Title: Laws of thermodynamics beyond the von Neumann regime
Date: Apr 29, 2013 04:00 PM
URL: http://pirsa.org/13040112
Abstract: A recent development in
information theory is the generalisation of quantum Shannon information theory to the operationally motivated smooth entropy information theory, which originates in quantum cryptography research. In a series of papers the first steps have been taken towards creating a statistical mechanics based on smooth entropy information theory. This approach turns out to allow us to answer questions one might not have thought were possible in statistical mechanics, such as how much work one can extract in a given realisation, as a function of the failure-probability. This is in contrast to the standard approach which makes statements about average work. Here we formulate the laws of thermodynamics that this new approach gives rise to. We show in particular that the Second Law needs to be tightened. The new laws are motivated by our main quantitative result which states how much work one can extract or must invest in order to affect a given state change with a given probability of success.
For systems composed of very large numbers of identical and uncorrelated subsystems, which we call the von Neumann regime, we recover the standard von Neumann entropy statements.

Joint
href="http://arxiv.org/abs/1207.0434">http://arxiv.org/abs/1207.0434

The laws of thermodynamics beyond von Neumann regime -recent results relating work and information

Oscar Dahlsten

with Aaberg, Browne, del Rio, Egloff, Garner, Renner, Rieper and Vedral
oscar.dahlsten@physics.ox.ac.uk oscar.dahlsten@nus.edu.sg

PI, Waterloo, April 2013

EH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

RNUS
 National University of Singapore

Why study relation between work and information

1. Tension between subjectiveness of information and objectiveness of energy begs to be studied.
2. Fundamental limits of work and heat immensely important for mankind.
"The power densities of typical integrated circuits are approaching those of a light bulb filament ($\sim 100 \frac{\mathrm{~W}}{\mathrm{~cm}^{2}}$). Removal of the heat generated by an integrated circuit has become perhaps the crucial constraint on the performance of modern electronics"*.

3. Landauers and Bennett's early arguments indeed guide nano-electronics research*.
4. Quantum information can bring its sophisticated understanding of entropy to the table.
5. Maybe information theory will get something back, recall that the von Neumann entropy came from thermodynamical considerations.
*MIT Open course on nano-electronics.

Why study relation between work and information

1. Tension between subjectiveness of information and objectiveness of energy begs to be studied.
2. Fundamental limits of work and heat immensely important for mankind.
"The power densities of typical integrated circuits are approaching those of a light bulb filament ($\sim 100 \frac{\mathrm{~W}}{\mathrm{~cm}^{2}}$). Removal of the heat generated by an integrated circuit has become perhaps the crucial constraint on the performance of modern electronics"*.

3. Landauers and Bennett's early arguments indeed guide nano-electronics research*.
4. Quantum information can bring its sophisticated understanding of entropy to the table.
5. Maybe information theory will get something back, recall that the von Neumann entropy came from thermodynamical considerations.
*MIT Open course on nano-electronics.

Papers on 'smooth entropy thermodynamics'

This talk				
	Title	Authors	arXiv	Journal
Part I	Inadequacy of von Neumann entropy for characterizing extractable work	Dahlsten, Renner, Rieper, Vedral	0908.0424	NJP
Bonus?	Thermodynamic meaning of negative entropy	del Rio, Aaberg, Renner, Dahlsten, Vedral	1009.1630	Nature
	Truly work-like work extraction	Aaberg	1110.6121	
	Fundamental limitations for quantum and nano thermodynamics	Horodecki, Oppenheim	1111.3834	
Part II	The laws of thermodynamics beyond the von Neumann Regime	Egloff, Dahlsten, Renner and Vedral	1207.0434	
	A Quantitative Landauer's Principle	Faist, Dupuis, Oppenheim, Renner	1211.1037	

Papers on 'smooth entropy thermodynamics'

This talk				
	Title	Authors	arXiv	Journal
Part I	Inadequacy of von Neumann entropy for characterizing extractable work	Dahlsten, Renner, Rieper, Vedral	0908.0424	NJP
Bonus?	Thermodynamic meaning of negative entropy	del Rio, Aaberg, Renner, Dahlsten, Vedral	1009.1630	Nature
	Truly work-like work extraction	Aaberg	1110.6121	
	Fundamental limitations for quantum and nano thermodynamics	Horodecki, Oppenheim	1111.3834	
Part II	The laws of thermodynamics beyond the von Neumann Regime	Egloff, Dahlsten, Renner and Vedral	1207.0434	
	A Quantitative Landauer's Principle	Faist, Dupuis, Oppenheim, Renner	1211.1037	

