Title: Three-point functions: SFT, integrability, and perturbative calculations.
Date: Apr 02, 2013 02:00 PM
URL: http://pirsa.org/13040110

Abstract: <span>| discuss several recent efforts

in relating string field theory calculations of BMN BMN BMN and BMN BMN BPS
correlation functions to direct perturbative calculations and

integrability-assisted methods. | review the next-to-leading order agreement

between strings and perturbation theory in the SO(6) sector, a conjectured

extension of the integrability techniques by Escobedo, Gromov, Sever, Vieirafrom
the SU(2) to the full SO(6) sector and agreement with SFT and PT in it at the
leading order; finally, | discuss the issue of equating exactly extremal and
non-extremal correlators at NLO in the integrability-assisted cal culation.</span>
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Three-point functions

@ Two-point functions/anomalous dimensions have been
studied thoroughly (to all loops)

@ Knowledge of three-point functions would have vested us
with full knowledge of the N/ = 4 SYM.

@ More or less everything is known on correlators of “light”
states; less is known about heavy-heavy-light operators;
very little is known about heavy-heavy-heavy correlators.
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Plan of the talk

@ Introductions: basic objects and motivation.
@ Strings vs. Perturbation theory

@ Perturbation theory vs. Integrability

@ Integrability vs. Strings
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Motivation

Three-point functions are non-protected objects, thus they
can have all kinds of corrections

There is no guarantee that the standard strings-to-fields
equivalence methods will work

The operator-to-string equivalence definition for purposes
of three-point function construction is not unambiguous

There are some discrepancies at one-loop level [Bissi,
Harmark, Orselli 2011]

Thus it is important to classify all the sectors in which there
are discrepancies so that their nature could be established.
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How to obtain the three-point functions

From field theory [Beisert, Kristjansen, Plefka, Semenoff,
Staudacher 2002]. by direct perturbative calculation

From Bethe Ansatz/Gromov. Vieira 2012]

From string field theory: as matrix elements of the
Dobashi-Yoneya vertex [Dobashi, Yoneya 2004]

From string theory in the semiclassic regime: as action
value on a worldsheet solution with three delta-sources
[Zarembo 2010]
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Asymptotics vs. Theories

Three-point functions can be obtained from field theory, field
theory assisted by Bethe Ansatz, string field theory, string

theory semiclassics in the following regimes:

Based on A R-charge J | \' = 3 | Nr. of magnons |

T Tsmal Tany =y Temal
Bethe Ansag sm_all any any

SFT large | any any {
ST semiclassics | large | large any |

Thus the unique possibility to compare these objects is the
\" expansion in Frolov-Tseytlin limit, where asymptotically
large-coupling and small-coupling limits can be unified.
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Definitions

we consider IWO-magnon BMN operators

which fall into the three irreducible representations of SO(4); we choose the symmetric one for which

Ji .12 In .23 J.31
We consider three operators: Oy = O] O; QL0 = 0,7, where nq, na, n3 are the magnon

momenta, J;, Js. Jy are their R-charges A3, J = Jj + Jo, Jy = Jy,do = J(1 — y).

We shall be looking for the quantity

Ci23 03010,

as a function of y. J. ny. no. n3, and compare it at one loop in FT
with ST in Penrose limit.
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Problems on our way

Let us point out some of the obstacles that may be encountered
on the way to three-point functions:

@ Double-trace admixture

Q@ Fermionic operators admixture

Q@ Magnon momentum nonconserving admixture
Happily enough,

@ problem (1) is resolved by withdrawing ourselves to the
non-extremal sector;

@ problem (2) resolved by choosing the symmetric sector
operators in SO(6);

@ problem (3) is resolved by invoking the large-J limit.
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Mixing: multitrace

Multi-trace operator redefinition is organized e.g. as

Je « r3/2\/1 = rsin®(=nrk
N — \/Jr2(k — nr)2(k = nr)

4 .7"&:!{.' !’J‘\
K.l
Jro

where ‘T12_”

o 12o(1=nJ Y being the normalized vacuum
operator of length J. For non-extremal kinematics the

multi-trace mixing becomes significant only in the next-order
corrections in 1/N.

