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Abstract: <span>1 will describe recent work in collaboration with Adam

Henderson, Alok Laddha, and Madhavan Varadargjan on the loop quantization of a

certain $G_{\mathrm{ N} }\rightarrow 0%$ limit of Euclidean gravity, introduced by

Smolin. The model alows one to test various quantization choices oneis faced

with in loop quantum gravity, but in asimplified setting.& nbsp; The main results are the construction of
finite-triangulation Hamiltonian and diffeomorphism constraint operators whose

continuum limits can be evaluated in a precise sense, such that the quantum

Dirac algebra of constraints closes nontrivially and free of anomalies.& nbsp; The construction relies heavily on techniques
of Thiemann's QSD treatment, and lessons learned applying such techniquesto

the loop quantization of parameterized scalar field theory and the

diffeomorphism constraint in loop quantum gravity.&nbsp; | will also briefly discuss the status of the
guantum constraint algebrain full LQG, and how some of the lessons learned from

the present model may guide usin that setting.</span>
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What | am going to say

o Motivation: Constraint algebra & LQG dynamics
o The U(1)> model

o Constraint algebra revisited

o Hints from toy models

o A few details

o Outlook

il
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Motivation: Constraint algebra and dynamics

o Classically, constraints generate the “hypersurface deformation” algebra
{DIN], D[M]} = DLz M]
{D[N], H[N]} = H[LzN]
{H[N], H[M]} = D[¢**(MdsN — NopyM)]

(%)

encoding 4D spacetime covariance in 341 form.!

1Hc:jman-l‘(uchaF-Teitelboim Ann. Phys. 96 88 1976 [ “p
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Motivation: Constraint algebra and dynamics

{D[N], D[M]} = D[LzM]

o Classically, constraints generate the “hypersurface deformation” algebra
{DIN], H[N]} = H[LgN]

{H[N], H[M]} = D[¢**(MdsN — NopyM)]
encoding 4D spacetime covariance in 3+1 form.!

a notion of quantum spacetime covariance. E.g.,

o Philosophy: Representing (%) via quantum operators is a defining property
to be satisfied by any (canonical) theory of quantum geometry, and defines

[H[N], H[M]] = ihD[3)]

(B8)

'Hojman-Kucha¥-Teitelboim Ann. Phys. 96 88 1976
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Motivation: Constraint algebra and dynamics

o Classically, constraints generate the “hypersurface deformation” algebra
{D[N], D[M]} = D[£5M]
{DIN], H[N]} = H[LgN] (*)
{H[N], H[M]} = D[¢**(MdsN — NopyM)]
encoding 4D spacetime covariance in 3+1 form.!

o Philosophy: Representing (%) via quantum operators is a defining property

to be satisfied by any (canonical) theory of quantum geometry, and defines
a notion of quantum spacetime covariance. E.g.,

[H[N], H[M]] = ikD[3)] (A)

o Practically, demanding (4) can reduce quantization ambiguities

'Hojman-Kucha¥-Teitelboim Ann. Phys. 96 88 1976

il

I
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~

Constraint algebra and dynamics—LQG

“State of the art"—QSD (Thiemann 1996)

o H constructed subject to reasonable criteria (e.g., 3D diff-covariance)

2CQG 22 R193 2005

3J. Mod. Phys. D7 299-330 1998
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Constraint algebra and dynamics—LQG

“State of the art"—QSD (Thiemann 1996)

o H constructed subject to reasonable criteria (e.g., 3D diff-covariance)

o Criticism (e.g., Nicolai et al.?): Closure of the quantum constraint algebra
is only checked on-shell.

{HIN], HIM]} = D[&] = [AIN]. HIM]Wai = O

where Wigr € D) is diffeomorphism-invariant: f)[N]de =

2CQG 22 R193 2005
3J. Mod. Phys. D7 299-330 1998
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Constraint algebra and dynamics—LQG

“State of the art"—QSD (Thiemann 1996)

is only checked on-shell.

{H[N], H[M]} = D[]

o H constructed subject to reasonable criteria (e.g., 3D diff-covariance)

o Criticism (e.g., Nicolai et al.?): Closure of the quantum constraint algebra
—

where Waig € Dj;g is diffeomorphism-invariant:

leads to spurious results.