Papers on 'smooth entropy thermodynamics'

This talk				
	Title	Authors	arXiv	Journal
Part I	Inadequacy of von Neumann entropy for characterizing extractable work	Dahlsten, Renner, Rieper, Vedral	0908.0424	NJP
Bonus?	Thermodynamic meaning of negative entropy	del Rio, Aaberg, Renner, Dahlsten, Vedral	1009.1630	Nature
	Truly work-like work extraction	Aaberg	1110.6121	
	Fundamental limitations for quantum and nano thermodynamics	Horodecki, Oppenheim	1111.3834	
Part II	The laws of thermodynamics beyond the von Neumann Regime	Egloff, Dahlsten, Renner and Vedral	1207.0434	
	A Quantitative Landauer's Principle	Faist, Dupuis, Oppenheim, Renner	1211.1037	

Starting point: Szilard engine

- There is a single particle in a box, and heat bath at temperature T.

- The daemon (also called agent) inserts a divider in the middle of the box, measures the position of the divider and hooks up the weight accordingly.
- It can extract work isothermally:

$$
W=\int_{V}^{2 V} p d V=\int_{V}^{2 V} \frac{k T}{V} d V=k T \ln 2
$$

where we used the ideal gas equation $p V=N k T$.

- Here we used up one bit to gain $k T \ln 2$ of work from heat bath. The inverse process is Landauer's principle: it costs at least $k T \ln 2$ of work to erase (reset) one bit (just change integration limits around).

Starting point: Szilard engine

- There is a single particle in a box, and heat bath at temperature T.

- The daemon (also called agent) inserts a divider in the middle of the box, measures the position of the divider and hooks up the weight accordingly.
- It can extract work isothermally:

$$
W=\int_{V}^{2 V} p d V=\int_{V}^{2 V} \frac{k T}{V} d V=k T \ln 2
$$

where we used the ideal gas equation $p V=N k T$.

- Here we used up one bit to gain $k T \ln 2$ of work from heat bath. The inverse process is Landauer's principle: it costs at least $k T \ln 2$ of work to erase (reset) one bit (just change integration limits around).

Subtlety: get $k T \ln 2$ in a single extraction?

- If one models this engine naively like in the picture, one does not actually get $k T \ln 2$ in a single extraction, or on average (time or ensemble). [C. Browne, EPSRC summer project, Oxford 2012][Discussions w. Aberg]]

- Instead one should take the divider speed to be infinitely slow independently of the particle; Then $W=k T \ln 2$ with probability 1 .

Starting point: Szilard engine

- There is a single particle in a box, and heat bath at temperature T.

- The daemon (also called agent) inserts a divider in the middle of the box, measures the position of the divider and hooks up the weight accordingly.
- It can extract work isothermally:

$$
W=\int_{V}^{2 V} p d V=\int_{V}^{2 V} \frac{k T}{V} d V=k T \ln 2
$$

where we used the ideal gas equation $p V=N k T$.

- Here we used up one bit to gain $k T \ln 2$ of work from heat bath. The inverse process is Landauer's principle: it costs at least $k T \ln 2$ of work to erase (reset) one bit (just change integration limits around).

Many Szilard engines: Bennett's information compression

- Say there are 2 Szilard boxes $(\mathrm{n}=2)$ associated with the state $[p(L L) p(L R) p(R L) p(R R)]=[1 / 2001 / 2]$.
- Can still extract $k T \ln 2$ of work by doing a CNOT such that we get $[p(L L) p(L R) p(R L) p(R R)]=[1 / 201 / 20]$,
and then extract work from the second box (known to be L).
[Bennett '82]
- More generally one can compress the randomness onto some bits and extract work from the rest. One may guess that optimally $W=k T \ln 2(\sharp$ known bits), with \sharp known bits $=n-S(\rho)$.
- This turns out to be essentially true, but not for S being the von Neumann entropy(!).

