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Abstract: <span>In this talk, | will discuss about the notion of quantum renormalization group, and explain how (D+1)-dimensional gravitational
theories naturally emerge as dual descriptions for D-dimensional quantum field theories. It will be argued that the dynamical gravitational field in
the bulk encodes the entanglement between low energy modes and high energy modes of the corresponding quantum field theory.</span>

Pirsa: 13050036 Page 1/37



Quantum Renormalization Group
and AdS/CFT
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AdS/CFT correspondence

[Maldacenal]

* Conjecture:
D-dim QFT = (D+1)-dim quantum gravity

— One can learn about QFT from Gravity
* In large N limit, the gravity becomes classical

* Classical gravity may capture non-trivial qguantum
fluctuations in QFT

* Potential application to QCD, condensed matter systems

— One can learn about Gravity from QFT
* QFT as a non-perturbative definition of quantum gravity

* QFT may provide new insights into gravity
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AdS/CFT Dictionary

[Gubser, Klebanov, Polyakov; Witten]
Low energy

A
(D+1)-dim space

On(x) & julz, 2) :

Ty(2) © gpur(, 2)

" High energy

D —dim flat space

Splo(x)+i [ Jn(xz)On . .S
/D(‘)(.r)(' p(d(@)+i | Jn(z)On /D_/(.l’. Al D+105(:2)]

Inlx,z=0)=.J,,(x)

_y "D 17 (2,2)]

Inlx,z=0)=J,(x)

Pirsa: 13050036 Page 5/37



What is behind the correspondence?

RG = GR
* Radial direction in the bulk = length scale of
QFT
* Bulk variables : scale dependent coupling
functions

* Equations of motion in the bulk corresponds
to the beta functions of QFT

* Radial evolution of the bulk fields correspond
to the RG flow
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However, the connection between RG
and GR is incomplete

Non-dynamical coupling functions :

Obey first-order betafunctions Bulk variables are dynamical :

Bulk action has two-derivative term

RG flow is classical :
Given initial condition, coupling Bulk variables have quantum
functions are deterministic without fluctuations
uncertainty
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Matrix model
Z[r](l)] —— / DC) f_),.j l da L

L = J"z)0,

* O, :complete set of single-trace operators

eg. tr[o"], tr[0d, 0,0, tr(d(0,,0u,...04,0)...(0h,0uy...0u.0)], ..

M1 M2

Pirsa: 13050036 Page 8/37



Matrix model

2100 - [ Do e
£ = J"(x)0,

* O, :complete set of single-trace operators

eg. tr[o"], tr[0d,0,0|, tr(d(0,,0u,...04,0)...(0h,0y...0u.0)], ..

M1 42
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Renormalization Group
K = Ke %

S L =L+6L

VL = dz ¢ ﬁ(.[.]. ;1.') — 3" [,],_ ;1')0” 4 Gm”[.]._ ;IT)O,,,O”

\
* Under coarse graining, the original theory is mapped into another

theory
* Although only a subset of operators are turned on at UV, all other

symmetry allowed operators are generated at low energy
* Specifically, double-trace operators are generated out of single-
trace operators to the linear order of dz

[ 1. Heemskerk and J. Polchinski, arXiv:1010.1264; T. Faulkner, H. Liu and M.
Rangamani, arXiv:1010.4036. ]
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Conventional (Classical) RG

* One needs to keep track of the flow of all operators
* RG flow is deterministic
* Intractable for strongly coupled field theories

multi—-trace
operators

r 3

Beta function

dJ" " (x, z)
d z

—,f[,]”. '}HH!. ”‘]

fixed point

& .
- »

single-trace

operators
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Quantum RG :
projection creates uncertainty

Multi-trace
A operators

* Theory with multi-trace operators Actual
can be mapped into a theory with RG flow
single-trace operators whose sources
are dynamical

\ Projected

RG flow
S_LJbSDace of with uncertainty
Single-trace

operators
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Dynamical source and operator fields

7 / Dol £

£ = dzLlo]J,z) + (J* — d2B"]J,x)) O,

+(/.:(7””” {] -I')(.)m()u

ya— / D(I)D,j(l)”DpE,_l)(éj [ o
[:N - (13[:(_.[,_]: ;I".) + .j(l)”()n o [)Erl) (](l)” — J.ﬂ')

+dzB"|J, ;zr)p,ff) + dzG™"|J, "’)pf(;l,.)p.(l)

n
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Dynamical source and operator fields

7 / Dol £

L = dzL[J,z) + (J" — dzB"[J,z)) O,

+(/.:(7””” {] -I')(.)m()u

ya— / D(I)Dj.(l)nDpE?l)(é".' [ o
[:N — d:[:(_.[,]: ;'I".) _I_ .j(l)”()n + [)Esl) (](1)” — e]ﬂ')

_‘_(Zzﬁn[t]: ;I’.)pf)'l) L (ZZGW'N[.],_ 517)})511,,)])-(1)

n
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Quantum fluctuations in RG path

4 multi—trace o Only Single-trace
operators .
operators are included

* Generating function is
given by a sum over all

. RG paths
e S * The weight of each path
. vy e is determined by a (D
7 +1)-dimensional action

subspace of
single—trace operators

797 (x), p(z) = j™(x, 2), pa(z, 2)

SL, NPB (2011); JHEP (2012)
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. RG paths
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Holographic Action

gD+ = N? / d- /f/“,r {Pu(0:5") + Lela; 4] + B™(3 j]pm | %’j]”“"’“}

* Casimir energy, beta functions of single-trace operators
and double-trace operators on the subspace of single-trace
operators completely specify the (D+1)-dimensional action

