathbb{1}$
\mathbb{H} - H_{H} |bert space $\mathcal{X X}_{\mathbb{H}} \longleftrightarrow\left(x_{\mathbb{C}}, J\right), \quad J^{2}=-1$

$$
\begin{aligned}
& \left(\gamma_{1}, J_{1}\right) \otimes\left(J \gamma_{2}, J_{2}\right) \\
& =\left(J \mathcal{H}_{1} \otimes \mathcal{H}_{2}, J_{1} \otimes J_{2}\right)
\end{aligned}
$$

$$
\{i, J, K=e J\}
$$

\mathbb{R} / \mathbb{I} Q M.
\mathbb{R}-(Hilbert space $\mathcal{J H}_{\mathbb{R}} \longleftrightarrow\left(\mathcal{X}_{\mathbb{C}}, \frac{\zeta}{J}\right), \quad J^{2}=+\mathbb{1}$
\mathbb{H} - H_{H} |bert space $\mathcal{X X}_{\mathbb{H}} \longleftrightarrow\left(x_{\mathbb{C}}, J\right), \quad J^{2}=-1$

$$
\begin{aligned}
& \left(\gamma_{1}, J_{1}\right) \otimes\left(\mathcal{H}_{2}, J_{2}\right) \\
& =\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}, J_{1} \otimes J_{2}\right)
\end{aligned}
$$

$$
\{i, J, K=e J\}
$$

Experiment \rightarrow outcome-set E (finite)
probability weights on E
Classical assumption:
All experiments compatible

Experiment \longrightarrow outcome-set E (finite) probabilitg weights on E

Probabilistic motels

set of
osintionces.

Probabilistic motels

set of continues.

Covering of

\mathbb{Z} by outcome sets
of measurement,
V
O
probability weighty

$$
A=(\bar{\nabla}, m,
$$

Probabilistic mokels set of pwbability weights on

$$
\begin{aligned}
A= & (\underset{\sim}{X}, m, Q) \quad \alpha: \bar{X} \rightarrow \mathbb{R} \\
& \text { set of } \\
& \text { covering of } \\
& \bar{X} \text { by ontcome sets } \\
& \text { of measureanents }
\end{aligned}
$$

Probabilistir mokels.
set of pwbability weights on

$$
A=\left(\frac{\bar{\nabla}}{\uparrow}, m, ?\right)
$$

$$
\begin{aligned}
& \text { set of } \\
& \text { sutconces. }
\end{aligned}
$$

covering of Z by ontcome sets of measurements,

$$
\alpha: \bar{X} \rightarrow \mathbb{R}
$$

$$
\alpha(x) \geqslant 0 \quad \forall x \in \bar{\varkappa}
$$

$$
\sum_{x \in E} \alpha(x)=1
$$

$\forall E \in M$

Probabilistic models set of probability weights on

$$
A=\underset{\uparrow}{(\bar{X}, m, \Omega)} \begin{aligned}
& (\mathbb{Q}, m): \\
& \\
& \\
& \\
& \text { set of } \\
& \text { ont comes. }
\end{aligned}
$$

$$
\alpha: \bar{X} \rightarrow \mathbb{R}
$$

\bar{Z} by outcome sets of measurements

* Q convex
* Ω closed in $\mathbb{R}^{\mathbb{Z}}$

Probabilistic models
set of probability weights on $(8, m)$:
$U m=\mathbb{Z}$
covering of $\$$

$$
\begin{gathered}
\alpha: \bar{X} \rightarrow \mathbb{R} \\
\alpha(x) \geqslant 0 \quad \forall x \in \bar{区} \\
\sum_{x \in E} \alpha(x)=1 \\
\forall E \in M
\end{gathered}
$$

Probabilistir mokels
set of pubability weights on $(8, m)$:
$U m=\Sigma$

$$
\begin{aligned}
& \alpha: \bar{X} \rightarrow \mathbb{R} \\
& \alpha(x) \geqslant 0 \quad \forall x \in \bar{区}
\end{aligned}
$$

$$
\sum_{x \in E} \alpha(x)=1
$$

* Q convex
* Ω closed in $\mathbb{R}^{\mathbb{Z}}$

Probabilistic models
set of probability weights on
$U m=\boxed{\Sigma}$

$$
A=\left(\frac{\bar{Z}}{\uparrow}, m, Q\right)
$$ $(8, m):$

$$
\begin{aligned}
& \alpha: \bar{X} \rightarrow \mathbb{R} \\
& \alpha(x) \geqslant 0 \quad \forall x \in \bar{x}
\end{aligned}
$$

