Title: Phenomenology of spontaneous wave-function collapse models

Date: May 27, 2013 02:00 PM

URL: http://pirsa.org/13050066

Abstract: Models of spontaneous wave function collapse make predictions, which are different from those of standard quantum mechanics. Indeed, these models can be considered as a rival theory, against which the standard theory can be tested, in pretty much the same way in which parametrized post-Newtonian gravitational theories are rival theories of general relativity. The predictions of collapse models almost coincide with those of standard quantum mechanics at the microscopic level, as these models have to account for the microscopic world, as we know it. Departures become significant when the size of the system increases. However, for larger systems environmental influences become more and more difficult to eliminate. This is the reason why it is tricky to test collapse models experimentally, and so far no decisive test has been performed. We will review the main phenomenological properties of collapse models, in particular the so-called amplification mechanics, as well as the main models, which are debated in the literature (GRW, CSL, QMUPL, DP). We will review the lower bounds on the collapse parameter, and more importantly the upper bounds set by available experimental data. This data come both from experimental tests on earth, and from cosmological observations.

"Collapses occur more or less all the time, more or less everywhere" (J.S. Bell)

The Schrödinger equation is linear \rightarrow superposition principle

Collapse models

GRW MODEL: G.C. Ghirardi, A. Rimini and T. Weber, *Phys. Rev. D* <u>340</u>, 470 (1986)
CSL MODEL: P. Pearle, *Phys. Rev. A* <u>39</u>, 2277 (1989). G.C. Ghirardi, P. Pearle and A. Rimini, *Phys. Rev. A* <u>42</u>, 78 (1990)
REVIEW: A. Bassi and G.C. Ghirardi, *Phys. Rept.* <u>379</u>, 257 (2003)
REVIEW: A. Bassi, K. Lochan, S. Satin, T.P. Singh and H. Ulbricht, *Rev. Mod. Phys.* <u>85</u>, 471 (2013)

Also: Diosi, Gisin, Adler, Wiseman, Tumulka, Dowker, Bedingham ...

Question: Which form for the collapse equation?

Answer: The form of the collapse equation is "uniquely identified" by general requirements

N. Gisin & I.C. Percival, J. Phys. A 25, 5677 (1992)
H.M. Wiseman & L. Diosi, Chem. Phys. 268, 91 (2001)
S.L. Adler & T.A. Brun, J. Phys. A 34, 1 (2001)
S. Weinberg, Phys. Rev. A 85, 062116 (2012). See also: Ann. Phys. 194, 336 (1989); Phys. Rev. Lett. 62, 485 (1989)
A. Bassi, D. Duerr & G. Hinrichs, ArXiv:1303:4284 (2013)

27 May 2013

Angelo Bassi

Uniqueness of collapse equation – Setup

Definition: Two mixtures $\{p_i; |\psi_i\rangle\}$ and $\{q_i; |\phi_i\rangle\}$ are equivalent iff:

$$\sum_{i} p_i |\psi_i\rangle \langle \psi_i| = \sum_{i} q_i |\phi_i\rangle \langle \phi_i|.$$

Let us consider a generic evolution for the state-vector:

Et could be non-linear, stochastic ... anything

IMPORTANT: Such a dynamics, in general, does <u>not</u> imply a well-defined dynamics for the density matrix. Equivalent ensembles can evolve in non-equivalent ensembles

Therefore, in general, the density matrix formalism loses its meaning in this context

27 May 2013

Angelo Bassi

Consequence 1: existence of map for p

The no superluminal condition implies that **initially equivalent mixtures remain equivalent**

Then E_t defines a map on the density matrices

Consequence 2: linearity of the map for $\boldsymbol{\rho}$

The map T_t is **linear**

$$\rho_{1,0} = \sum_{i} p_i |a_i\rangle \langle a_i| \qquad \qquad \rho_{2,0} = \sum_{i} q_i |b_i\rangle \langle b_i$$
$$\rho_0 = \lambda \rho_{1,0} + (1-\lambda)\rho_{2,0}$$

