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Abstract: <span>Fractional quantum hall states with nu = p/q&nbsp; have a characteristic geometry& nbsp; defined by the electric quadrupole
moment of the neutral composite boson that is formed by "flux attachment” of q "flux quanta’ (guiding-center orbitals) to p charged
particles.& nbsp;& nbsp; & nbsp; This characterizes the& nbsp; "Hall viscosity".& nbsp;& nbsp;& nbsp; For FQHE states described by a conformal field
theory with a Euclidean metric& nbsp; g_ab, the quadrupole moment is proportional to the "guiding-center spin” of the composite boson and the
inverse metric.& nbsp;& nbsp;& nbsp; & nbsp; & nbsp; & nbsp; The geometry gives rise to dipole moments at external edges or internal "orbital
entanglement cuts',& nbsp; and can be seen in the entanglement spectrum.</span>
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® hidden geometry of the Laughlin state
® geometrodynamics of the FQHE

® geometry and entanglement
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Laughlin state

® originally introduced as a “lowest Landau level wavefunction”

(I will explain why this is a misleading characterization)

qj%({rz}) — H(Za — Z_j)q He—éz,}f‘z.,;

i<j i

® usual interpretation of z is

iy The most striking
T o2 feature for theorists
\/2 B . Lo
is that this is

magnetic area: QszB
(contains one flux quantum h/e)

holomorphic!
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Laughlin explained that his wavefunction had
a holomorphic factor because it was a
lowest-Landau level wavefunction.

| will explain why the holomorphic character
has a quite different origin!

This will explain why the Laughlin state can
be found in systems unrelated to lowest
Landau level systems

It will also reveal the fundamental geometric
degree of freedom of the FQHE state.
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standard derivation

® non-relativistic Galileian-invariant Landau levels

2 [ | . (Note isotropic
:/MJ, (a'a+ aa') effective mass)

H

2

® |Landau level ladder operators (in the “symmetric gauge”).
) 10,
| (

(1 A (1

22+ 53 =37 5 {u.uﬂzl

lowest Landau level wavefunctions

> - L)Z*Z
(Ifl/)(’r') f— [) —_— /l/)(’r) . ][(Z)( 2
holomorphic &, ssian
function
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\D%({rz}) — H(Zz . Zj)q He—éz;"z,;

i<j i

® The ¢ = 3 Laughlin state was confirmed (by

numerical exact diagonalization studies) to be
the essential description of the 1/3 FQHE

® The holomorphic factor is incidentally noticed to
be a cft correlator (conformal block) of the free
boson cft with boson radius R=/(2/q) .
(why?)
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® So it is known to work, but why? (In my
opinion, this question was never satisfactorily
answered)

a common rationalization:

“Laughlin’s wavefunction
cleverly lowers the
Coulomb correlation
energy by placing its zeroes
at the locations of the
particles”

we will see that this is an empty statement
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problems with this

® The “explanation” of why the Laughlin state is correct are vague
rationalizations, without quantitative content.

® The relation to cft is an empirical observation, and remains
unexplained

® The 1/3 FQHE state also occurs in the second Landau level and

is described by the same Laughlin state (but not the same
“wavefunction”)

® |t is recently also found on Chern-insulator lattice systems (by
numerical diagonalization)

The physics of the FQHE in Landau levels is the physics
of non-commuting “guiding centers” (quantum geometry)

which cannot be described in terms of Schrodinger
wavefunctions
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Schrodinger vs Heisenberg

wavefunction
in real space
(classical geometry)

of QM are equivalent:

iff 3 |7)s.t.

U(r) =

(r| V)

(rlr)

—1 {0},

r #£ 7

state in
in Hilbert space

® resolution of conflict: the two formulations

requires an
orthonormal basis in
real space obeying
classical locality
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® classical locality (and Schrodinger-Heisenberg
equivalence) fails after Landau quantization!

~ a
— r=7rTe€,
r=R T R a b1
rr’l =0
¢  Landau orbit
-,_g..r_‘gdius vector
o o XR non-commutative algebra
classica o \
coordinate X ; ~a T wy ,
{R”,Rb} _ ’I,[ZZBE”I)
e . [R(L, Rb] _ —i(/ée”’b
_ g guiding center R ]?b — ()
O coordinate { £ ]
Sa /)2 % "o
. ) — a ) & y —
Do — €Aq(1T) = €ph R /15 B~ B

Pirsa: 13050049 Page 10/35



) eliminated
r= R+ «<— by Landau

quantization

® residual guiding center degrees of freedom are non-commutative

[]?/uu7 Rb] _ _7:(/'286”’})

® isomorphic to phase space, obeys uncertainty principle

guiding centers
cannot be localized
within an area less
than 271'523

Pirsa: 13050049 Page 11/35



® The Hamiltonian governing the residual
guiding-center degrees of freedom:

. V(Q)f((l)/( q) V(q) — /(ZZTU. V(r?.’j)()iqq'-i.i

Fourier transformed Coulomb interaction

fl@) = (Wnle T Rpn) = Lu(w)et

U Hq\:(?‘.