Need to go beyond von Neumann entropy S

- The previous example of distribution $(1 / 21 / 200)$ posed no challenge to the Shannon/von Neumann entropy $S_{v N}=\sum_{i} p_{i} \log _{2} \frac{1}{p_{i}}$ being the appropriate entropy for thermodynamics (in quantum case $p_{i} \rightarrow \lambda_{i}$). The distribution is flat on some events and zero on the rest.
- For such distributions many entropy measures coincide. In particular the Renyi entropies,

$$
S_{\alpha}:=\frac{\log \sum_{i} p_{i}^{\alpha}}{1-\alpha}
$$

all give $S=\log d$ for such distributions, where d is the number of events with non-zero probability.

- Note $S_{v N}=S_{1}$. Two other crucial ones are S_{0} and S_{∞}. Because $S_{\infty} \leq S_{\alpha} \leq S_{0} \forall \alpha, S_{0}:=S_{\max }$, and $S_{\infty}:=S_{\min }$.
- In quantum information theory Renner et. al. have shown that it is (modified versions of) $S_{\max }$ and $S_{\min }$ which capture the operational meanings one wants, and $S_{v N}$ is only relevant when it happens to coincide with them.

Need to go beyond von Neumann entropy S

- The previous example of distribution $(1 / 21 / 200)$ posed no challenge to the Shannon/von Neumann entropy $S_{v N}=\sum_{i} p_{i} \log _{2} \frac{1}{p_{i}}$ being the appropriate entropy for thermodynamics (in quantum case $p_{i} \rightarrow \lambda_{i}$). The distribution is flat on some events and zero on the rest.
- For such distributions many entropy measures coincide. In particular the Renyi entropies,

$$
S_{\alpha}:=\frac{\log \sum_{i} p_{i}^{\alpha}}{1-\alpha}
$$

all give $S=\log d$ for such distributions, where d is the number of events with non-zero probability.

- Note $S_{v N}=S_{1}$. Two other crucial ones are S_{0} and S_{∞}. Because $S_{\infty} \leq S_{\alpha} \leq S_{0} \forall \alpha, S_{0}:=S_{\max }$, and $S_{\infty}:=S_{\min }$.
- In quantum information theory Renner et. al. have shown that it is (modified versions of) $S_{\max }$ and $S_{\min }$ which capture the operational meanings one wants, and $S_{v N}$ is only relevant when it happens to coincide with them.

Single-shot information theory, operational meaning of entropy

- One can show $S_{0}:=S_{\text {max }}=\log$ (\#events possible), and $S_{\infty}:=S_{\text {min }}=$ $\log \left(\frac{1}{p_{\text {max }}}\right)$
- An important operational meaning of S_{0} is that it is the size a memory needs to have to reliably retain information.
- This is the size needed in any given experiment. It is therefore called a singleshot entropy.

\#events

Main results of Part I: not the von Neumann entropy

The work value of ones information (state) is determined by the smooth entropies alone.

1. Except with $p<\varepsilon$ the agent can be certain to extract $W=\left(n-H_{\max }^{\varepsilon}\right) k T \ln 2$.
2. Except with $p<2 \varepsilon$ for an agent willing to risk failing to extract work $W \leq\left(n-H_{\min }^{\varepsilon}+\log (1 / \varepsilon)\right) k T \ln 2$.

So if we follow Feynman, then 'entropy' is not von Neumann's entropy
within Bennett's framework. Suppose we have a tape with N bits. We define the information, I, in the tape by the formula:
[Feynman '86]

Main results of Part I: not the von Neumann entropy

The work value of ones information (state) is determined by the smooth entropies alone.

1. Except with $p<\varepsilon$ the agent can be certain to extract $W=\left(n-H_{\max }^{\varepsilon}\right) k T \ln 2$.
2. Except with $p<2 \varepsilon$ for an agent willing to risk failing to extract work $W \leq\left(n-H_{\min }^{\varepsilon}+\log (1 / \varepsilon)\right) k T \ln 2$.

So if we follow Feynman, then 'entropy' is not von Neumann's entropy
within Bennett's framework. Suppose we have a tape with N bits. We define the information, I, in the tape by the formula:

$$
H_{\text {max }}^{\varepsilon}=\min H_{\operatorname{man}\left(p^{\prime}\right)} \text { with } p(\text { error }) \leq 10^{-10}
$$

$$
\text { it dip, P) } \varepsilon\left\{\begin{array}{l}
\text { only need } \log _{2} 8 \text { bits } \\
\text { for my memory }
\end{array}\right.
$$

$$
H_{\max }^{\varepsilon}=\min H_{\max }\left(p^{\prime}\right) \text { with } p(\text { enrico }) \leq 10^{-10}
$$

such that d($\left.p^{\prime}, p\right)<$ only need $\log _{2} 8$ bits
for my memory

Beyond the what?

