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Abstract: <span>Given two lattice Hamiltonians H_1 and H_2 that are identical everywhere except on alocal region R of the lattice, we propose a
relationship between their ground states psi_1 and psi_2.&nbsp; Specifically, assuming the states can be represented as multi-scale entanglement
renormalization ansatz (MERA), we propose a principle of directed influence which asserts that the tensors in the MERA&E™s that represent the
ground states can be chosen to be identical everywhere except within a specific, localized region of the tensor network.& nbsp; The validity of this
principle is justified by demonstrating it to follow from Wilson's renormalization ideas towards systems with manifestly separated energy scales.
This result is shown, through numerical examples, to have practical applications towards the efficient simulation of systems with impurities,
boundaries and interfaces, and also argued to provide useful insights towards hol ographic representations of quantum states.</span>
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Directed Influence in the RG Flow

To appear soon...
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Motivation

consider two lattice Hamiltonians that differ
only on some local region of the lattice:

H=H+H,
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Motivation
differ
locally -
consider two lattice Hamiltonians that differ
only on some local region of the lattice:

H=H+H,
/’l‘ N ‘1//> <—>|l/7>
Kondo Impurity 3D bulk of " local spin is there any rglationship
problem: free fermions impurity between their ground
states?
R

caesaaae | | can be difficult!

-6 e e

"_‘-_-_-_-_-p :-;:::_ - arbitrary small impurity coupling can
Cecsaw ::::::_ drastically alter low energy

-—----nnt—-q-g
STesssLslsscssasae
e G G G G G S S e S S e
SsSsLsLssssLssssea

Pirsa: 13050041 Page 6/52



Motivation

consider two lattice Hamiltonians that differ
only on some local region of the lattice:

H=H+H,

e.g. 1D Heisenberg chain
with local impurity
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Motivation

consider two lattice Hamiltonians that differ
only on some local region of the lattice:

H=H+H,

e.g. 1D Heisenberg chain
with local impurity
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Motivation

consider two lattice Hamiltonians that differ
only on some local region of the lattice:

H=H+H,

- want to gain some understanding
of how the ground states relate
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- want efficient numeric algorithms for
simulating homogeneous systems with
impurities, boundaries and interfaces
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de-localised
change
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Result

D - dimensional
Hamiltonian

F H
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Result

(D+1) - dimensional holographic
description of its ground state
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Result

(D+1) - dimensional holographic
description of its ground state
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Questions?

- what holographic representation of ground states am | using?

- is directed influence useful for practical purposes?

- why is directed influence valid? Directed Influence
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- why is directed influence valid? Directed Influence
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Questions?

- what holographic representation of ground states am | using?

tensor network representation: multi-scale
entanglement renormalization ansatz (MERA)

- is directed influence useful for practical purposes?

allows a more efficient description of ground states of systems
with impurities, boundaries and interfaces: # parameters: O(N) = O(1)

- why is directed influence valid? Directed Influence

it can be shown to follow from
Wilson’s renormalization ideas
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Intro to Entanglement Renormalization

Entanglement Renormalization: a coarse graining transformation for lattice systems
..... oo.oo.o.ooﬁ’ coarser lattice
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Intro to Entanglement Renormalization

Entanglement Renormalization: a coarse graining transformation for lattice systems

site
\
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THTKTH T THTH T

0000000000000 000000000 L il lattice

——
block
Isometries: [ ‘]" ] Disentanglers: T
Isometric |
constraints: " 7
| : H;
W |

Page 17/52



Pirsa: 13050041

Intro to Entanglement Renormalization

coarse-graining a H' =[/H ([_; )

local Hamiltonian: low energy effective

Hamiltonian
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Intro to scale-invariant MERA

---------------------------------------------------------------------------------------------------------------------------
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Intro to scale-invariant MERA

(1)

Scale-invariant MERA

[RIR]

- a tensor network ansatz for ground states of

. ; i . _ characterised by
scale-invariant (critical) Hamiltonians

a single pair of tensors

- results from a real-space coarse-graining |
transformation (Entanglement Renormalization) R U

14
- holographic interpretation [ I I
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Intro to scale-invariant MERA

sometimes I'm

locally identical
everywhere

xH
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Scale-invariant MERA

- a tensor network ansatz for ground states of

: . s . : characterised by
scale-invariant (critical) Hamiltonians

a single pair of tensors

- results from a real-space coarse-graining |
transformation (Entanglement Renormalization) W U

|

- holographic interpretation [ ]
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Intro to scale-invariant MERA

Def: Causal Cone of sites (x;.x,) = set of tensors that
could affect the reduced density matrix p(x,,.x,)

p(x,x,) = s |‘]’><‘l’|




Outline

- what holographic representation of ground states am | using?

introduction to the MERA

- why is directed influence useful?

applications of directed influence: impurities, boundaries and interfaces

- why is directed influence valid? Directed Influence

directed influence arising from
Wilson’s renormalization group
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Directed Influence in MERA
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Directed Influence in MERA

Practical applications???