Then

$$T_{t}[\rho_{0}] = \sum_{i} [\lambda p_{i} | E_{t}(a_{i}) \rangle \langle E_{t}(a_{i}) | + (1 - \lambda) q_{i} | E_{t}(b_{i}) \rangle \langle E_{t}(b_{i}) |]$$

$$= \lambda T_{t} \left[\sum_{i} p_{i} | E_{t}(a_{i}) \rangle \langle E_{t}(a_{i}) | \right] + (1 - \lambda) T_{t} \left[\sum_{i} q_{i} | E_{t}(b_{i}) \rangle \langle E_{t}(b_{i}) | \right]$$

$$= \lambda T_{t}[\rho_{1,0}] + (1 - \lambda) T_{t}[\rho_{2,0}]$$

27 May 2013

Angelo Bassi

Consequence 3: Lindblad theorem

LINDBLAD THEOREM: A **linear** evolution of the Quantum-Dynamical Semigroup (→ Markovian dynamics), which satisfies **complete positivity** is of the Lindbald type:

$$\frac{\mathrm{d}\rho_t}{\mathrm{d}t} = -i[H,\rho_t] + \sum_{k=1}^n \left(L_k \rho_t L_k^{\dagger} - \frac{1}{2} L_k^{\dagger} L_k \rho_t - \frac{1}{2} \rho_t L_k^{\dagger} L_k \right)$$

27 May 2013

Angelo Bassi

The mathematical question

Given a nonlinear and stochastic evolution for the state-vector (on the unit sphere)

$$\mathrm{d}\psi_t = A(\psi_t)\mathrm{d}t + \sum_{k=1}^N B_k(\psi_t)\mathrm{d}W_{k,t},$$

Where $A(\psi)$ and $B_k(\psi)$ are unspecified nonlinear operators, find the conditions under which it generates a Lindblad type of equation

$$\frac{\mathrm{d}\rho_t}{\mathrm{d}t} = -i[H,\rho_t] + \sum_{k=1}^n \left(L_k \rho_t L_k^{\dagger} - \frac{1}{2} L_k^{\dagger} L_k \rho_t - \frac{1}{2} \rho_t L_k^{\dagger} L_k \right)$$

For the statistical operator $\
ho_t \equiv \mathbb{E}[|\psi_t
angle\langle\psi_t|]$

27 May 2013

Angelo Bassi

Answer

Assume that I, L_1 , ... L_n are linearly independent. Then the stochastic Schrödinger equation leads to the Lindblad equation if and only if $N \ge n$ and

$$A(\psi) = -iH - \frac{1}{2} \sum_{k=1}^{N} \left(L_{k}^{\dagger} L_{k} - 2\ell_{k,t}^{(\psi)} L_{k}^{(\psi)} + |\ell_{k,t}^{(\psi)}|^{2} \right)$$
$$B_{k}(\psi) = L_{k}^{(\psi)} - \ell_{k,t}^{(\psi)}, \qquad \ell_{k,t}^{(\psi)} = \frac{1}{2} \langle \psi_{t}, (L_{k}^{(\psi)\dagger} + L_{k}^{(\psi)}) \psi_{t} \rangle$$

Modulo unimportant phase factors. Here L_{n+1} , ... L_N are zero and the operators $L_k^{(\psi)}$ and their "adjoints" are defined as follows

$$L_k^{(\psi)} := \sum_{j=1}^N u_{kj}(\psi) L_j, \qquad L_k^{(\psi)\dagger} := \sum_{j=1}^N u_{kj}^*(\psi) L_j^{\dagger}$$

The structure is completely defined, the only degrees of freedom being the complex coefficients of the N×N unitary matrix $u_{kj}(\psi)$.

27 May 2013

Angelo Bassi

Which models?

The general structure is

$$\begin{aligned} d|\psi\rangle_t &= \left[-\frac{i}{\hbar} H dt + \sqrt{\lambda} (A - \langle A \rangle_t) dW_t - \frac{\lambda}{2} (A - \langle A \rangle_t)^2 dt \right] |\psi\rangle_t \\ \langle A \rangle_t &= \langle \psi_t | A | \psi_t \rangle \end{aligned}$$

Which kind of operators?