By von Neumann regime we mean states which are of the form

$$
\rho^{\otimes n}, \text { with } n \rightarrow \infty .
$$

We call it the von Neumann regime because

$$
\lim _{n \rightarrow \infty, \varepsilon \rightarrow 0} \frac{S_{\alpha}^{\varepsilon}\left(\rho^{\otimes n}\right)}{n}=S_{v N}(\rho) \forall \alpha
$$

i.e. in this regime the smooth entropies coincide with the von Neumann entropy.

Beyond the what?

By von Neumann regime we mean states which are of the form

$$
\rho^{\otimes n}, \text { with } n \rightarrow \infty .
$$

We call it the von Neumann regime because

$$
\lim _{n \rightarrow \infty, \varepsilon \rightarrow 0} \frac{S_{\alpha}^{\varepsilon}\left(\rho^{\otimes n}\right)}{n}=S_{v N}(\rho) \forall \alpha
$$

i.e. in this regime the smooth entropies coincide with the von Neumann entropy.

A generalisation of the question

$$
T \leftrightarrow \rho \leftrightarrow+\underset{+}{\square}
$$

We saw in part I how we could gain work at the cost of randomising the state. Say now there is a more general state change $\rho \rightarrow \sigma$? How much work can one get?

Subtlety: We are interested in the energy gained in any given realization, not on average. Why?
Because we care if $\Delta E($ out $) \geq \Delta E($ threshold $)$, not whether $\langle\Delta E($ out $)\rangle \geq \Delta E($ threshold $)$.

We accordingly define $W(\rho \rightarrow \sigma)$ as the maximal ΔE (threshold) that can

be exceeded in any extraction given ρ and σ.
Finally, it is natural to accept some probability ε of failing to achieve W. Then the work gain can be higher. The more general question now is:

$$
W^{\varepsilon}(\rho \rightarrow \sigma)=?
$$

A generalisation of the question

$$
T \leftrightarrow \rho \leftrightarrow+\underset{+}{\square}
$$

We saw in part I how we could gain work at the cost of randomising the state. Say now there is a more general state change $\rho \rightarrow \sigma$? How much work can one get?

Subtlety: We are interested in the energy gained in any given realization, not on average. Why?
Because we care if $\Delta E($ out $) \geq \Delta E$ (threshold), not whether $\langle\Delta E($ out $)\rangle \geq \Delta E($ threshold $)$.

We accordingly define $W(\rho \rightarrow \sigma)$ as the maximal $\Delta E($ threshold $)$ that can

be exceeded in any extraction given ρ and σ.
Finally, it is natural to accept some probability ε of failing to achieve W. Then the work gain can be higher. The more general question now is:

$$
W^{\varepsilon}(\rho \rightarrow \sigma)=?
$$

A generalisation of the question

$$
T \leftrightarrow \rho \leftrightarrow+\underset{+}{\square}
$$

We saw in part I how we could gain work at the cost of randomising the state. Say now there is a more general state change $\rho \rightarrow \sigma$? How much work can one get?

Subtlety: We are interested in the energy gained in any given realization, not on average. Why?
Because we care if $\Delta E($ out $) \geq \Delta E$ (threshold), not whether $\langle\Delta E($ out $)\rangle \geq \Delta E($ threshold $)$.

We accordingly define $W(\rho \rightarrow \sigma)$ as the maximal ΔE (threshold) that can

be exceeded in any extraction given ρ and σ.
Finally, it is natural to accept some probability ε of failing to achieve W. Then the work gain can be higher. The more general question now is:

$$
W^{\varepsilon}(\rho \rightarrow \sigma)=?
$$

Radical Generalisations in calculating We

- Aaberg and Horodecki \& Oppenheim both go significantly beyond the paper discussed in part I, in particular they consider non-degenerate energy levels.
- Both papers arrive (in a priori different models(!)) at the same more general expression for how much work one can gain by taking some initial state to a thermal state on the same energy levels (a relative renyi-entropy).
- In this paper we go further, calculating $W^{\varepsilon}(\rho \rightarrow \sigma)$ for arbitrary initial and final energy β Jectra and occupation probabilities.

