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Information Paradox
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For unitarity: final state must carry information of initial state
(In some sense) Hawking quanta are created near the horizon

If horizon is featureless and we have locality, how is information
transfered to outgoing radiation?
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Information Paradox

We have tension between

m  Unitarity

m Locality

m Equivalence Principle (smooth horizon)

CAN SMALL CORRECTIONS RESOLVE THE PARADOX?
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Black Holes in AdS/CFT

Main goals:

B Is the region behind the horizon encoded in the boundary CFT?

B Understand what happens to an observer falling into a black hole

B Address the information paradox
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An infalling observer in AdS

—

!

Consider a big black hole in AdS and an observer freely falling towards it
The observer performs local experiments
We will reconstruct these experiments from the boundary gauge theor

We will argue that the results of these experiments are the sa
of semi-classical GR
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An infalling observer in AdS

-
Consider a big black hole in AdS and an observer freely falling towards it
The observer performs local experiments

We will reconstruct these experiments from the boundary gauge theory

We will argue that the results of these experiments are the same as those
of semi-classical GR
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Reconstructing local observables in empty AdS

Our first goal:

Construct local bulk observables from CFT

(based on earlier works: Banks, Douglas, Horowitz, Martinec, Bena,

Balasubramanian, Giddings, Lawrence, Kraus, Trivedi, Susskind, Freivogel
Hamilton, Kabat, Lifschytz, Lowe, Heemskerk, Marolf, Polchinski, Sully...)
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Reconstructing local observables in empty AdS

Large N CFTs contain in their spectrum generalized free fields i.e.
(composite) local operators O(x) whose correlators factorize

(C)(:;)C)(a_;,,)} ((_’)(1[)(’)(:_;)) (C)(J'gn 1)0(.@,,}} oo

Factorization ~ "“superposition principle”. However, the operators O do
not satisfy any linear equation of motion in the CFT.

Hence, they are not free fields, but rather generalized free fields

Excitations created by O behave like ordinary free particles in a higher
dimensional AdS spacetime
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Reconstructing local observables in empty AdS

From this commutation relation we see that the modes Qu j; Create a
freely generated Fock space of excitations.

For an ordrinary free field we have dispersion relation w? = k* + m?.

For the generalized free fields, excitations labeled by the independent
parameters w and k.

= excitations behave like ordinary particles in higher dimensional AdS
space
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Reconstructing local observables in empty AdS

Consider AdS in Poincare patch

and a scalar field satisfying (o) = m?¢.

We take m? to be related to the conformal dimension A of © by

) ——
A = (—) ¢ \/1113 +d?/4

For each value of w, k we find a solution of the Klein-Gordon equation of
the form
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Reconstructing local observables in empty AdS

m  We construct non-local CFT operators as

Ooopr(t,. @, z) = / dw dk (C)w, g Jo et T, 2)+ ll.('.)
Jw=0 o

Notice that while these are labeled by the coordinate z, they are really
operators in the CFT. They are smeared, nonlocal operators.

Using the previous results we can show that they satisfy

- P 2
Ly e @CcrT = M° dcpT

and

[bcrT(t, T, 2), pcpr(t, 7, 2)] =0
for points (¢, 4, z) and (¢, 7, ')
metric.

spacelike with respect to the AdS
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Reconstructing local observables in empty AdS

A7

B From the point of view of the CFT, coordinate z is an "auxiliary"
parameter, which controls the smearing of the operators

B We can explicitly see how AdS space emerges from the lower dimensional
CFT, as the combination of the coordinates ¢, I’ together with the extra
parameter z
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Reconstructing local observables in empty AdS

We can also interchange the order of the Fourier transforms to write

ocrr(t. T, 2) = /dr’d.r’ K(t.7.=; t',.Z)0W.T)

where A is some kernel — sometimes called the transfer function.

Subtleties: 1/N expansion, gauge invariance....
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Black Holes in AdS

BH formed by collapse Typical (QGP) pure state |W)

Eternal Black Hole in AdS Thermal ensemble in gauge theory
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CFT Correlators at finite temperature

AR AR ARSI A A A S A { A A A A A A A A A R R A S A A

|
A AN -3
Consider the 2-point function G'5(¢, %) = (O(t.H)O(0.0)) 4
Satisfies the KMS condition

Ga(t = i8,%) = Ga(~t, =7)
In Fourier space

Ga(—w, k) = e~ ™G y(w. k)
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CFT Correlators at finite temperature

m Consider the 2-point function Gs(t, ) = (O(t, #)0(0,0)) 4
m Satisfies the KMS condition

B n Fourier space
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Reconstructing the region outside the black hole

Consider a black hole in AdS given by the metric

111 v =1(1,]-2 o
)= h(z)dt= + r!.:‘ + h='(2)d= : )= = ._d
<0

.-

Look for solutions of the Klein-Gordon equation of the form

f‘f(f..?". )= ¢ ""‘"""‘""rﬁ -L'(:)

'

For every (w. k) there is a unique solution, normalizable at the boundary

== 0.