Reasonable assumption: the collapse operators – which identify the "preferred basis", should be **connected to position**

NOTE: The Born rule comes out automatically

27 May 2013

Angelo Bassi

Space-collapse models

	White noise models	Colored noise models
	All frequencies appear with the same weight	The noise can have an arbitrary spectrum
Infinite temperature models No dissipative effects	GRW / CSL G.C. Ghirardi, A. Rimini, T. Weber , <i>Phys.</i> <i>Rev. D</i> <u>34</u> , 470 (1986) G.C. Ghirardi, P. Pearle, A. Rimini, <i>Phis.</i> <i>Rev. A</i> <u>42</u> , 78 (1990) QMUPL L. Diosi, <i>Phys. Rev. A</i> <u>40</u> , 1165 (1989)	Non-Markovian CSL P. Pearle, in <i>Perspective in Quantum Reality</i> (1996) S.L. Adler & A. Bassi, <i>Journ. Phys. A</i> <u>41</u> , 395308 (2008). arXiv: 0807.2846 Non-Markovian QMUPL A. Bassi & L. Ferialdi, <i>PRL</i> <u>103</u> , 050403 (2009)
Finite temperature models Dissipation and thermalization	Dissipative QMUPL model A. Bassi, E. Ippoliti and B. Vacchini, <i>J.</i> <i>Phys. A</i> <u>38</u> , 8017 (2005). ArXiv: quant-ph/ 0506083	Non-Markovian & dissipative QMUPL (L. Ferialdi, A. Bassi, PRL <u>108</u> , 170404 (2012))
27 May 2013	Angelo Bassi	12

CSL model P. Pearle, Phys. Rev. A 39, 2277 (1989). G.C. Ghirardi, P. Pearle and A. Rimini, Phys. Rev. A 42, 78 (1990) $d|\psi_t\rangle = \left[-\frac{i}{\hbar}Hdt + \sqrt{\lambda}\int d^3x (N(\mathbf{x}) - \langle N(\mathbf{x})\rangle_t) dW_t(\mathbf{x}) - \frac{\lambda}{2}\int d^3x (N(\mathbf{x}) - \langle N(\mathbf{x})\rangle_t)^2 dt\right] |\psi_t\rangle$ System's Hamiltonian **New Physics** NEW COLLAPSE TERMS choice of the $N(\mathbf{x}) = a^{\dagger}(\mathbf{x})a(\mathbf{x})$ particle density operator preferred basis $\langle N(\mathbf{x}) \rangle_t = \langle \psi_t | N(\mathbf{x}) | \psi_t \rangle$ nonlinearity stochasticity $W_t(\mathbf{x}) = \text{noise} \quad \mathbb{E}[W_t(\mathbf{x})] = 0, \quad \mathbb{E}[W_t(\mathbf{x})W_s(\mathbf{y})] = \delta(t-s)e^{-(\alpha/4)(\mathbf{x}-\mathbf{y})^2}$ two $\lambda = \text{ collapse strength}$ $r_C = 1/\sqrt{\alpha} = \text{ correlation length}$ parameters 27 May 2013 **Angelo Bassi** 13

Constraints from Experiments

Collapse effects are tiny, but scale with the size of the system

Two main strategies

- 1. High precision laboratory experiments (mainly interference experiments)
- **2. Cosmological observations** (small deviations from the standard quantum dynamics imply different histories for the universe)

27 May 2013

Angelo Bassi

Matter-wave interferometry

Diffraction of macro-molecules:

- C60 (720 AMU)
 M. Arndt et al, *Nature* 401, 680 (1999)
- C70 (840 AMU)
 L. Hackermüller et al, *Nature* <u>427</u>, 711 (2004)
- C30H12F30N2O4 (1,030 AMU)
 S. Gerlich et al, *Nature Physics* 3, 711 (2007)
- Larger Molecules (10,000 AMU)

Arndt group (2013)

C60 diffraction experiment

The experimental bounds are some 2 orders of magnitude higher than Adler's proposed value (therefore some 10-11 orders of magnitude away from GRW's proposed value)

Future experiments: ~10⁶ AMU

S. Gerlich et al, *Nature Physics* <u>3</u>, 711 (2007) S. Nimmrichter, *PRA* <u>83</u>, 043621 (2011)

Outer space for higher masses?