set of
\bar{Z} by outcome sets of measurements

$$
\sum_{x \in E} \alpha(x)=1
$$

* Q convex
* e closed in $\mathbb{R}^{\mathbb{Z}}$

Ordered vector spae:
$\mathbb{V}=$ real vector space + a cone. \mathbb{V}_{+}

$$
\mathbb{V}_{+} \subseteq \mathbb{\mathbb { V }}, \quad \text { convex, } \quad x \in \mathbb{V}_{+} \Rightarrow t x \in \mathbb{V}_{+}(t \geqslant 0)
$$

Ordered vector spae:
$\mathbb{V}=$ real vector space + a cone: \mathbb{V}_{+}
$\mathbb{V}_{+} \subseteq \mathbb{\mathbb { V }}$, convex, $x \in \mathbb{V}_{+} \Rightarrow t x \in \mathbb{V}_{+}(t \geqslant 0)$

$$
\left.\left.\begin{array}{rl}
x \leqslant y & \Leftrightarrow y-x \in \mathbb{\mathbb { V }} \\
-1
\end{array}\right]+\mathbb{X}_{+}=\{x \mid x \geqslant 0\}\right)
$$

$$
\mathbb{V}_{+} \cap \mathbb{N}_{+}=\{0\}, \quad \mathbb{Y}=\mathbb{V}_{+}-\mathbb{V}_{t}
$$

Ordered vector spae:
$\mathbb{V}=$ real vector space + a cone. \mathbb{V}_{+}
$\mathbb{V}_{+} \subseteq \mathbb{\mathbb { V }}$, convex, $x \in \mathbb{V}_{+} \Rightarrow t x \in \mathbb{V}+(t \geqslant 0)$

$$
\begin{aligned}
& x \leqslant y \Leftrightarrow y-x \in \mathbb{V}_{-1} \\
& \left(\mathbb { \mathbb { V } _ { + } } \subseteq \left\{\begin{array}{l}
\mathbb{V}_{+} \cap \mathbb{V}_{+}=\{0\}, \mathbb{V}=\mathbb{V}_{+}-\mathbb{V}_{+}
\end{array}\right.\right.
\end{aligned}
$$

Ex:

$$
\begin{aligned}
& \left(\mathbb{R}^{\mathbb{Z}}, \mathbb{R}_{+}^{\mathbb{Z}}\right) \\
& \mathbb{\mathbb { R }}_{+}^{Z}=\{f \mid f(x)=0 \quad v x \in \mathbb{Z}\}
\end{aligned}
$$

Ex: YX Hillock space, say are

$$
\mathcal{L}_{n}(-\mathcal{X})=\{
$$

Ex:

$$
\begin{aligned}
& \left(\mathbb{R}^{\mathbb{Z}}, \mathbb{R}_{+}^{\mathbb{Z}}\right) \\
& \mathbb{\mathbb { R }}_{+}^{Z}=\{f \mid f(x)=0 \quad v x \in \mathbb{Z}\}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\mathbb{R}^{8}, \mathbb{R}_{+}^{8}\right) \\
& \mathbb{R}_{+}^{区}=\{f \mid f(x) \geqslant 0 \quad \forall x \in \mathbb{Z}\}
\end{aligned}
$$

$$
\left.\begin{aligned}
& \left(\mathbb{R}^{\mathbb{Z}}, \mathbb{R}_{+}^{8}\right) \\
& \mathbb{R}_{+}^{8}=\{f \mid f(x) \geq 0 \quad v x \in \mathbb{Z}\}
\end{aligned} \right\rvert\, \begin{aligned}
& \mathbb{R}^{n}
\end{aligned}
$$

