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Abstract: <span>Entanglement distillation

transforms weakly entangled noisy statesinto highly entangled states, a
primitive to be used in quantum repeater schemes and other protocols designed
for quantum communication and key distribution. In this work, we present a comprehensive
framework for continuous-variable entanglement distillation schemes that
convert noisy non-Gaussian states into Gaussian ones in many iterations of the
protocol. Instances of these protocols include the recursive Gaussifier

protocol and the pumping Gaussifier protocol. The flexibility of these
protocols give rise to several beneficial trade-offs related to success
probabilities or memory requirements that can be adjusted to reflect
experimental specifics. Despite these protocols involving measurements, we
relate the convergence in this protocols to new instances of non-commutative
central limit theorems. Implications of the findings for quantum repeater
schemes are discussed.<br>

<br></span>
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[nputs: non-Gaussian, weakly entangled;
Outputs: more Gaussian, often more entangled;
Using: local linear optics.
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We use non-commutative variants of the f‘ollowing:

N
consider S, = Z XJ-/\/N

J=1
and the characteristic function Xs, (t) = Elexp(itS,)]

then XS, — (\X})(—F‘f‘z/—'l)

Pirsa: 13040122 Page 4/49



We use non-commutative variants of the f‘ollowing:
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We use non-commutative variants of the f‘ollowing:

N
consider S, = Z X},/W

J=1
and the characteristic function Xs, (t) = Elexp(itS,)]

then Xs, — exp(—T'r?/4)
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The Fock basis of a continuous variable mode 1s
a'ln) = vn +1jn+1)

Different modes, can have different spatial
wavepackets, f‘requencies or polarizations.

f . O
a; where [(1,,-,(1,_}.]—(5;_'1-

Observables on this space include:

X; = (a;+a])/v2
i
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The “quantum” characteristic function 1s
Xp(r) = trlexp(iR.7)p]

a

R: (XI!PI*XZHP.Zt"-)

its Fourier transform is the Wigner function

W,(q) / exp(i7.q) x o (7)dr

which 1s a quasi-probability distribution.
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The first moments of a state are
dj = tr(Rjp)

For simplicity, and w.l.o.g, we assume d; =0
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A state p 1s Gaussian ¢f and only (f:

Xp(r) = tl‘[(‘xp(iﬁ.-ﬁ)p]
= exp(—7L.I.7/4)

where I 1s the covariance matrix for p.
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Wigner function examples

vacuum Squeezed coherent
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Signa[

Homodyne
X; = (a;+ (;j)/\/i loca A
P} = f(”j T (Ij; )/\/5 OSCEllélag;teC;;
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“Gaussian unitaries and measurements have a
simple effect on the covariance matrix

“ More generally we can consider Gaussian
maps, such that...
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“Gaussian unitaries and measurements have a
simple effect on the covariance matrix

“ More generally we can consider Gaussian
maps, such that...

p' = E(p)/tr[E(p)]

[t p 1s Gaussian with covariance matrix I’
then p’ 1s Gaussian with covariance matrix

[V =44 —vaB(vBB + ') 1745

v following from Choi-Jamiolkowski duality.
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For any p there exists a Gaussian state PG with
the same covariance matrix I’
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Various no-go theorems, show that
entanglement cannot be distilled from Gaussian
states using Gaussian maps, e.g. [3] that

[1] Fiurasek, Phyds. Rev. Lett. 89, 137904
[2] Eisert, Scheel, Plenio, Phys Rev Lett. 89, 137903
[3] Giedke, Cirac, Phys. Rev. A 66, 032316
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A well-known protocol exists that consumes non-
Gaussian states but uses Gaussian operations.

[t outputs Gaussian states (but why?);
The entanglement can go up;

[t uses projects onto the vacuum.

[t 1s “recursive”.

[6] Browne, Eisert, Scheel, Plenio, Phys. Rev. A 67, 062320
[6] Eisert, Browne, Scheel, Plenio, Annals of Phywics 311, 431
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A well-known protocol exists that consumes non-
Gaussian states but uses Gaussian operations.