ALSO: Micro-mirrors, nano-spheres

Marshall, W., et al., *Phys. Rev. Lett.* <u>91</u>, 130401 (2003) Romero-Isart, O., et al., *Phys. Rev. A* <u>83</u>, 013803 (2011)

27 May 2013

Angelo Bassi

Matter-wave interferometry

Diffraction of macro-molecules:

- C60 (720 AMU)
 M. Arndt et al, *Nature* 401, 680 (1999)
- C70 (840 AMU)
 L. Hackermüller et al, *Nature* <u>427</u>, 711 (2004)
- C30H12F30N2O4 (1,030 AMU)
 S. Gerlich et al, *Nature Physics* <u>3</u>, 711 (2007)
- Larger Molecules (10,000 AMU)

Arndt group (2013)

C60 diffraction experiment

The experimental bounds are some 2 orders of magnitude higher than Adler's proposed value (therefore some 10-11 orders of magnitude away from GRW's proposed value)

Future experiments: ~10⁶ AMU

S. Gerlich et al, *Nature Physics* <u>3</u>, 711 (2007) S. Nimmrichter, *PRA* <u>83</u>, 043621 (2011)

Outer space for higher masses?

ALSO: Micro-mirrors, nano-spheres

Marshall, W., et al., *Phys. Rev. Lett.* <u>91</u>, 130401 (2003) Romero-Isart, O., et al., *Phys. Rev. A* <u>83</u>, 013803 (2011)

27 May 2013

Angelo Bassi

Spontaneous photon emission: weak GRW value for λ

Comparison with experimental data

Original CSL models (with the **weak** value for λ) is ruled out!

Mass-proportional model (noise having a gravitational origin?)

$$\lambda \to \lambda \left(\frac{m}{m_N}\right)^2$$

TABLE I. Experimental upper bounds and theoretical predictions of the spontaneous radiation by free electrons in Ge for a range of photon energy values.

Energy (keV)	Expt. upper bound (counts/keV/kg/day)	Theory (counts/keV/kg/day)
11	0.049	0.071
101	0.031	0.0073
201	0.030	0.0037
301	0.024	0.0028
401	0.017	0.0019
501	0.014	0.0015

Q. Fu, Phys. Rev. A 56, 1806 (1997)

then:

$$\frac{d\Gamma_k}{dk} = \frac{e^2\lambda\hbar}{2\pi^2\epsilon_0 m^2 c^3 k} \to \frac{e^2\lambda\hbar}{2\pi^2\epsilon_0 m_N^2 c^3 k} \longrightarrow \begin{array}{l} \text{Compatibility is restored} \\ \text{(with respect to GRW's proposed value for } \lambda\text{)} \end{array}$$

Spontaneous photon emission: weak GRW value for λ

Comparison with experimental data

Original CSL models (with the **weak** value for λ) is ruled out!

Mass-proportional model (noise having a gravitational origin?)

$$\lambda \to \lambda \left(\frac{m}{m_N}\right)^2$$

TABLE I. Experimental upper bounds and theoretical predictions of the spontaneous radiation by free electrons in Ge for a range of photon energy values.

Energy (keV)	Expt. upper bound (counts/keV/kg/day)	Theory (counts/keV/kg/day)
11	0.049	0.071
101	0.031	0.0073
201	0.030	0.0037
301	0.024	0.0028
401	0.017	0.0019
501	0.014	0.0015

Q. Fu, Phys. Rev. A 56, 1806 (1997)

then:

$$\frac{d\Gamma_k}{dk} = \frac{e^2\lambda\hbar}{2\pi^2\epsilon_0 m^2 c^3 k} \to \frac{e^2\lambda\hbar}{2\pi^2\epsilon_0 m_N^2 c^3 k} \longrightarrow \begin{array}{l} \text{Compatibility is restored} \\ \text{(with respect to GRW's proposed value for } \lambda\text{)} \end{array}$$

Spontaneous photon emission: Adler's strong value for λ

What about the stronger value for λ (Adler)?