These are the usual “Schwarzschild modes” that we get when we quantize
a scalar field near a black hole. We identify

f_.,':[f..f'.. =)
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Reconstructing the region outside the black hole

As before, we can write nonlocal CFT operators

écrr(t 3, 2) = f (L..'(”:: (Lr)..-.ff_-,f“‘ T,3)+ |1.('.)
w0

which behave like local fields around a black hole

(O = m*)ocpr =0
[Gcrr(t, &, 2), ocpr(t',&,2)) =0 . for spacelike points

and more generally

(‘-"l'l-"] (PI )..‘t."(‘]-"i {Pu ))I o {f-"_urcrl'rfy(},l ).‘.r'l,,,-.“ qu( f)n ])|].1rtl|‘ Hawking
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Reconstructing the region outside the black hole

As before, we can write nonlocal CFT operators

ocrr(t 3. 2) = ] (!.4.'(”.-' ((:)__ lff : L'U..F. z) + |1.('.)
w0 Wi

which behave like local fields around a black hole
(O - m:)r'l‘»y r =10

/

[ocrr(t, &, 2), ocpr(t',&,2)) =0 . [lor spacelike points

and more generally

(‘-.’l'l'"l'lj’l )---f-"(']-' 1 {I)u ])F = (f-"_urm'rfgf({,l )-uf"qr'm Jl'u( j)” ]) Haortle Hawking
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CFT Correlators at finite temperature

m |f we again define the Fourier modes O _ ;- by

O(t, 1) = /r/!rl”’ Ly (O T € Wbk ll.('.)

m we find that they satisfy an oscillator algebra

0,5, 0" ] = ((:,f(w_f;f) - G(~w, A-’))n'(u; w8k — k')

w’ k'

m but now the (canonically normalized) oscillators are thermally populated

g e

w, K B (.'fw' I

o' .0

(PR

(this is the CFT analogue of the “thermal atmosphere” of the black hole)
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CFT Correlators at finite temperature

B If we again define the Fourier modes O_ - by

ot 1) = ‘/dh!"’l.r (0..-.5 ¢ iwtriki - 11.('.)

m we find that they satisfy an oscillator algebra

0,70, 2] = ((.‘ (w, F) — Ga(—w, E)) §(w — )6 (K — F)

B but now the (canonically normalized) oscillators are thermally populated

At o
(0! 20 = ——

(this is the CFT analogue of the “thermal atmosphere” of the black hole)
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Black Holes in AdS

BH formed by collapse Typical (QGP) pure state | W)

Eternal Black Hole in AdS Thermal ensemble in gauge theory
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Reconstructing the region outside the black hole

As before, we can write nonlocal CFT operators

ocpr(t.7.2) = j dwdk (‘-”.—.ff_.r“- T,z)+ |1.{'.)
w0

which behave like local fields around a black hole

(O - ”':)‘7’('1‘ r=0

[Gcrr(t, 7, 2), :.'J;-[-‘r{f’..?'. :']] =0 . [lor spacelike points

and more generally

(OcrT(P1).-0crt(Pu))a = (Ogravity(P1):Ogravity (Pu)) Hartle Hawking
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Reconstructing the region outside the black hole

B As before, we can write nonlocal CFT operators

dopT(t, T, 2) / dwdE(OJﬂfﬂfJﬂ:)+hr)
. ‘JVI ‘() N Wy

B which behave like local fields around a black hole

(O - m*écpr =0

hw'pw(luf.:).nw'py(f.Jﬂ.:q} = () . for spacelike points

B and more generally

(f:';’( 'l"'l'( I}I )---f-';"( '1"’I‘( l)n )>.f - (‘-ﬂ).r;rru'i.'.r,r( I)I )---"".’.r,ri'ru‘i.r;,r( I}H ))H:n't le Hawking

