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Abstract: By way of presenting some classic and many new results, my talk will indulge shamelessly in<br>advertising "Causal Dynamical
Triangulations (CDT)" as a hands-on approach to nonperturbative quantum gravity that reaches where other approaches currently don't. After
summarizing the rationale and basic ingredients of CDT quantum gravity and some of its key findings (like the emergence of a classical de Sitter
space), | will focus on some very recent results: how we uncovered the presence of a second-order phase transition (so far unique in 4D

guantum<br>gravity), news on the controversy between doing things the Lorentzian or the Euclidean way, and new results on the role of the
preferred time dlicing in CDT - all hopefully worth your while!
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Challenges for quantum gravity:

e What are the quantum laws underlying General Relativity?
e Can we explain gravitational attraction from first principles?
e What are the quantum origins of space and time?

e What is the qguantum microstructure of spacetime?

e Which observables capture its properties?

Apart from their choice of elementary degrees of freedom and
a dynamical principle, different approaches to quantum gravity
can be distinguished by how much background structure they
use, e.g. whether metric/differentiable/manifold structure,
topology, dimension etc. are fixed a priori or part of dynamics.
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Where are we in the search for Quantum Gravity?

“historical dichotomy” in quantum gravity
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“gravity is like any other field theory” “gravity is special; gravity = geometry”
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Division is rarely a good idea!
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Where are we in the search for Quantum Gravity?

“historical dichotomy” in guantum gravity
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“gravity is like any other field theory” “gravity is special; gravity = geometry”

In the last ~10 years, progress in quantum gravity has come from
combining insights and methods from both sides of this divide, by
(i) being minimalist in terms of ingredients and prior
assumptions, with little background structure,
(ii) using standard quantum field-theoretic methods and
(iii) nonperturbative computat. tools for quantitative evaluation.
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Quantum Gravity from Causal Dynamical
Triangulations (CDT)*

... Is @ nonperturbative implementation of the gravitational path integral,
much in the spirit of lattice quantum field theory, but based on dynamical
lattices, reflecting the dynamical nature of spacetime geometry.

CDT is currently the only candidate quantum
theory of gravity which can generate
dynamically a spacetime with semiclassical
properties from pure quantum excitations,
without using a background metric.

(C)DT has also given us crucial new insights
into nonperturbative dynamics and pitfalls.

X the results presented today are mostly based on joint work with
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Key points of the CDT approach:

@® Few ingredients/priors:
@® quantum superposition principle
@ |ocality and causal structure (not
Euclidean quantum gravity)
@® notion of (proper) time
@® Wick rotation
@ standard tools of quantum field theory triangulated torus
@ Few free parameters (A, Gy, A)
@ Robustness of construction; universality
@ Atintermediate stage, approximate curved spacetimes by triangulations
@ Crucial: nonperturb. computational tools to extract quantitative results

= A

-

| will briefly describe the set-up, then look at
some of the results produced:

._\‘-'f

e “emergence” of spacetime
e scale-dependent dimensionality
e nontrivial phase structure
®

several new results piece of causal triangulation
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Our dynamical principle: Feynman path integral,
“Sum over Histories”

Newton’s constant cosmological constant

: JGEH
Z(Gn,N) = / Dg etGn ald]

spacetimes

gey

Each “path” is a four-dimensional, curved spacetime geometry g, which can be
thought of as a three-dimensional, spatial geometry developing in time. The
weight associated with each g is given by the Einstein-Hilbert action S*"[g],

, 1S X
SEH e / d*z+/— det g(R[g, g, 0%g] — 2A)
N .

How can we make Z(Gy,A) into a meaningful, well-defined quantity?

How can we get a handle on the space of all spacetimes?
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Key input in dynamical triangulations:
“General Relativity without Coordinates” (Regge)

triangulation = regularization

A typical path integral history
(2d quantum gravity)

approximate classical curved

surfaces through triangulation Quantum Theory: approximate the space of all
curved geometries by a space of triangulations -
the space we need to integrate over*)!

(*) by Monte Carlo simulations (for CDT models in d=2, 3 have also exact stat. mech.
solutions methods, see e.g. - : L
in d=2, the problem is exactly soluble - nontrivial propagator, Hamiltonian, ..., work

by ) 1 itter, : 3. )

Pirsa: 13050055 Page 15/41



Regularizing the path integral via CDT

o Regge rm d 1c’ i
G T Z i P 2] democratlc.,regylarlzed
’ a5 e sum over piecewise flat
N—00 till.l.(‘,qmv.. spacetimes;
riangul.s
716 gr:..N [Aut(T)| . . . .
continuum limit required

to obtain universal
results independent of
the regularization

Each triangulated manifold T represents a different
curved spacetime, consisting of N four-simplices,
which can be “Wick-rotated” to a Riemannian space.