Experimental data rule out such a possibility by 2 orders of magnitude! There is a natural way to restore compatibility:

Colored noise collapse models

For theses models, the formula for the emission rate changes as follows:

$$\left. \frac{d\Gamma_k}{dk} \right|_{\text{colored}} = \gamma(\omega_k) \left. \frac{d\Gamma_k}{dk} \right|_{\text{white}}$$

γ = Fourier transform of the correlation function of the noise

S.L. Adler, F. Ramazanoglu, J. Phys. A <u>40</u>, 13395 (2007)

Cutoff at frequencies ~ 1018 s-1 sufficient for compatibility with known data

S.L. Adler, F. Ramazanoglu, ibid.

Cutoff at frequencies $c/r_c \sim 10^{15} s^{-1}$

A. Bassi and G.C. Ghirardi, Phys. Rep. 379, 257 (2003)

BUT the story is not over!

27 May 2013

Angelo Bassi

Energy non-conservation

The stochastic terms induce a random motion of particles. The noise pumps energy into the system.

For one nucleon (GRW's value)

 $\frac{dE}{dt} = \frac{\lambda \alpha \hbar^2}{4m} \simeq 10^{-25} \text{eV s}^{-1}$

1 eV increase in 1018 yr

For a gas (GRW's value)

Temperature increase 10⁻¹⁵ K/yr

G.C. Ghirardi, A. Rimini, T. Weber, Phys. Rev. D <u>34</u>, 470 (1986)

27 May 2013

Angelo Bassi

Energy non-conservation

Cosmological observations	Cosmological	Distance (orders of magnitude)	Distance (orders of magnitude)
The smart thing to do is to look at large structures in the	data	from <u>GRW</u> value for λ	from <u>Adler</u> 's value for λ
universe.	Dissociation of		
The larger the system, the bigger the spontaneous-collapse effect.	cosmic hydrogen	17	9
So far, cosmological data are compatible with collapse models	Heating of the Intergalactic medium (IGM)	8	0
Energy non-conservation is very	Heating of protons in the universe	12	4
model dependent S.L. Adler, <i>Jour. Phys. A</i> <u>40</u> , 2935 (2007), arXiv:quant-ph/0605072	Heating of Interstellar dust grains	15	7
27.04 2012			

27 May 2013

Angelo Bassi

Inflation, cosmic seeds & collapses

Can collapse models explain the emergence of the seeds of cosmic structure?

How does the inflationary history of the universe change, if collapses occur?

- A. Perez, H. Sahlmann and D. Sudarsky, Class. Quant. Grav. 23, 2317 (2006)
- A. De Unanue and D. Sudarsky, Phys. Rev. D 78, 043510 (2008)
- A. Diez-Tejedor, G. Leon and D. Sudarsky, Gen. Rel. Grav. 44, 2965 (2012)
- S. J. Landau, C. G. Scoccola and D. Sudarsky, Phys. Rev. D 85, 123001 (2012)
- J. Martin, V. Vennin and P. Peter, arXiv:1207.2086.
- P. Canate, P. Pearle and D. Sudarsky, arXiv:1211.3463.
- Suratna Das, Kinjalk Lochan, Satyabrata Sahu and T. P. Singh, arXiv:1304.5094

27 May 2013

Angelo Bassi

Upper bounds on λ . Summary

Laboratory experiments	Distance (orders of magnitude) from Adler's value for λ	Cosmological data	Distance (orders of magnitude) from Adler's value for λ
Matter-wave interference experiments	2	Dissociation of cosmic hydrogen	9
Decay of supercurrents (SQUIDs)	6	Heating of Intergalactic medium (IGM)	0
Spontaneous X-ray emission from Ge	-2	Heating of protons in the universe	4
Proton decay	10	Heating of Interstellar dust grains	7