Pirsa: 13040118 Page 27/53



Falling behind the horizon

m Penrose diagram of (eternal) AdS black hole

m Cauchy slice for points in |l is £; & X4

B To reconstruct local operator at P we need both modes on £; and £4

Modes on ¥,

Modes on o
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Falling behind the horizon

m Penrose diagram of (eternal) AdS black hole

m Cauchy slice for points in Il is £; & X4
B To reconstruct local operator at P we need both modes on £, and

Modes on ¥,

Modes on o
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Falling behind the horizon

Maldacena: eternal black hole = 2 copies of CFT in entangled state

In this formalism, modes on X2 are the operators @ ¢ in the second copy

of the CFT
Do we really need the two entangled copies?
If we work with a single CFT, what is the meaning of the operators

0,7
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Coarse-graining and doubling of operators

Consider complicated (ergodic) system in pure state |\W)
Intuitive expectation = system "thermalizes”

For some observables { A, }- called coarse-grained observables, their
correlators on |¥) come close to thermal correlators

(W] Ay.. Ay | W) ~ Tr (f "‘”.,11_._,1,,)

This is not true for all observables, there are also fine grained
observables which do not thermalize

To simplify the language let us assume that the Hilbert space has the form
H — ’Ht'l)ill'h(‘ oY ’Hf‘lln'

(strictly speaking not true, but can be made more precise)
Hene plays the role of a heat bath for H . arse
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Coarse-graining and doubling of operators

Consider complicated (ergodic) system in pure state |\')
Intuitive expectation => system “thermalizes”

For some observables { A, }- called coarse-grained observables, their
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Coarse graining and doubling of operators

Small svstem

Large svstem
(heat bath)

SMALL SUBSYSTEM IS MIRRORED IN HEAT BATH
For us the Quark-Gluon-Pasma is the heat bath

The glueball operators O, are the coarse-grained observables

They are mirrored in the QGP, which leads to new operators O,

This mirroring involves the fine-degrees of freedom
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Coarse graining and doubling of operators

Every state |) can be written as

W) = eyl ¥5) @ |¥))

i

where |U¢), \\[f-f) are orthonormal basis of H oarse and Hppne respectively

If Heoarse thermalizes, it means that the reduced density matrix

7 |
Peoarse = £ €

(

which means we can redefine our orthonormal basis such that

1E¢

{

) =3 ¥ @ 9)

4
1
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Coarse graining and doubling of operators

Every state | ") can be written as

1¥) =) W) ® |¥))

iy
where |W), |ll'_{) are orthonormal basis of H e and My, respectively
If Heourse thermalizes, it means that the reduced density matrix

I,llhn"nl‘ — zl l‘ . r},”.‘l-l

which means we can redefine our orthonormal basis such that

[0)=3"-

g

95 © 19/

7

V &
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CFT Correlators at finite temperature

m If we again define the Fourier modes O, by

o(t. ) = f dtat'='z (0, p e+ 4 )

m we find that they satisfy an oscillator algebra

'y

[0,5: O L= ((.' )(w, k) = G ,(u.;.f?)) b(w — w')o(k = &)

B but now the (canonically normalized) oscillators are thermally populated

At A
<L)..‘_A- Lq__;:.} y = o — ]

(this is the CFT analogue of the “thermal atmosphere” of the black hole)
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CFT Correlators at finite temperature

m If we again define the Fourier modes O _ ;- by

O(t, 7)) = /r/!rl‘{ Ly (O T € ik ll.('.)

m we find that they satisfy an oscillator algebra

w’ k'

0,5, 0, ] = ((:,f(w_f,?) - Ga(—w, ;;-'))n'(u; V(K — )

m but now the (canonically normalized) oscillators are thermally populated

Vg = —

w K ( HAw I

o0

WK

(this is the CFT analogue of the “thermal atmosphere” of the black hole)
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Coarse graining and doubling of operators

Every state |) can be written as

W) = eyl ¥5) @ |¥))

i

where |U¢), \\[f-f) are orthonormal basis of H oarse and Hppne respectively

If Hcoarse thermalizes, it means that the reduced density matrix

7 |
Peoarse = £ €

(

which means we can redefine our orthonormal basis such that

1E¢

{

) =3 ¥ @ 9)

A
1
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Coarse graining and doubling of operators

The state |) can be written as

BEC
L

) =3 ¥ e 9)

o
(2

Consider a coarse-grained operator acting on H.oarse @S

A= Zu.,ﬂ\ii}'} (‘D_‘}'

ij

Then we define a new operator
‘.-i — Z ”';;J|\i1}"> 5 ‘\[J:>
i)

acting on the fine-grained Hilbert space.
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Fine-grained observables

The “tilde operators” are very special: they are fine-grained observables

They are state-dependent operators, will not “click correctly” with
different microstate |\I') (which may be a good thing....)