Elementary four-simplex, building
block for a causal dynamical - 4]
triangulation

edge length a = a diffeomorphism- ’
invariant UV regulator <] |

(4,1) (3,2)
N.B.: the causal structure of CDT is essential!

This does not work in Euclidean signature - CDT’s proper-time slicing -
get only branched polymers (~mid-90s). time and space are not equivalent

Pirsa: 13050055 Page 16/41



Regularizing the path integral via CDT

Z(Gn,A) = lim Z . etScra (7] ’democratis’, reg}JIal;_ilzid
a0 Jo= O sum over pl-ecevwse a
erin‘n_’gul.s spacetimes;
-l ki continuum limit required

to obtain universal
results independent of
the regularization

Each triangulated manifold T represents a different
curved spacetime, consisting of N four-simplices,
which can be “Wick-rotated” to a Riemannian space.

Elementary four-simplex, building
block for a causal dynamical - 4]
triangulation

edge length a = a diffeomorphism- b
invariant UV regulator < |

(4,1) (3.2)
N.B.: the causal structure of CDT is essential!
This does not work in Euclidean signature - CDT’s proper-time slicing -

get only branched polymers (~mid-90s). time and space are not equivalent

Pirsa: 13050055 Page 17/41



Regularizing the path integral via CDT
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This is our toolbox - now for some results,
starting with CDT “classics”.
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Dynamical emergence of spacetime as we know it

For suitable bare coupling constants, CDT quantum gravity produces a
“guantum spacetime”, that is, a ground state, whose macroscopic scaling
properties are four-dimensional and whose macroscopic shape is that of a

well known cosmology, de Sitter space.

Evidence: When, from all the gravitational degrees of freedom present, we
monitor only the average spatial three-volume <V3(t)> of the universe as a
function of (discrete, proper) time t, we find a characteristic “volume profile”,

This is brought about by a nonperturbative mechanism, with
“energy” (the bare action) and “entropy” (the measure, i.e. number of
microscopic spacetime configurations) contributing in equal measure.

Evidence: We can extract from the simulations the explicit “effective action”
that governs the dynamics of the volume profile <V3(t)>, and it coincides with
a minisuperspace action for V3(t)=a3(t), where a(t) is the usual “scale factor”.
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Dynamically generated 4D quantum universe,
from a path integral over causal spacetimes

L1
17
el
T
S
DA
)
5
%

three-volume V;(t)

-
time t

This is a Monte Carlo “snapshot” of spacetime shape (a single volume profile
V3(t)) - we still need to average to obtain its expectation value <V3(t)>.*

N.B.: we are not doing quantum cosmology, i.e. do not impose symmetries by hand

* careful, triangles in figure do not represent the actual local geometry
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The quantitative evidence for de Sitter space

KO = 2,200000, A = 0,600000, K4 = 0,925000, Vol = 160k

10000 r
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1

The volume profile <V3(t)>, as function of Euclidean proper time t=it, perfectly
matches that of a Euclidean de Sitter space, with scale factor a(t)? given by

; . 6 5 " . : t . 3
ds® = dt® + a(t)“dSd) = dt* + ¢? cos? ((—) (ISZ(')I.{) vollme s
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Are there more local ways of characterizing
guantum geometry*?

Yes, its dimension, which in quantum gravity can behave in unexpected
ways.

There are several notions of dimension, which in the Planckian regime
need not coincide.

“Dimension” in nonperturbative quantum gravity is no longer fixed a
priori, but reflects a particular quantum dynamics. It is not pre-
determined by the dimensionality of the triangular building blocks used.

As we have already noted, to dynamically generate a four-dimensional
extended geometry is highly nontrivial.

(%) part of quantum gravity’s quest for observables, especially those that
allow us to quantify genuine quantum properties of spacetime
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Getting a handle on Planckian physics (via
“dimensions”)

(or, another nonperturbative surprise!)

A diffusion process is sensitive to the dimension of the
medium where the “spreading” takes place. We have
implemented such a process on the quantum superposition
of spacetimes. By measuring a suitable “observable”*, we

have extracted the spectral dimension D of the quantum
spacetime.

Quite remarkably, we find that it depends on the length scale probed: Ds
changes smoothly from 4 on large scales to ~2 on short scales.

*average return probability: €

1 1 - @
i g Ao Pl a ,‘ —
Ry (o) : V(J\[),/J.”d v Plx,x;0) 5./ *

~y 5

Ko . 2
sol.n to heat |

equation

diffusion time
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Ds(o) as probe of geometry on linear scales ~ ¢'/2

classical spacetime manifold * on Short Scales, our uground
state of geometry” is definitely not
a classical manifold.

3.5
quantum spacetime generated by CDT |n5tead, we find evidence for the
3
presence of a random fractal
2.5 structure.