[t outputs Gaussian states (but why?);
The entanglement can go up;

[t uses projects onto the vacuum.

[t 1s “recursive”.

We extend to a familiy of Gaussifer protocols

Many different postselection strategies
Many non-recursive variants.

[6] Browne, Eisert, Scheel, Plenio, Phys. Rev. A 67, 062320
[6] Eisert, Browne, Scheel, Plenio, Annals of Phywics 311, 431
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Require POVM 11 is a Gaussian operator, IT x pg

Here, all beam-splitters 50/50
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The POVM element just be Gaussian: I1 x pg
' Our proof uses that it must be invertible.

“All Gaussians except projectors are
invertible.

It must have vanishing first moments.
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Key “trick”, instead of studying pn

‘ Il — \/ﬁp”\/ﬂ
we ftollow m = L (Vilpn VI

After a little algebra we find

XT'N, (F) e XTl (_ﬁ)

whereas the formulae for Xp,, 1s
quite involved!
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By a non-commutative central limit theorem:

Xr,. (1) = exp(—=r'T;r/4)

pointwise in 7

[+, 1s equal for all n

Also,... lim,_,o ||Tg = Tn||l1 =0

And so clearly....

TG —. T |'(I,-‘""”> =i

lim (%)
n—00
[4] Wolf, Geidke, Cirac Phys. Rev. Lett. 96, 080502
[7] Campbell, Eisert, Phys. Rev. Lett. 108, 020501 (2012)
[8] Cushen, Hudson, J. App. Prob. 8, 454 (1971)
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So 7n = TG but does that really entail p, = pg ?

remember‘:

e VIp, VI
B tx(vIip,vI)
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So ™ — 7¢ but does that rea]ly entail Pn —> pg !

remember:
VIlp, VII
. /s Al s — 2
Recall lim (¢|rq — ,|¥") =0 n = S (Vilipa VD)

n—>»0OC

For a basis \/ﬁ ]'i;’"’.,'> = /\.,'|‘<.f"",j>

Assuming tr(Ilp, ) — tr(Ilpg)
limy, o0 {¥j|pc — pnl¥K) =0
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¢ tr(Ilp,) — tr(Ilpg) ¢
Without much work we can a/uwy.ﬂ show

tr(Ilp,) — tr(llpg) < é,, with lim, d,, — 0
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“Reviewed CV formalism;

#Outlined recursive and pumping Gaussifiers;

“Showed role of non-commutative central limit
in proof techniques.

¢Choosing the POVM and entanglement
distillation
*Quantum repeater networks, and other

applications
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The family of protocols with 1II o pg

Wolf, Giedke, and Cirac,
Phys. Rev. Lett.

96, 080502 (2006)

=1

Eisert, Browne, )
Scheel and Plenio, )
Ann. Phys.

311,431 (2004);

IT = |0,0)(0, 0|
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The family of protocols with II o pg
\ \ \\
) WX

Fisert, Browne,

N 3 f \/ \ Wolf, Giedke, and Cirat)
Ann. Phys. ) \ Phys. Rev. Lett.
311, 431 (2004); [ ]\\/ ' {l G 96, 080502 (2006)
IT = *Rarely means: |
with zero probability when implemented with
3 reliable 8-port homodyne detectors, non-zero
2 w1th photon detectors.
3.

Rdrel_y succeeds
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The family of protocols with II o pg

Wolf, Giedke, and Cirac,
Phys. Rev. Lett.

96, 080502 (2006)
=1

i 1. Gaussihes
2. Decreases F(p)

3. Always succeeds

Eisert, Browne, )
Scheel and Plenio,
Ann. Phys.
311,431 (2004);

I1 = [0, 0)(0, 0

1. Gaussifies
2. Increases FE(p)
3. Rarely* succeeds
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So 7n = 7G but does that really entail p, = pg ?