Radical Generalisations in calculating W^{ε}

- Aaberg and Horodecki \& Oppenheim both go significantly beyond the paper discussed in part I, in particular they consider non-degenerate energy levels.
- Both papers arrive (in a priori different models(!)) at the same more general expression for how much work one can gain by taking some initial state to a thermal state on the same energy levels (a relative renyi-entropy).
- In this paper we go further, calculating $W^{\varepsilon}(\rho \rightarrow \sigma)$ for arbitrary initial and final energy spectra and occupation probabilities.
- To get an intuition for the work extraction scenario within which we derive $W^{\varepsilon}(\rho \rightarrow \sigma)$,

Radical Generalisations in calculating W^{ε}

- Aaberg and Horodecki \& Oppenheim both go significantly beyond the paper discussed in part I, in particular they consider non-degenerate energy levels.
- Both papers arrive (in a priori different models(!)) at the same more general expression for how much work one can gain by taking some initial state to a thermal state on the same energy levels (a relative renyi-entropy).
- In this paper we go further, calculating $W^{\varepsilon}(\rho \rightarrow \sigma)$ for arbitrary initial and final energy spectra and occupation probabilities.
- To get an intuition for the work extraction scenario within which we derive $W^{\varepsilon}(\rho \rightarrow \sigma)$,

Simple example of work extraction scenario

- How? Raise the second level to infinity quasistatically and isothermally, so that the system is constantly in its thermal state

$$
\rho_{T}=\sum_{i} \frac{\exp \left(-\beta E_{i}\right)}{Z}\left|e_{i}\right\rangle\left\langle e_{i}\right| .
$$

- Iff level is occupied when raised by δE_{2}, it costs δE_{2} work.
(consistent with: $\left.d U=d \sum_{i} p_{i} E_{i}=\sum_{i}\left(d p_{i}\right) E_{i}+p_{i}\left(d E_{i}\right):=d Q+d W\right)$

$$
\langle d W\rangle=p\left(E_{1}\right) 0+p\left(E_{2}\right) d E_{2}=p\left(E_{2}\right) d E_{2}=\frac{\exp \left(-\beta E_{2}\right)}{Z} d E_{2}
$$

$\Rightarrow W=\int_{0}^{\infty} \frac{\exp \left(-\beta E_{2}\right)}{Z} d E_{2}=k T \ln 2$, (integration requires some few lines).

Simple example of work extraction scenario

- How? Raise the second level to infinity quasistatically and isothermally, so that the system is constantly in its thermal state

$$
\rho_{T}=\sum_{i} \frac{\exp \left(-\beta E_{i}\right)}{Z}\left|e_{i}\right\rangle\left\langle e_{i}\right| .
$$

- Iff level is occupied when raised by δE_{2}, it costs δE_{2} work.
(consistent with: $\left.d U=d \sum_{i} p_{i} E_{i}=\sum_{i}\left(d p_{i}\right) E_{i}+p_{i}\left(d E_{i}\right):=d Q+d W\right)$

$$
\langle d W\rangle=p\left(E_{1}\right) 0+p\left(E_{2}\right) d E_{2}=p\left(E_{2}\right) d E_{2}=\frac{\exp \left(-\beta E_{2}\right)}{Z} d E_{2}
$$

$\Rightarrow W=\int_{0}^{\infty} \frac{\exp \left(-\beta E_{2}\right)}{Z} d E_{2}=k T \ln 2$, (integration requires some few lines).

Simple example continued, how ε enters

- Once the second level is very high the probability of being in level 2 is very low, call it ε.
- Except with probability ε it then suffices to input W^{ε} of work in order to take the initial state to the final.
- If you calculate this you will find $W^{\varepsilon}=-k T(\ln 2+\ln (1-\varepsilon)) \leq W^{0}$.
- We can calculate W^{ε} for arbitrary initial and final energy spectra and occupation probabilities. To give the expression need two definitions...

Definition 1: Relative Mixedness M

- We define a measure of how much more random a distribution is than another.
- It is related to majorisation. A distribution majorises another if its integral (when both distributions are in descending order) always upper bounds the other.