- directed influence is useful when the problem
under consideration can be written:

2 e——

¥ sym local
H=H"™+H"
\ §oo A )
extensive part some
with symmetry

local part that
breaks symmetry

spatial symmetries: translation invariance, scale invariance, reflection invariance
global internal symmetries: i.e SU(2), U(1)
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Impurity MERA

s oIS = S

................................................................ I
& I H
IR,
-impurity Hamiltonian: H"™ = H™* 4+ H ., single pair of
uniaue ‘bulk’ single (or a few)
-directed influence - impurity MERA tcc'aniorst‘.l bulk tensors

-0 (1) unique tensors (independent of
system size!)
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...even though we don’t have I q
translation invariance anymore!
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Boundary MERA
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-consider a homogeneous ‘bulk’ Hamiltonian: Hlmlk _ / bulk single pair of
(assumed to be scale-invariant) - Z (rr+l1] unique ‘bulk’
tensors
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Directed Influence in MERA

scale-invariant

MERA impurity MERA boundary MERA
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homogeneous ‘bulk’ ) R R

Hamiltonian
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Numerical Example: Impurity MERA

( [ )
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critical 1D Ising chain
vith impurity
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Numerical Example: Impurity MERA

ground state magnetization:
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Numerical Example: Impurity MERA

conformal data of impurity
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Numerical Example: Double Impurity MERA

)

i
T /i—aXX+7
h=-a,XX+Z

- critical 1D Ising chain two impurities

Pirsa: 13050041 Page 33/52



Numerical Example: Double Impurity MERA

h

- critical 1D Ising chain two impurities
- impurities fuse to a single effective

impurity under coarse graining

CFT result: ‘opposite’ impurities, i.e.
a,=1/¢a,

fuse to identity (no impurity)
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Numerical Example: Double Impurity MERA
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Numerical Example: Double Impurity MERA
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Applications of Directed Influence

- useful for study of homogeneous many-body systems that have local ‘defects’
(e.g. impurities, boundaries, interfaces)

- less parameters required to describe ground states

# parameters: O(N)— O(])

- study thermodynamic limit directly (despite broken translation invariance)
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Applications of Directed Influence

- useful for study of homogeneous many-body systems that have local ‘defects’
(e.g. impurities, boundaries, interfaces)

- less parameters required to describe ground states

# parameters: O(N)— O(])

- study thermodynamic limit directly (despite broken translation invariance)
- accurate short range properties of ground states (energy, local observables)

- accurate long range properties of ground states (correlators, conformal data)
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Applications of Directed Influence

- useful for study of homogeneous many-body systems that have local ‘defects’
(e.g. impurities, boundaries, interfaces)

- less parameters required to describe ground states

# parameters: O(N) B O(])

- study thermodynamic limit directly (despite broken translation invariance)
- accurate short range properties of ground states (energy, local observables)
- accurate long range properties of ground states (correlators, conformal data)

- can introduce strong defects, i.e. not limited to perturbatively weak defects

...also have similar numeric results for boundaries, interfaces, Y-junctions...

To appear soon...

Algorithms for Entanglement Renormalization: impurities, boundaries and interfaces
arXiv:xxxx.xxxx (G.E., G. Vidal)
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Outline

- what holographic representation of ground states am | using?

introduction to the MERA

- why is directed influence useful?

applications of directed influence: impurities, boundaries and interfaces

- why is directed influence valid? Directed Influence

directed influence arising from
Wilson’s renormalization group
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Wilson’s Renormalization Group

- Kondo impurity problem: 3D bulk of free fermions with
local magnetic impurity
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Wilson’s Renormalization Group

- Kondo impurity problem: 3D bulk of free fermions with
local magnetic impurity

- Wilson derived an effective 1D Hamiltonian for this problem:

1 1 1
\\ ilson { ‘:__#_i;_ "'C:T"' — ,&-T__ T

h Lh L? Lh Lh

o

- solve with NRG (numerical renormalization group):
iterative block diagonalization based on perturbation theory

o > |
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Wilson’s Renormalization Group

- Kondo impurity problem: 3D bulk of free fermions with
local magnetic impurity

- Wilson derived an effective 1D Hamiltonian for this problem:

_—
\\ ”\Un { ‘__#_i LR S I e —-. e ,S'—'T-_ - — _(:T —— (:-:-hr —

h Lh Lh Lh Lh '—;

- (24 (24 (24

Y |
block

treat the rest as a perturbation
of the block
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Wilson’s Renormalization Group

- Kondo impurity problem: 3D bulk of free fermions with
local magnetic impurity

- Wilson derived an effective 1D Hamiltonian for this problem
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Wilson’s Renormalization Group

- Kondo impurity problem: 3D bulk of free fermions with
local magnetic impurity

- Wilson derived an effective 1D Hamiltonian for this problem:

H\\'ilu»n {
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Wilson’s Renormalization Group

-

)

= e e e il Y
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24 o o 174

* NRG: iterative block diagonalization, justified by the separation of
energy scales in the Hamiltonian

+ ground state approximated by matrix product state (MPS)
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Directed Influence

NRG: (0+1) dimensions

strong
H Wilson { MRt T > praSI EE R
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Directed Influence

NRG: (0+1) dimensions

strong IR
Uuv
Lyt [. m X L LG Eana
11 ]
| o37e X
R

MERA: (D+1) dimensions
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Justification of Directed Influence in MERA
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Directed Influence

NRG: (0+1) dimensions

strong IR
uv
\\|I n m;: > L anE Eaae>
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Summary: Directed Influence

local change in
. Hamiltonian

H H
|7) u
localised change in

holographic description
of ground state

\:l;il

H

‘f//) <—>|r/7)

- conceptually appealing relationship between ground states of
Hamiltonians that differ only on a local region

- exposed some causal structure in the holographic geometry

- useful for numerical simulation of many body systems with impurities,
boundaries and interfaces

- justified from Wilsons renormalization ideas
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