Recall lim (¢

n—>»0OC

[4°)

=0

For a basis \/ﬁ|l’,> =X;iv:)

lim, s o0 {1);

PG
Jtr(Ilpg)

tJH
tr(Ilp,,)

remember‘:

\/ﬁp'r L \/ﬁ

L tr(vIp, VII)

| VKk) =
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We consider initial states

|'tl,-"‘l’()> . |() ()> o )\|l 1>

Post-select on POVM

EE = Z t"n)(n|

Can be implemented
using homodyne
measurements, or number
resolving detector with
ethciency n =1 —1t

FE = logNeg(pso)
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We consider initial states

|'l,-"‘l’()> X |() ()> o /\|l 1>

Post-select on POVM

= Z t"n)(n|

Can be implemented
using homodyne
measurements, or number
resolving detector with
ethciency n =1 -1t

FE = logNeg(pso)

Page 38/49



Pirsa: 13040122

Dominated by photon loss, though we also allow
for a small amount of thermal noise. This gives a
noisy channel

[' 5 exp~!/tatt T 4 (1 4 2n4p) (1 — exp ™4/ tatt)]

we take .t = 22km ng = 1078

Assume an nitially Gaussian source of entanglement

Gt | B ;
: ' = cosh(2r
S B CT 0 =8 with C = cosh(2r)
S T R g e | S g
e P WS S = sinh(2r)
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Dominated by photon loss, though we also allow
for a small amount of thermal noise. This gives a
noisy channel

[ 5 exp~!/tatt T 4 (1 4 2n4p) (1 — exp ™/ tatt)]

we take [, = 22km nyg = 1078

Assume an nitially Gaussian source of entanglement

s ) O RO | :
: ' = cosh(2r
P ) g with C = cosh(2r)
A T R e | Sl
e Y WP S S = sinh(2r)
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Total distance L =2m.

Swap
Swap
Gaussify
Degaussify
. E 3
4——-;}———» m such sources

squeezed states.

L]

: .
$ :
B
of two mode

Here we

illustrate with m=4.

Combining various
elements into quantum
repeater network.
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Colored regions

indicate we can distribute
entanglement over this
distance with this
squeezing.

Berlin to Berlin to Half Earth
London New York Circumference
_ | |
10 v v v v R -t
direct

0.001

r initial squeezing
o
-

0.0001

m=256 |

107 10° 10°
L (km) distance

10°
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Total distance L =2m.

Swap
Swap
Gaussify
Degaussify
o » k] »

m such sources of two mode
squeezed states. Here we
illustrate with m=4.

-

21

Combining various
elements into quantum
repeater network.
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“Techniques can be used to distill tripartite
entanglement, e.g. from

[4) ~ [000) + p(|011) + |101) + |110))

“and also increase single-mode squeezing from
states like

[¥) ~ 10) + pl2)
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“ Many ways to Gaussity.

“ Even with measurements, central limit
theorems can be leveraged.

“Working in phase space 1s more intuitive!

#CV rsystems could achieve long distance
quantum crypto, but secret key rates are not

_yet known.

“ Potential for clearer conditions for when we
have convergence tl‘(H/)-n) = tl’(H/)(_;)

“Rates of convergence”’
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“ Many ways to Gaussity.

“ Even with measurements, central limit
theorems can be leveraged.

“Working in phase space 1s more intuitive!

#CV rsystems could achieve long distance
quantum crypto, but secret key rates are not

_yet known.

“ Potential for clearer conditions for when we
have convergence tl‘(H/)-n) — tr(Ilpg)

“ Rates of Convergence?
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“ Many ways to Gaussity.

“ Even with measurements, central limit
theorems can be leveraged.

b Working N phase space 1s more intuitive!

#CV rsystems could achieve long distance
quantum crypto, but secret key rates are not

_yet known.

“ Potential for clearer conditions for when we
have convergence tl‘(H/)-n) = tl’(H/)(_:)
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