Andrew V. Zayakin Three-point functions of BMN operators at weak and strong coupl

Pirsa: 13040110 Page 13/34



Mixing: magnon nonconserving

The magnon mode number nonpreserving BMN operator O,
redefinition in the order \’ is organized as

\
\
\

1)7

I‘J" y . 2 n n . - m
L ] o L - | o < ]
\‘. \ Sin T COS T1 SN T
; m=n

sin© -7

s —sin® 75

m=1 1

here [J/2] denotes the integer part of J/2. This operator redefinition
can been shown not to contribute due to suppression by higher-order
powers of J.
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Mixing: fermions

The admixture with fermionic operators is the most difficult to handle. At order A it is not yet known for the class of
symmetric traceless operators considered in this work. The mixing for the trace class operators is derived in
[Georgiou, Gili, Russo 2009].

mn(2p + 3 . .
TMEPTY) Z2PZ 2

T.'”[E T 4) - N - _ - N
pr’ lr r,-g_'Z‘w.-;'ZJ 1=F

mn(2p + 5)
J+3

)

r D, 2ZZPD"22'~P=2 + 0(4°%).

If the mixing for the symmetric traceless sector was described by a formula of the same type as there, a rough
estimate yields that the mixing might contribute in our case at the order g° J2. However, the tree-level contribution

is of order J? and the one loop goes as 93 J?. Thus the mixing correction will appear at the next 1 J2 order while
holding A" order fixed, so that it would not contribute.
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mn(2p + 3) e -
(@ —_—— ;Blrz.z*'z.zj P

[y=d—=1J
m™n NF. .

\
J+3 \ (J+3)
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—J=1 J—1
mn N . mn(2p + 4 ) o
- — S 7 sin \eP T )l, Do ZP U0 7J-
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String field theory

By “string field theory” here we mean an effective quantum mechanics
emerging for BMN excitations for strings in PP-wave limit at large R-charge.
This approach was developed by Spradlin, Volovich, Schwarz, Klebanov,
Roiban et al., Dobashi and Yoneya, and other people in 2001-2004. By
considering a configuration of three merged strings in the pp-background, the
Hamiltonian for string oscillations modes can be figured out, represented by
the so-called Neumann matrices. In the leading 1/N order this approach is
exact to all orders in \’, which is advantageous for doing non-perturbative
calculations. Below we present the results of calculating three-point functions
with these effective Hamiltonians.
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String field theory calculation

In terms of the BMN basis {«,} our operators look like
L-j”' “.‘Irrr'l m 0

The three-point function is related to the matrix element of the
string field Hamiltonian as follows

4'\' JJ
Y2 ..

o N |
“sthte As~Dq+A, N g 12

where

D= dJi+2\/1+ 312

and the matrix element is defined as
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Dobashi—Yoneya prefactor

We use the findings of [Grnignani et al. 2006] to start with the Dobashi-Yoneya prefactor [Dobashi, Yoneya 2004] in
the natural string basis {a}, }.

Here |, J are SU(4) flavour indices, r, s run within 1, 2, 3 and refer to the first, second and third operator. The
natural string basis is related to the BMN basis for m > 0 as follows

The Neumann matrices are given as

1 )1.3;7: +1)+8(N+1) [ x, Xs(wrm + X )(wsn + WXs ]Srr!,‘S(;,".

sWrm + XrWsn \ Wrm@Wsn

XrXs(wWrm HXr (wWsn 1Xs)SrmSagn

2m Xswrm + Xrwsn \ WrmwWsn

( 1}.r{rr:-1:-:§1.".w1:

where m, n are always meant positive, s,,,, = 1, S5,, = 1, 53, 2sin(rmy), xy =Y. X =1 =y, Xy

P

the frequencies are wr, m = \/m? + u2x¢., and the expansion parameter is u : '\, : The
Dobashi-Yoneya prefactor we are using is the prefactor
supported with positive modes only:

P=SN"N" ZLarial
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String result

Due to the flavour structure of Cy23 the only combinations of terms
from the exponent that could contribute are N2, N2>, Ny, . The
leading order contribution is

0 1 VJ my32(1 — y)3/2sin®(7nsy)
' 72 N (n2y?2 —n?)(né(1 = y)2 — nd)

The next-order coefficient in the expansion

Cioz = Clog (1 + N ina) .

1 _ Ciy
where ¢ ,; = ch. 18

. 1 s s o
Ci23 o . e
4 \y (1—-y)

Let us compare this calculation to the field theory calculation.
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0 1 VJ ndy3/2(1 — y)3/2sin®(mngy)
' 72 N (ndy?2 —m)(nk(1 —y)2 —nd)
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Ci23 = Cioa (1 + N Cj0a) .