Hilbart space, aay

$$
\left.\mathscr{L}_{n}(\mathcal{X})=\{A|\alpha(A)| A \cdot x)\right\}
$$

$$
\left.\mathscr{L}_{n}(x)\right)_{+}=\left\{A \in \mathcal{L}_{n}(y) \mid\right.
$$

$$
A>0\}
$$

$I A=(\mathbb{A}, m, \Omega)$
gil

H. Wert space, say

Ex:
@

$$
\begin{aligned}
& \mathscr{L}_{n}(x)=\{A \&\{(z A) \mid A \cdot x)\} \\
& \mathcal{L}_{n}(x)_{t}=\left\{A \in \mathcal{L}_{n}(y) \mid\right. \\
& A>0\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{A}=(\mathbb{Z}, m, \Omega) \\
& * \mathbb{V}(A)=\operatorname{span} \text { of } Q \text { in } \mathbb{R}^{\bar{X}} \\
& \\
& \mathbb{V}(A)+=\{t \alpha \mid \alpha \in \Omega, t \geqslant 0\} \\
& * \\
& \forall x \in \overline{\mathbb{X}}, \hat{x} \in \mathbb{\mathbb { V }}(\bar{A})^{*}
\end{aligned}
$$

$$
\begin{aligned}
& 1 \cdot A=(\mathbb{Z}, m, \Omega) \\
& \text { * } \mathbb{V}(A)=\operatorname{span} \text { of } Q \text { in } \mathbb{R}^{\bar{Z}} \\
& \mathbb{V}(A)+=\{t \alpha \mid \alpha \in \Omega, t \geqslant 0\} \\
& \text { * } \forall x \in \overline{\mathbb{E}}, \hat{x} \in \mathbb{\mathbb { N }}(A)^{*} \quad \hat{x}(\alpha)=\alpha(x) \\
& \mathbb{E}(A)=\operatorname{sean} \text { of }\{\hat{x} \mid \times \in \overline{\mathbb{E}}\} \text { in } \mathbb{V}(A)^{*} \\
& \mathbb{E}(A)_{+}=\left\{\sum_{i=1}^{n} t_{i} \hat{\mathbb{x}}_{i} \mid t_{i} \geqslant 0\right\} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{I} A=(\Sigma, m, \Omega) \\
& \text { * } \mathbb{V}(A)=\operatorname{span} \text { of } \Omega \text { in } \mathbb{R}^{\bar{Z}} \\
& \mathbb{V}(A)+=\{t \alpha \mid \alpha \in \Omega, t \geqslant 0\} \\
& \text { * } \forall x \in \overline{\mathbb{E}}, \hat{x} \in \mathbb{N}(A)^{*} \quad \hat{x}(\alpha)=\alpha(x) \\
& \mathbb{E}(A)=\operatorname{span} \text { of }\{\hat{x} \mid \times \in \overline{\mathbb{Z}}\} \text { in } \mathbb{V}(A)^{*} \\
& \mathbb{E}(A)_{+}=\left\{\sum_{i=1}^{n} t_{i} \hat{\mathbb{x}}_{i} \mid t_{i} \geqslant 0\right\} \text {. }
\end{aligned}
$$

Classical cose: $A=(E,\{E\}, \Delta(E))$

$$
\begin{aligned}
& \mathbb{V}(A)=\mathbb{R}^{E} \\
& \left.\mathbb{E}(A) \cong \mathbb{V}^{E}(A)^{*}\right)\left(\mathbb{R}^{E}\right)^{*} \cong \mathbb{R}^{E}
\end{aligned}
$$

Classical case: $A=(E,\{E\}, \Delta(E))$

$$
\begin{aligned}
& \mathbb{V}(A)=\mathbb{R}^{E} \\
& \left.\mathbb{E}(A) \cong \mathbb{V}(A)^{*}\right)\left(\mathbb{R}^{E}\right)^{*} \cong \mathbb{R}^{E}
\end{aligned}
$$

Quantum: $A=\left(\frac{\Sigma}{\hat{R}}(x), m_{\mathcal{N}}(\mathcal{H}), \underline{(\gamma x)}\right)$

$$
\alpha(x)=\left\langle W_{x, x}\right\rangle
$$

Classical case: $A=(E,\{E\}, \Delta(E))$

$$
\begin{aligned}
& \mathbb{V}(A)=\mathbb{R}^{E} \\
& \left.\mathbb{E}(A) \cong \mathbb{V}(A)^{*}\right)\left(\mathbb{R}^{E}\right)^{*} \cong \mathbb{R}^{E}
\end{aligned}
$$

Quay $A=\left(\frac{\Sigma}{1}(x), m_{1}(y x), \Omega(y x)\right)$
 H $\mathbb{H}(A)$

$$
\alpha(x)=\langle W x, x\rangle
$$

Classical case: $A=(E,\{E\}, \Delta(E))$

$$
\begin{aligned}
& \mathbb{V}(A)=\mathbb{R}^{E} \\
& \left.\mathbb{E}(A) \cong \mathbb{V}(A)^{*}\right)\left(\mathbb{R}^{E}\right)^{*} \cong \mathbb{R}^{E}
\end{aligned}
$$