- The relative mixedness of two states, $M(\rho \| \sigma)$, we define as the maximum stretching factor by which one can stretch the spectrum of one such that it still upper bounds the other. In simple case to the right $M=b / a$.
- M puts a number to how much a distribution majorises another.

Definition 1: Relative Mixedness M

- We define a measure of how much more random a distribution is than another.
- It is related to majorisation. A distribution majorises another if its integral (when both distributions are in descending order) always upper bounds the other.

- The relative mixedness of two states, $M(\rho \| \sigma)$, we define as the maximum stretching factor by which one can stretch the spectrum of one such that it still upper bounds the other. In simple case to the right $M=b / a$.
- M puts a number to how much a distribution majorises another.

Understanding why one might think of Gibb's rescaling

- Consider the evolution of the energy level occupation probabilities under an interaction with the heat bath. There are good reasons to model this as a stochastic matrix (cols sum to 1), e.g. in the simplest case

$$
\binom{p_{0}}{p_{1}} \rightarrow\binom{p_{0}^{\prime}}{p_{1}^{\prime}}=\left(\begin{array}{ll}
p_{(0 \rightarrow 0)} & p_{(1 \rightarrow 0)} \\
p_{(0 \rightarrow 1)} & p_{(1 \rightarrow 1)}
\end{array}\right)\binom{p_{0}}{p_{1}}
$$

- The stochastic matrix should leave thermal state invariant.
- We want to use a convenient class of stochastic matrices: those which leave the uniform distribution invariant (bistochastic matrices). But the thermal state is not in general uniform...
- We may however modify the thermal distribution to a uniform one by splitting events to make it uniform e.g.

$$
\binom{2 / 3}{1 / 3} \rightarrow\left(\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right) ;\left(\begin{array}{cc}
p_{(0 \rightarrow 0)} & p_{(1 \rightarrow 0)} \\
p_{(0 \rightarrow 1)} & p_{(1 \rightarrow 1)}
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
p_{(0 \rightarrow 0)} / 2 & p_{(0 \rightarrow 0)} / 2 & p_{(1 \rightarrow 0)} / 2 \\
p_{(0 \rightarrow 1)} / 2 & p_{(0 \rightarrow 1)} / 2 & p_{(1 \rightarrow 0)} / 2 \\
p_{(0 \rightarrow 1)} & p_{(0 \rightarrow 1)} & p_{(1 \rightarrow 1)}
\end{array}\right)
$$

This splitting is the Gibb's rescaling. New matrix is bi-stochastic

Main result: expression for optimal W^{ε}

> We prove that for arbitrary initial and final occupation probabilities and energy spectra, the optimal $W^{\varepsilon}(\rho \rightarrow \sigma)$ is given by the relative mixedness \mathbf{M} of the Gibbs-rescaled distributions.

Expression by Aaberg and Horodecki \& Oppenheim is important special case.
Part I expression recovered for degenerate levels $W^{\varepsilon}\left(\rho \rightarrow \sigma_{T}\right)=\left(n-S_{\max }^{\varepsilon}(\rho)\right) k T \ln 2$.
(Aaberg already showed it
is special case of their expression)
The expression also reduces to the standard $\left.F=-k T \ln \frac{Z_{f}}{Z_{i}}\right)$ in appropriate limit.
In general it can be very different though.

$$
\mathrm{T} \leftrightarrow \rho \leftrightarrow+{ }^{+}
$$

Another result: Quantitative Second law needs tightening

- A standard expression is that

$$
\begin{equation*}
\Delta\left(S_{v N}-\beta U\right) \geq 0 \tag{1}
\end{equation*}
$$

where U is expected internal energy of a system interacting with a heat-bath with inverse temperature β.

- In our model this is necessary but not sufficient to guarantee that an evolution is possible. Instead a state change $\rho \rightarrow \rho^{\prime}$ due to a thermalisation with a heatbath at temperature T is possible if and only if

$$
\begin{equation*}
W^{0}\left(\rho \rightarrow \rho^{\prime}\right) \geq 0 \tag{2}
\end{equation*}
$$

- There are processes that respect Eq. 1 but violate Eq.2. We show such evolutions could be used to deterministically extract work from a single heat bath in a cycle.
[Inspired also by Ruch, Meade et. al. (1970's)]

Another result: Quantitative Second law needs tightening

- A standard expression is that

$$
\begin{equation*}
\Delta\left(S_{v N}-\beta U\right) \geq 0 \tag{1}
\end{equation*}
$$

where U is expected internal energy of a system interacting with a heat-bath with inverse temperature β.

