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Abstract: <span>We discuss energy diffusion due to spontaneous localization (SL) for a relativistically-fast moving particle. Based on evidence
from relativistic extensions of SL we argue that non-relativistic SL should remain valid in the particle rest frame. This implies that calculations can
be performed by transforming non relativistic results from the particle rest frame to the frame of the observer. We demonstrate this by considering a
relativistic stream of non-interacting particles of cosmological origin and showing how their energy distribution evolves as they traverse the
Universe. We present a solution and discuss the potential for astrophysical observations.</span>
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Qutline

Overview of continuous spontaneous localization (CSL).

Taking the localized single particle limit.
Steady state solutions.
Features of relativistic models.

Relativistic energy diffusion.
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Introduction

Stochastic processes
Stochastic differential equation
dS = pdt + odW,;

o’ e’
drift stochastic

W; is Wiener process/Brownian motion process.
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Continuous spontaneous localization (CSL) model
State diffusion:

~

[—H:Idt — L
2

12 [ (i) -

N(x) = ./-dyexp{— :

E[dBr(X)] =0 ; dBr(X)dBtf(y) = (5::1(5()( - y).
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Continuous spontaneous localization (CSL) model
State diffusion:
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N(x) = / dy exp {— "

E[dBr(X)] =0 ; dBr(X)dBtf(y) = (Srrf(S(X = y).
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Introduction Steady state nergy diffusion Summary

Sufficiently localized approximation

Assume following

(y — v)2 .
exp{—”(x2 ) }’:exp{—”; }(1+nxy).

valid when y < 1//«.

alpha l,y=0.2 . alpha l, y=1
T 1.2 =
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Single particle approximation

Assume [1) = [ dx1)(x)aT(x)|0); |x) = &T(x)|0).
Then define the position operator

2= [ dyya ()30y).

Single particle state satisfies the quantum state diffusion (QSD)
dlp) = [fﬁdf = D(% = (%))*dt + V2D(& - (>?))th} ).

W, = Y228 [ dx [ dBy(x)e=*"/2x is a Wiener process:

E[dW;] =0 ; (dW,)? = dt.
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Single particle approximation

Assume [1) = [ dx1)(x)4T(x)|0); |x) = &T(x)|0).
Then define the position operator

2= [ dyya(1)30y).

Single particle state satisfies the quantum state diffusion (QSD)
dl¥) = [f”df — D(% = (%))*dt + V2D(& - <>’e>)dwt} ).

3/4 . L2 . ’
W, = \/31_‘/4 ] dx ] I'det,(x)e ax?/2y is a Wiener process:
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Some examples
In 3D the diffusion coefficient is given by

= 3273/2°

GRW parameters: 7proton = 1073%cm3s~1: o~ 1/2 = 10~°cm
— D ~ 0.001m 2571,

Assume D = —™ % 0.001m 251,

proton

Particle oo
neutrino (0.1eV /c?) | 1500km
electron 14m
proton 5cm
Fe nucleus 2mm
10,000 a.u. cluster 50/um
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Adding (special) relativity - things to consider

Need to work with relativistic quantum fields.

Require a covariant expression of state evolution (Lorentz
invariance of predictions for experiments).

No preferred frame or foliation.

No faster than light signalling.
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Relativistic collapse framework

Covariant expression of unitary evolution

As we advance through spacetime from o1 to o5,

T

V(1)) = [W(0p)) = Te ot X Hnl ().

Including hits

Consider a sprinkling of Poisson distributed points in spacetime.
If the surface o passes through one of these points (at x say), a hit
event occurs:

V(o)) = [V(o4)) = L(Zx)[W(a)).
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Relativistic collapse framework

Covariant expression of unitary evolution

As we advance through spacetime from o1 to o5,

T

W(01)) = [W(0p)) = Te ot X Hnl ().

Including hits

Consider a sprinkling of Poisson distributed points in spacetime.
If the surface o passes through one of these points (at x say), a hit
event occurs:

V(o)) = [V(o4)) = L(Zx)[W(o)).
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Picture to have in mind

b T *em W 0'}.

° :.: o.:' .ﬂ"l.. .
e A R L

o8 .000: ® I.~. ?!.. e:-o.o

oo PR o
‘.~o.' ..3. : .‘. i.'o .’. : ‘.'
'\‘\l" o.. et 0. .

d'.‘

Daniel Bedingham Imperial College, London

Energy diffusion from relativistic spontaneous localization

Pirsa: 13050068 Page 15/31



Introduction CS Steady state Relativity nergy diffusion Summary

Relativistic hits

Localization operator

1
(2rs?) /A"

L(Zx) —

Must have
» N(x) is a Lorentz scalar.
» [N(x), N(y)] = 0 for spacelike separated x, y.
» [N(x), Hint(y)] = O for spacelike separated x, y.