500 1000 1500 2000 2500 3000

qualitative behaviour of Ds(o)

Intriguingly, the short-scale “dynamical dimensional reduction” of CDT has also
been found in two rather different (also quantum field-theoretic) approaches:

® nonperturbative renormalization group flow analysis

@ nonrelativistic “Lifshitz quantum gravity”
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Phase diagram of Causal Dynamical Triangulations

A The CDT gravitational action is simple:
A ()
SacB8 = —koNa + Na(cko + A) +
c +A@RNY 4 N
.,A A ~ cosmological constant
A % ko~ 1/Gyinverse Newton's
constant
( A ~ relative time/space scaling
¢ ~numerical constant, >0
N;~ # of triangular building

Ko blocks of dimension i

The partition function is defined for A > A" (kq,4);
approaching the critical surface from above = taking infinite-volume limit.
red lines ~ phase transitions
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The phase diagram of CDT in the ko-A plane

06 ( )| - () l b
()
(geometry) > 0 W dt _
(geometry) oscillat mg
04 in fme
A C A
02 | . b
end point uﬁ
e § triple point
0 - ) ]
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B , N
(geometry) (0 ' ;
0.2 ' ' ' -
0 2 3 4

(data taken at N4=80.000)

Ko

The average geometry in phases A and B is degenerate and does not have a
classical, four-dimensional limit. The interesting physics happens in phase C.

INew! the B-C transition appears to be of “second order”- unprecedented!
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The evidence: MR i
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The evidence: - e
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New (and old): Lorentzian versus Euclidean DT

@ standard Euclidean DT has only a first-order transition, from a crumpled
phase to a branched polymer phase

@ resurrecting the “crinkled phase” of Euclidean DT quantum gravity, based
on the (old) idea of changing the measure (o; is the order of the it triangle):

."f\"r 2

> (*(l-'r) — ) [H”if]('(l'l‘)

triangul.s triangul.s =1
T T

@ there is evidence of a scale-dependent spectral dimension in the crinkled
phase; perhaps this is just the nice “phase C” of CDT in disguise, and the only
important ingredient is a third coupling constant, here related to higher-

curvature terms

@ however, unlike what was found in CDT, a careful scanning of the coupling
constant space (k2,8) has produced no evidence of the presence of a phase
transition of higher order
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NEW: CDT quantum gravity without
distinguished foliation

@ standard path integral formulation needs a time t; propagator G(gin, Gout;t)
satisfies
G(Gins Goutit) = Y G(Gins 9:01)G(9s Gouri ta),  t = t1+1
4
® proper time is a natural geometric choice; in standard CDT, slices of
constant proper time t=0, 1, 2, 3, ... coincide with simplicial submanifolds,
consisting of purely spatial (d-1)-simplices

timelike t=3
edges
t=2
t=1
spacelike edge
t=0

building block of standard o _ _
1+1 CDT (with light cone) building causal spacetimes from proper-time

strips in standard CDT quantum gravity
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Relax the strict slicing while retaining causality

@ introduce additional elementary building blocks, e.g. in 1+1 dimensions

timelike
edges

spacelike edge

® impose local causality
conditions at vertices:

spacelike
edges timelike
- edge
new: >< g

A

building causal spacetimes in generalized
CDT from these two building blocks
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Recovering standard CDT

@ analogously, can introduce additional elementary building blocks in 2+1

@ simulating the generalized 2+1 CDT model requires new Monte Carlo
moves

@ after fine-tuning A, the model has a two-dimensional phase space,
parametrized by (Ko A)

@ thereis a region in phase space where geometry is “almost foliated”

@ in this region, volume profiles w.r.t. an averaged geodesic time are
compatible with three-dimensional de Sitter space

@ have recovered standard foliated CDT quantum gravity dynamically!

The strict time foliation of CDT appears to be a dispensible (albeit
convenient) part of its background structure.

== for more details, attend Samo Jordan’s talk next week!
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Causal Dynamical Triangulations - Outlook

CDT is a path integral formulation of gravity, incorporating the dynamical and
causal nature of geometry. It depends on little background structure, few
assumptions and few free parameters. Its toolbox provides an “experimental
lab” - a nonperturbative calculational handle on (near-)Planckian physics.

== \We can make quantitative statements about gquantum geometry
(properties of the ground state of quantum gravity).

=== \We obtained a derivation from first quantum principles of the shape of
the universe, illustrating the emergence of classicality from quantum
dynamics and the crucial role of “entropy” (hnumber of quantum states).

==Jp The dynamics of spacetime on Planckian scales is counterintuitive and
nonclassical, as illustrated by the dynamical behaviour of “dimension”.

The hunt for more observables is on, with great scope for quantitative results
and comparison with other approaches like the “asymptotic safety scenario”.
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Where to learn more

For a comprehensive review of Causal Dynamical Triangulations,
check out “Nonperturbative Quantum Gravity”, our new Physics
Report 519 (2012) 127-212 [arXiv: 1203.3591]!

Links to other review material (from technical to popular) and
lecture notes can be found at http://www.hef.ru.nl/~rloll.
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