Landau level form factor |
(n = landau level index) (depends on Landau orbit)
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® in this limit, the state is an unentangled
product of a non-trivial state of the guiding
centers with a trivial state of the Landau
orbits

V) =|VR)® [Vg)

fu”h?:::itﬁasa/‘ “ Trivial state

(w . s of Landau orbits

Schrodinger FQHE -

representation) is here ! H Vn(R;))
039

depends only

on U(q) characterized by

form factor /,(q)
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® |n what follows, | will regard the essential
FQHE state as the purely-guiding center
state defined by

“quantum geometry*” plq) =) TR

0(q), p(q")] = 2isin (56"°quq0E)p(@ + ') GMp 1985

*“triple” {algebra,representation,Hamiltonian} satisfies Connes’ definition
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® one can now write the Heisenberg form of
the Laughlin state, liberated from any
dependence on the Landau orbit geometry

U9 (9)) = ]| (wi(R? —RY))" [¥o(g))
1<J
w(LRfIlIIO(g» =0 w;wb — %(ga,b — iﬁab)

® |t is the exact zero-energy ground state of the
“pseudopoential” model with

_ 1,22

U(g;9) = Y ViLm(q20%)e 2%"s
msq 2 — _ab

V.., >0 49 =9 4dab
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® coherent state basis

alz) = 212) |5) = ¢! =72

o

- =k, =/ o* -/ s*3/ _Ll(z'*5' L 5%
8(131 a: :/: . ,: ) —_— <’: ’: > — (’ __)( + )

® non-null eigenstates of the overlap define an
orthonormal basis

g =l J=/*
/ az 6z S(z,z% 2z, 2z, 2™) = M(Z, Z%)

2T

® non-null eigenstates are degenerate with \ = 1

— %

_ (=% ,— 352 Z | “accidentally” coincid
Y2, 27) = F(Z7)e™>" 7 | i lowestoLandau lve

holomorphic! wavefunctions if z = z*I!
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® This is the true origin of holomorphic
functions in the theory of the FQHE

® NOTHING to do with lowest Landau level
states, derives from overlaps between states
in a non-orthogonal overcomplete basis!

® Has obvious parallels in theory of flat-band
Chern insulators, where the projected lattice-
site basis is non-orthogonal and overcomplete

1
e

< ? \ .
/ many-particle

“Laughlin coherent state
wavefunction”

"dzldz; A\ q L 5% 5
vy = [T [ SETL G - ) Te 2o
l ' 1< 19 1

(I,"l|. A TR \ = .’Z,"l|. 2ol ..., 2 |
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® The metric is a physical degree of freedom that
characterizes the shape of the correlation hole
surrounding a particle in the Laughlin state
® The 1/q Laughlin state can be characterized as
describing a “condensate” of “composite bosons”
formed by “attaching” ¢“flux quanta” (orbitals) to
the particles.

® more generally, the composite boson is formed by
attaching ¢ “flux quanta” to p particles.

The metric describes the shape of the composite boson
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1/3 Laughlin state If the central orbital is filled,
the next two are empty

The composite boson
e, has inversion symmetry

----

TN about its center

------

It has a “spin”
3 )

the electron excludes other particles from
a region containing 3 flux quanta, creating a
potential well in which it is bound
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® The composite boson behaves as a neutral
particle because the Berry phase (from the
disturbance of the the other particles as its
“exclusion zone” moves with it) cancels the
Bohm-Aharonov phase

® |t behaves as a boson provided its statistical
spin cancels the particle exchange factor when
two composite bosons are exchanged

p particles  (—1)P" = (—1)” fermions
g orbitals (—1)P1 =1 bosons
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® The shape of the composite boson is
determined by minimizing the sum of the
correlation energy and the background
potential energy.

e |f there is no background potential, the
metric is flat and the charge density is
uniform

e |[f there is a background potential ¢u(7)

varies with position to give a charge density

fluctuation

Gaussian curvature of metric
bl

K(r) = $0.009"" + £gav€cac™ 0.9 g
dp(r) = esK(r) N L

.

f from variation of from Berry phase
second moment of associated with

>pin charge distribution shape change
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® metric deforms (preserving det g =1)in
presence of non-uniform electric field
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abed eBs |

ac _bd bd ac
® Hall viscosity ' -lm,'—’(” e+ g™ +a < b)

(plus a similar term from the Landau orbit
degrees of freedom (Avron et al))

A
_xrry
J) A

— T T dvY
current of p, da

in 2-direction
(stress force)

aec

J ‘ 1
(T;; — (f)(fjll fr-lll()r‘”r
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n(k)
s edge of Laughlin |/3

0.4
g g a1~ The dipole at a segment of the
0.2 ] edge has a momentum
— _h N/
dPy = —€qpdp
o 1 - K nomentum b i |
1 H | mencur dipole
orbital occupation P
: doesn’t contribute
momentum dP o il o oo

) §dP, =0

circular droplet

it does contribute an extra term to
total angular momentum:

AL*(g) =h (f> (f"l’.(j;,(.'f""(flj(,_ # ()
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Pirsa: 13050049 Page 28/35



Pirsa: 13050049 Page 29/35




"laughlin3_n_13.cyl16.14" wusing 2:4

ORBITAL CUT
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(NOT “real-space cut” which requires
the Landau orbit degrees of freedom and their
form factor to be included

virasoro level

L of sector
0 5 10 H). 20 25 . 30 35 . 40 ”I'I‘L‘ . .
e Hall viscosity gives “thermally excited

momentum density on entanglement cut,
relative to “vacuum”, at von Neumann
temperature T = 1
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