Proposal

Try N(x) = ¢?(x) scalar field operator.

Problem occurs as we cross a hit location (going from o to o..):
Expected energy increase is infinite.
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Relativistic hits

Localization operator

1
(2rs2)i/A

L(Zx) —

Must have
» N(x) is a Lorentz scalar.
» [N(x), N(y)] = O for spacelike separated x, y.
» [N(x), Hint(v)] = O for spacelike separated x, y.

Proposal

Try N(x) = ¢?(x) scalar field operator.

Problem occurs as we cross a hit location (going from o to o..):
Expected energy increase is infinite.
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Relativity

Operator properties

[N(x), N(x')] = 0, and [A(x), A(x)] = 0 Vx,x,

A NG = [ dy £ ygxy) [aly) = o1 ()].

If f and g only non zero in these
domains:

then [A(x), N(x")] = 0 for spacelike separated x and x’.
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Relativity

Operator properties

[N(x). N(x")] =0, and [A(x),A(x")] =0 Vx,x/,

A NG = [ dy £ yxy) [aly) = o)

If f and g only non zero in these
domains:
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Relativistic reduction model

Unitary background
Interaction picture with interaction Hamiltonian

Hhne(x) = J(x)A(x).

J(x) is some scalar current operator for a conventional quantum

field, e.g., J(x) = ¢?(x) (sort of matter density distribution).

Random hits
Poisson distributed in spacetime with localization operator

1 _ (N(x)=2x)?

L(Zx) - me 4s°
Acting only on the mediating field.
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Eg 1: the smearing functions

Smeared interaction

Suggested form for g in future light cone:

g(z,x) ~exp{—K(T"(z))(x, — z.)(x — 2,)}
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Re'ativity nergy diffusion summary

Introduction

Light cone
Hyperboloid
Particle trajectory
— Localizing Gaussian
e e Flashes
Spacelike hypersurface
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Energy process

Near the particle rest frame O the energy is given by
- (pi)°
E= :

We find for the energy process in the particle rest frame

m

df = 3P4 4 v20 > (pi)dWir = —dr.
m m i
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Introduction

Convert to observer's time coordinate t

Lorentz transformation of coordinates

dt =~ (dT - @) =% (dr E d<fl>) .

Approximate by dt = ~d7, so that dW, = ~1/2dW, ,

(= (dW,)? = dt).

Then
dE = gafr+ \/QEdWr.
m m

where we have used E = ymc?.
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Relativistic energy process

Over cosmological timescales should also add a friction term to
describe effects of expansion.
Resulting energy process is

g = a2k ﬂ/QEdWr,
m a m

\-\,-—/

friction term

where a is the scale factor of the Universe.
This is a Cox-Ingersoll-Ross process.
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Forward equation

Describes the behaviour of p:(E|Ep) - probability distribution
function for E at time t conditional on a value Ey at time O:

L o R L GL)

dt m- OE2 9E 3

a m

Initial condition is po(E|Eo) = d(E — Ep).
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Introduction

Energy diffusion

Forward equation solution

Assume Hubble constant is constant then

pe(E|Ey) = %Eioe“(ﬂ-fo)/z (2(1-\/5550) q

5 :
J;exp{——r}le— t,
a

am 1 m
) == = —— —

_aDl—ﬁ E

and /> is a modified Bessel function of the first kind of order 2.
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Put in real numbers

Write diffusion coefficient as

D = Dy 5 .
Mproton

Diffraction experiments with Cgp suggest Dy < 108m~—2s~1.

(GRW suggestion corresponds to Dy = 107 3m~2s~ 1))
Using the Ceo limit and t = 10'7s (age of Universe) we find

E:[E|Eo] =~ Eo + (10°mc?) ~ Eo,
Ven'r[E|E0] o~ (10_5mc2)E0.
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Introduction nergy diffusion

Summary and conclusions

Worked in localized, single particle limit of CSL.

There is a steady state solution for wavepacket which diffuses
through phase space.

This leads to diffusion of kinetic energy.

Assumed non relativistic equations hold in particle rest frame
and transformed to the cosmological frame.

Find narrow spreading in comparison to initial energy of
particle (assumed relativistic).

Would need a source of particles with very precise energy to
observe.
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Summary and conclusions
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