- In our model this is necessary but not sufficient to guarantee that an evolution is possible. Instead a state change $\rho \rightarrow \rho^{\prime}$ due to a thermalisation with a heatbath at temperature T is possible if and only if

$$
\begin{equation*}
W^{0}\left(\rho \rightarrow \rho^{\prime}\right) \geq 0 \tag{2}
\end{equation*}
$$

- There are processes that respect Eq. 1 but violate Eq.2. We show such evolutions could be used to deterministically extract work from a single heat bath in a cycle.
[Inspired also by Ruch, Meade et. al. (1970's)]

Simple example of work extraction scenario

- How? Raise the second level to infinity quasistatically and isothermally, so that the system is constantly in its thermal state

$$
\rho_{T}=\sum_{i} \frac{\exp \left(-\beta E_{i}\right)}{Z}\left|e_{i}\right\rangle\left\langle e_{i}\right| .
$$

- Iff level is occupied when raised by δE_{2}, it costs δE_{2} work.
(consistent with: $\left.d U=d \sum_{i} p_{i} E_{i}=\sum_{i}\left(d p_{i}\right) E_{i}+p_{i}\left(d E_{i}\right):=d Q+d W\right)$

$$
\langle d W\rangle=p\left(E_{1}\right) 0+p\left(E_{2}\right) d E_{2}=p\left(E_{2}\right) d E_{2}=\frac{\exp \left(-\beta E_{2}\right)}{Z} d E_{2}
$$

$\Rightarrow W=\int_{0}^{\infty} \frac{\exp \left(-\beta E_{2}\right)}{Z} d E_{2}=k T \ln 2$, (integration requires some few lines).

Negative entropy

- For von Neumann entropy S , conditional entropy given by: $S(A \mid Q):=S(A Q)-S(Q)$ (am supressing single-shot aspect in this section)
- A simple example: $|\psi\rangle_{S Q}=|00\rangle+|11\rangle$, then $S(A \mid Q)=-1$.
- We want to interpret such negative entropy a' la Landauer/Szilard.
- We include the observer's memory Q explicitly in the description of the erasure of system A.

Negative entropy

- For von Neumann entropy S , conditional entropy given by: $S(A \mid Q):=S(A Q)-S(Q)$ (am supressing single-shot aspect in this section)
- A simple example: $|\psi\rangle_{S Q}=|00\rangle+|11\rangle$, then $S(A \mid Q)=-1$.
- We want to interpret such negative entropy a' la Landauer/Szilard.
- We include the observer's memory Q explicitly in the description of the erasure of system A.

Protocol erasing A with cost $S(A / Q) k T / n 2$:example

A simple example illustrates the general protocol:
$|\psi\rangle_{S Q}=|00\rangle+|11\rangle, S(A \mid Q)=-1$.
(i) Extract $W_{\text {out }}=2 k T \ln 2$ work from both A and Q .
(ii) Reset A to $|0\rangle$ by using W in $=k T \ln 2$ work.

Net result: A was reset to $|0\rangle$, reduced state on Q unchanged:
$W=W$ in $-W$ out $=-k T \ln 2=S(A \mid Q) k T \ln 2$.

Application for cooling computers

- Extract work from correlations between the output qubits and the rest. Reduced state on output invariant.
- Consider circuit model computation, e.g. Shor's algorithm.

- Not all qubits are measured in the end to get the output.
- The energy extracted comes from the computer and its surroundings, so the computer is cooled.

Application for cooling computers

- Extract work from correlations between the output qubits and the rest. Reduced state on output invariant.
- Consider circuit model computation, e.g. Shor's algorithm.

- Not all qubits are measured in the end to get the output.
- The energy extracted comes from the computer and its surroundings, so the computer is cooled.
Thank you
Joint work with Aaberg, Browne, delRio, Egloff, Garner, Renner, Rieper andVedral.
Discussions with J. Baez, R. Colbeck,
more...
Funding from the Swiss National ScienceFoundation (grant No. 200020-135048), theEuropean Research Council (grant No. 258932)and the National Research Foundation
EH
Eidgenössische Technische Hochschule ZürichSwiss Federal Institute of Technology Zurich
UNIVERSITY OF OXFORD
NUS