S.L. Adler and A. Bassi, Science 325, 275 (2009)

Present day technology allows for meaningful tests

27 May 2013

Angelo Bassi

One has to be careful in reading the table

			-				
Laboratory experiments	Distance (orders of magnitude) from Adler's value for λ		Cosmological data		Distance (orders of magnitude) from Adler's value for λ		
Matter-wave interference experiments	2 Dissociat		Dissociation of cosmic hydrogen	^{,ic} 9			
Decay of supercurrents (SQUIDs)	6	6 Heating of Intergala medium (IGM)			0		
Spontaneous X-ray emission from Ge	-2		Heating of protons in the universe			4	
Proton decay	10		Heating of Interstellar dust grains			7	
•		↓ L	? >		• •		• •
It depends on the type of noise (a	STILL THE BEST (and people are investing money)				ill a itiv	e effec	e that no cts take
27 May 2013		Angel	lo Bassi				25

Quantum oscillating systems

M. Bahrami, S. Donadi, L. Ferialdi, A. Bassi, C. Curceanu, A. Di Domenico, B. Hiesmayr, Nature Sci. Reports (2013)

Some systems which naturally oscillate: neutrinos, kaons, chiral molecules

They offer natural tests for collapse models CSL predictions:

NEUTRINOS	cosmogenic	solar	laboratory	Damping rate
E (eV)	19 ¹⁹	106	1010	(how interference terms are
t (s)	3×10^{18}	5×10^{2}	2 x 10 ⁻²	suppressed):
Λt	2 x 10 ⁻⁵⁵	4 x 10 ⁻⁴⁵	2 x 10 ⁻⁵⁷	e-^t

J. Christian, Phys. Rev. Lett. <u>95</u>, 160403 (2005)

MESONS	K-mesons	B-mesons	B _s -mesons	D-mesons
Λ (Hz)	1.5×10^{-38}	1.4 x 10 ⁻³⁴	1.7 x 10 ⁻³¹	3.2 x 10 ⁻³⁷

CHIRAL MOLECULES	SOR ₁ R	SOR ₂ R	SOR₃R	SOR ₄ R	
m (amu)	154	216	316	340	
Λ (Hz)	10 ^{-9.2}	10 ^{-9.1}	10 ^{-8.6}	10 ^{-8.3}	
27 May 2013	Angelo Bassi				26

Gravity induced collapse?

Quantum fields + gravity (semi-classical limit) + non-relativistic limit Schrödinger-Newton equation:

$$i\hbar\frac{\partial}{\partial t}\psi(x,t) = \left(-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} - Gm^2\int\frac{|\psi(y,t)|^2}{|x-y|}dy\right)\psi(x,t)$$

D. Giulini and A. Grossardt, Class. Quantum Grav. 29, 215010 (2012) and references therein

Nonlinear deterministic equation. It collapses the wave function in space (in which precise sense?), but allows for superluminal signaling

Diosi-Penrose model

$$\frac{d}{dt}\hat{\rho} = -\frac{i}{\hbar}[\hat{H},\hat{\rho}] - \frac{\mathbf{G}}{2\hbar}\int\int\frac{d\mathbf{r}\,d\mathbf{r}'}{|\mathbf{r}-\mathbf{r}'|}[\hat{f}(\mathbf{r}),[\hat{f}(\mathbf{r}'),\hat{\rho}]] \qquad \hat{f}(\mathbf{r}) = \frac{M}{V}\theta(R-|\hat{\mathbf{q}}-\mathbf{r}|)$$

L. Diosi, J. Phys. A 21, 2885 (1988); Phys. Lett. A 129, 419 (1988). R. Penrose, Gen. Rel. Grav. 28, 581 (1996)

Good collapse equation. However it diverges. A (large) cutoff is needed

27 May 2013

Angelo Bassi

Acknowledgements

THE GROUP

- Postdocs: M. Bahrami, A. Smirne, A. Grossardt
- Ph.D. students: S. Donadi, G. Gasbarri
- Graduate students: M. Toros, A. Codutti