C ‘1

1 — 23 |
where ¢ ,; = ch 18

. 1 [ N5 N5 5
Ci23 o 2 M3
4 \y (1 V)
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Leading Order

The tree-level diagram is shown below:

P 3
r I

which after the 1 /J expansion and the due normalization of the operator to unity yields

1 VdJ msy32(1 —y)%¥2sin®(mnsy)

- = N (ngy? — n$)(n5(1 — y)? ns)

corresponding exactly to the ST result above.
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One Loop

At the one loop level we estimate all possible insertions of the interaction terms of the Hamiltonian

H;u ( / P ') depicted below:

ks
1 I
§

‘oo’ \i‘ "l]-‘v'”l:.I
»" "
Y

', o
h

(h)
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Leading Order

The tree-level diagram is shown below:

o —
:.I .[

which after the 1 /J expansion and the due normalization of the operator to unity yields

1 VJ ngy®2(1 - y)¥2sin“(7nsy)

=~ 7w N (n§y? — n$)(n5(1 — y)? — ns)

corresponding exactly to the ST result above.
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The three-point correlation function for all dynamical BMN
operators matches precisely the perturbative weakly
coupled planar field theory and the Penrose limit of the

strongly coupled string field theory at one loop level in the
Frolov-Tseytlin limit.
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Part Il. Integrability

Here the Gromov-Vieira tailoring procedure is illustrated, for
details see [Gromov, Vieira 1205.5288].

The procedure expresses perturbative magnon dynamics in terms of
concise formulae, which is advantageous for large number of
magnons reducing greatly the computer- and man-power
consumption of the calculation, yet still needs a direct perturbative
verification, due to the complexity of the “integrability” result
derivation. Figure courtesy of Kolya Gromov.
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Integrability assists summation

Integrability assists greatly to simplify the perturbative
calculations for a large number of magnons. The procedure by
Gromov-Vieira amounts to roughly 2% complicatedness in as
opposed to Cff complicatedness for direct perturbative
approach. This is reached by working with Bethe states givenm
In terms of sets rapidities {u;}. {v;}. {w;} directly and splitting
the three-point function into the following structure

CUT x FLIP x NORM < SEW

>_all Bethe roots’ partitions

The integrable conjecture has been tested on the SU(2) up to
one loop by [Gromov Vieira 2012], | present here a test in the
SO(6) sector [Grighani, Zayakin 1208.0100], to compare it with
the results | have just presented above[Grignani, Zayakin
1205.5279, 1204.3096].
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The SU(2) and SO(6) common structure

The SU(2) three-point function looks like

We work in the “coordinate” normalization, where the Cut («r, &) factor is organized as

the factors cut (3. 3) and Cut (v, 7) being analogous to the expression above. The a. d. f, g factors are defined

as alu u \ 2.d(u U \ 2.e(u : Hu

The flip tactor may now be written as

analogous expressions work for 1 ip(/3) and ¥1ip(5). The norm is

Norm

here &, = —= and the phases are «

Uy
/
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Choice of Operators

We have mentioned that comparison of integrability results to anything else may be performed only for the
non-extremal correlators. Above we chose the SO(6) sector and each operator having two magnons to make our
case non-extremal. Either for perturbation theory or for string field theory this was not a problem. For integrability at
leading order it required a yet conjectural extension of the Escobedo-Gromov-Sever-Vieira technique to a different
group-theoretical sector. To test integrability vs. strings at next-to-leading order in A\’ we use the one-loop
Gromov-Vieira expression which is known in the SU(2) sector.

For our correlator to remain non-extremal, we choose the
following three operators:

Operator Magnons Length

' No. —MNo J+ 2
Ny.—Nq.Ng.—Ng Jr +4
N3y. —Ny J(1—-r)+2
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SFT result

The matrix element thus will be organized in terms of Neumann matrices as

apel
V

From where for

(again assuming ny = ny) we get

as before for integrability, and

This is different from the integrability-assisted result and
therefore needs some explanation.
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Discussion

For the first time in the SO(6) sector we have explicitly demonstrated that for
the three-point functions

@ SFT at strong coupling identical with perturbation theory at small
coupling in the Frolov-Tseytlin limit at one loop.

@ Integrability-assisted resummation a la Escobedo-Gromov-Sever-Vieira
can be successfully generalized to the SO(6) case and is shown to be
identical with SFT and perturbation theory.

@ Yet the SFT-integrability correspondence has a discrepancy in the
one-loop SU(2) sector.
Given these correspondences and discrepancies, discussion can be raised.

@ To which extent may the PT-SFT equalities be understood as
coincidences?

@ How essential is the role of Frolov-Tseytlin limit? To which order will the
equalities hold beyond it?

@ What is the reason of the discrepancy between the one-loop SFT and
integrability results?
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