* jand p are canonical conjugate to each other with respect
to the RG 'time’ evolution

— Casimir energy : potential energy for j
— Double-trace operator : kinetic energy for p
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Scale-Reversal Symmetry

SP+L — N2 / d> /r/“_r {/n.(r'):./”) Lol ]+ 8™l + g J]”’”/’”}

2

* Generically, one expects that the bulk action breaks the Scale-Reversal
(SR) symmetry under which z goes to -z because RG flow is irreversible

* However, irreversible RG flow can be still described by SR symmetric bulk
action because of the boundary at UV cut-off, which explicitly breaks the
SR symmetry

* On the other hand, all known holographic duals respect the SR symmetry

in the bulk

If this is indeed the case for all QFTs, what is implications ?

— It turns out that the SR symmetry in the bulk can be maintained if the beta

function for the single-trace operators is a gradient flow with respect to the
metric given by the beta function for the double-trace operators

.)!m( e l — (';HHF( r / ”(/

o o (x)

— In this case, one can shift p to trade SR-odd term with boundary terms and a
mass term that is proportional to the scaling dimension  [SL, to appear]
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Scale-Reversal Symmetry

. . . | i ) . (r'mu(-!,.: \
GgD+1 _ pr2 / d> /(/‘”_1- {/)H(r‘)‘”/”] b Le(; 7] + 8™ (x; jlpm 4 J]/’ru/’n}
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* Generically, one expects that the bulk action breaks the Scale-Reversal
(SR) symmetry under which z goes to -z because RG flow is irreversible

* However, irreversible RG flow can be still described by SR symmetric bulk
action because of the boundary at UV cut-off, which explicitly breaks the
SR symmetry

* On the other hand, all known holographic duals respect the SR symmetry

in the bulk
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— It turns out that the SR symmetry in the bulk can be maintained if the beta

function for the single-trace operators is a gradient flow with respect to the
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.)!m( r l — (';HHF( r / ”(/

o Trogn(x)

— In this case, one can shift p to trade SR-odd term with boundary terms and a
mass term that is proportional to the scaling dimension  [SL, to appear]
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What is the nature of the (D+1)-
dimensional holographic action ?

* Ingeneral, it is a strongly coupled theory for an
infinitely many fields for each primary single-trace
operators

— In large N limit, it becomes classical

— If there are only a few single-trace operators with small
scaling dimension, one can keep only those fields in the
bulk

* One can derive the (D+1)-dimensional Einstein gravity
from a D-dimensional matrix field theory which has no

other single-trace operator with finite scaling
dimension except for the energy-momentum tensor

[SL, to appear]
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How does gravity arise ?

299 = [ Do ¢

* Suppose that there is a matrix field theory
which has no single-trace operator with finite
scaling dimension except for energy-
momentum tensor

* Single-trace action is completely specified by
background metric
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Coarse graining

spacetime dependent speed of RG

S = dzN-* / d”x i\-‘v(.l'){ \/W (0() + Clpn("'3.(lw)])

B,
L/ P
—Bp T + —=THT? + }

Casimir energy

[Sakharov]
Change of scale :
Warping factor Double-trace operators

Higher derivative terms
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S = dzN-* / d”x A\-‘T(.I'){ \/W (C() + ClpR("'3.(lw)])

/ B /P /
_.*"311.;,»T/” L !’")-I”Tm T/Jn + }
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S = dzN-* / d°z *\’T(-"){ \/W (Co + CIDR("':U(“)D

J B 272 /
_.*"3;.'.;,»Tl” L !";-/”Tllr T/m + }
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Shift

One does not have to choose the coordinate of the low
energy field as the coordinate of the high energy mode

Shift of the coordinate of the low

length energy field relative to the
scale coordinate of the high energy field
A
mt
N'dz
ey () low energy
P high energy
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Einstein Gravity
SU+1 — / ('11)+1;IT\/E[C() + RD—H + ]

= / dz / dP x 7,09 — NH — N¥H,|

Casimir energy Beta function of '/ "””/"m

( o ;.
H = —/9 ||Co+ RP |+ g (7?“) 2 — mh” ul,,,) + ..
HH = =2V 7" +

This form is fixed by D-dimensional diff. inv.
and the gauge invariance associated with
the choice of local RG scheme
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First-class constraints

* Independence of partition function on RG
schemes (speed of RG and shifts) =» (D+1)-
constraints

| VA

< Hau(@:2) >= 75 2y

=0 H=0 H,=0
M=0, 1, 2, ..., (D-1),D NP(x,z) = a(r,z)and Hp = H
* The (D+1)-constraints are (classically) first-class

.} . g . /
(()—‘ < Hyl(x, 2) >= / dPy NM (y,2) ({Hm(z, 2), Hpp (y,2)}) =0

{H-\l(-"- 2), Hyp (Y, 2)p =0
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First-class constraints

* Independence of partition function on RG
schemes (speed of RG and shifts) =» (D+1)-
constraints

| VA

< Hul®:2) >= 2 5Nz, 2)

= U H=0, H,=0
M=0, 1, 2, ..., (D-1), D NP(x. 2) = a(z, ) and Hp =H
* The (D+1)-constraints are (classically) first-class

.} . ' ) ]
(()_‘ < Hulz,z) >= / dy NM (y,2) ({Hu(z, 2), Hap(y,2)1) =0

{Hr(x,2), Hy(y,2)} =0
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