Among all possible fine-grained operators, the “tilde operators” are
selected /protected via their entanglement with the coarse-grained ones

They are “very sparse operators”
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Falling behind the horizon

Modes on X, =

Modes on X4 &

where O - are the Fourier transforms of the mirrored operators O
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Local operators behind the horizon

Using both O_ - and L-"?*,_L-, we can write local observables behind the
horizon of the black hole.

ocrr(t. T, 2) = / duwdk [L””_ i _r;“}(f..i". )+ 0 i !}l::;
Jus0 ¢ wl - W,

here ¢'"*) are solutions of the Klein-Gordon equation in region 1./

In the large N limit, correlators of ¢cpr (L. ., =) on a typical pure state | 1)

(corresponding to a black hole microstate) agree with those computed in
semiclassical gravity

We have reconstructed both the exterior and the interior of the black
hole from the dual gauge theory
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Fate of the infalling observer

Using the operators ¢ we can reconstruct the experiments of the infalling
observer

S—|

MAIN CONCLUSION: For a big AdS black hole, an infalling semi-classical
observer does not notice anything special when crossing the horizon
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Simple version of the information paradox

However, consider what happens when a normal object burns (say a piece of
coal)

Outgoing photons seem to be thermal to a very good approximation.

How is unitarity preserved? Where is the information of the original piece
of coal stored in the outgoing radiation?

ANSWER: It is encoded in very small correlations (entanglement) between
the outgoing photons.

While final state looks like a thermal density matrix pyjerma I reality it
IS a pure state.

SMALL CORRECTIONS TO LEADING THERMAL
APPROXIMATION CAN RESTORE UNITARITY
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Sharpened version of the information paradox (Mathur,
AMPS)

Consider the process of Hawking radiation

m A: old radiation, far from black hole
B B: newly created Hawking particle, outgoing
m C: ingoing partner of B

Pirsa: 13040118 Page 46/53



Sharpened version of the information paradox (Mathur,

e ——————————

time

In the beginning adding a B to A increases the entropy i.e. we expect

but eventually this must turn around and for an old black hole we expect

Sap < S)
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Proposed resolution

In our language the C's are fine-grained operators defined via their
entanglement with coarse grained operators

After Page time the early radiation A plays the role of the heat bath
Hence C's are “highly scrambled” combinations of A's

Systems A,B,C are not really independent

Strong subadditivity theorem cannot be applied to A.B,C
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Sharpened version of the information paradox (Mathur,
AMPS)

Strong subadditivity theorem: for 3 independent systems A,B,C we have

Sap + Saec 2 Sa+ S

For the Hawking pair production we have Spie =~ 0 and S¢x > 0 which would
imply

Sap > Sy

For unitarity: after Page time we need Sy < S,
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On complementarity

How we understand complementarity

B There is a large Hilbert space describing both the interior and the exterior
of the black hole

We can construct operators acting on this Hilbert space and describing
observables outside the black hole

We can construct operators acting on the same Hilbert space and
describing observables insice the black hole

For few, light observables, they approximately commute.

But not for too accurate measurements, or measurements involving too
many insertions
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Local operators behind the horizon

Using both ©_  and O_ ; we can write local observables behind the
horizon of the black hole.

ocrr(l T 2) = / dwdlk [0*_ F O HLE D)+ 0,0 g (L F 2) + l..(-.]
Jua>0 : / i

[ -

here g'":(2) are solutions of the Klein-Gordon equation in region /]

In the large N limit, correlators of ¢cpyr (2.7, 2) on a typical pure state |\I)
(corresponding to a black hole microstate) agree with those computed in
semiclassical gravity.

We have reconstructed both the exterior and the interior of the black
hole from the dual gauge theory

———————————————————————————————————————————————————————

3a /58
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Local operators behind the horizon

Using both O ;- and Cl‘ﬁ; we can write local observables behind the
horizon of the black hole.

dopT(t, T, 2) = / dwdk {CL P _r;“{) (t, T, z) + O T _qu;.(f..:". z) + h.c.
w>0 ‘ - '

(PR Wik

here ¢'1)(?) are solutions of the Klein-Gordon equation in region 11

In the large N limit, correlators of ¢cpr(t, 7, z) on a typical pure state |W)
(corresponding to a black hole microstate) agree with those computed in
semiclassical gravity.

We have reconstructed both the exterior and the interior of the black
hole from the dual gauge theory
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