Quantum: $A=\left(\frac{\Sigma}{1}(x), m(y x), \Omega(y x)\right)$

$\cong \mathbb{E}(A)$

$$
\alpha(x)=\left\langle W_{x}, x\right\rangle
$$

E ordened vector spac is self dual

$$
\begin{aligned}
& \Leftrightarrow \exists<,>\text { on } \mathbb{E}: \\
& \mathbb{E}_{+}=\mathbb{E}^{+}=\left\{a \in \mathbb{E} \mid\langle a, x\rangle \geqslant 0+\forall x \in \mathbb{E}_{+}\right\}
\end{aligned}
$$

E ordened vector spac is self dual
$\Leftrightarrow \exists<,>$ on \mathbb{E} :

$$
\mathbb{E}_{+}=\mathbb{E}^{+}=\left\{a \in \mathbb{E} \mid\langle a, x\rangle \geqslant 0 \quad \forall x \in \mathbb{E}_{+}\right\}
$$

IF is homogenoous $\Leftrightarrow \forall a, b \in \mathbb{I}_{t}^{\text {int }}$

E ordened vector spac solf dual
$\Leftrightarrow \exists<,>$ on \mathbb{E} :

$$
\mathbb{E}_{+}=\mathbb{E}^{+}=\left\{a \in \mathbb{E} \mid\langle a, x\rangle \geqslant 0 \quad \forall x \in \mathbb{E}_{+}\right\}
$$

IF is homogenoous $\Leftrightarrow \forall a, b \in \mathbb{E}_{t}^{\text {int }} \exists$ an isomorphism φ

$$
\begin{aligned}
& \varphi: \mathbb{E} \cong \mathbb{E} \\
& \varphi(a)=b
\end{aligned}
$$

Koecleer - Vin berg:
If \mathbb{E} is homog, self-clued

Koecleer - Vin berg:
If \mathbb{E} is homog, self-ched
Then \exists a Jordan product o on \mathbb{E}

Koecleer - Vin berg:
If \mathbb{E} is homog, self-ched
Then \exists a Jordan product o on \mathbb{F}

$$
\langle a \cdot b, c\rangle=\langle b,-a c\rangle
$$

Koecleer - Vin bery:
If \mathbb{E} is homog, self-ched
Then \exists a Jardan product a on \mathbb{E}
Eud.dean $\longrightarrow\langle a \cdot b, c\rangle=\langle b,-a \cdot c\rangle$

$$
\text { w.r.t which } \mathbb{I}_{t}=\{\underbrace{a \cdot a}_{a} \mid a \in \mathbb{E}\}
$$

$$
J \cup N W \rightarrow \text { all ane } \oplus \text { s of } \mathbb{R}, \mathbb{C}, \mathbb{H} \text { Q Bystame }
$$

$$
\text { or } E_{8} \text {, of } V_{n}
$$

$J \cup N W \rightarrow$ all, ane $\oplus s$ of $\mathbb{R}, \mathbb{C}, \mathbb{H}$ Q (systems or \mathbb{E}_{8}, of V_{n}
A few sample axioms about conjugates \& corneladows \Rightarrow HST

A (*) for euclidean Jardan alg.
(tancke-Olsen)
special
A (Q) for neuclidean Jardan alg.
(tanche - Olsen)

$$
\begin{gathered}
\mathbb{E} \leqslant C^{*}(\mathbb{E}) \\
C^{*}\left(\mathbb{I}_{1}\right) \mathbb{B} C^{*}\left(\mathbb{I}_{2}\right) \\
=\mathbb{\mathbb { I } _ { 1 }} \tilde{\mathbb{H}}_{2}
\end{gathered}
$$

special
A (Q) for neuclidean Jarden alg.
(Hancke-Olsen)

$$
\begin{aligned}
& \mathbb{I} \leqslant C^{*}(\mathbb{E}) \\
& C^{*}\left(\mathbb{E}_{1}\right) \underbrace{\infty}_{u} \mathbb{N}_{2}) \\
& =\mathbb{E}_{1}^{\widetilde{\mathbb{Q}} \mathbb{E}_{2}}
\end{aligned}
$$