[HIN], H[M]]Waig = 0
o In well-understood models (bosonic string, 2D dilaton gravity, etc.), this

D[NV i = 0

2CQG 22 R193 2005

3J. Mod. Phys. D7 299-330 1998
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Constraint algebra and dynamics—LQG

“State of the art"—QSD (Thiemann 1996)

o H constructed subject to reasonable criteria (e.g., 3D diff-covariance)

o Criticism (e.g., Nicolai et al.?): Closure of the quantum constraint algebra
is only checked on-shell.

{HIN], HIM]} = D&] = [AIN]. HM]Wainr = O

where Wi € D} is diffeomorphism-invariant: IAD[N]\U(HH —

o In well-understood models (bosonic string, 2D dilaton gravity, etc.), this

leads to spurious results.
o Take-home point: on-shell closure is too weak of a criterion to determine if

H is reasonable.

2CQG 22 R193 2005
3J. Mod. Phys. D7 299-330 1998 = ; B
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Constraint algebra and dynamics—LQG

“State of the art"—QSD (Thiemann 1996)

o H constructed subject to reasonable criteria (e.g., 3D diff-covariance)

o Criticism (e.g., Nicolai et al.?): Closure of the quantum constraint algebra
is only checked on-shell.

{H[N], HIM]} = D[5] —  [H[N], AIM]|Waig = 0

where Vgig € Dy is diffeomorphism-invariant: b[N]w([itf =

o In well-understood models (bosonic string, 2D dilaton gravity, etc.), this
leads to spurious results.
o Take-home point: on-shell closure is too weak of a criterion to determine if

H is reasonable.

2CQG 22 R193 2005
3J. Mod. Phys. D7 299-330 1998 : = B
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Constraint algebra and dynamics—LQG

“State of the art"—QSD (Thiemann 1996)

is only checked on-shell.

{H[N], HM]} = DI[c]

o H constructed subject to reasonable criteria (e.g., 3D diff-covariance)
o Criticism (e.g., Nicolai et al.?): Closure of the quantum constraint algebra

_>
where Waig € Dj;g is diffeomorphism-invariant:
leads to spurious results.

[H[N], H[M]]Waigr = 0

H is reasonable.

o In well-understood models (bosonic string, 2D dilaton gravity, etc.), this

non-diff-invariant states ¢, but still

D[N]‘U(uﬂ‘ =
o Take-home point: on-shell closure is too weak of a criterion to determine if
o Criticism Il (Lewandowski & Marolf*): Enlarge D} to include

[A[N], H[M]]® = 0.

2CQG 22 R193 2005

3J. Mod. Phys. D7 299-330 1998
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Constraint algebra and dynamics—LQG

“State of the art"—QSD (Thiemann 1996)

o H constructed subject to reasonable criteria (e.g., 3D diff-covariance)

o Criticism (e.g., Nicolai et al.?): Closure of the quantum constraint algebra
is only checked on-shell:

{HIN], HM} = D[3]  —  [AN]. A[M]Vir = O

where Vaig € D is diffeomorphism-invariant: D[N]Wgig = 0
o In well-understood models (bosonic string, 2D dilaton gravity, etc.), this
leads to spurious results.
o Take-home point: on-shell closure is too weak of a criterion to determine if
H is reasonable.

o Criticism Il (Lewandowski & Marolf*): Enlarge Djjis to include
non-diff-invariant states ¢, but still

[A[N], A[M]]¢ = o.

o However, the most straightforward quantization of the RHS gives
D[Z]® = 0, so no inconsistency.

‘CQG 22 R193 2005
). Mod. Phys. D7 299-330 1998
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Smolin's Weak-Coupling Limit#

Euclidean, self-dual, first order action:
e
Sle,w] = G—‘I(l“x le|el ef Ry " [w], 5 oy
N
Define A = qulw. take Gy — 0, 3+1 split, get

S[A, E] = [dt (_];2(13x E?Al — G[A] — D[N] — H[N])
where

G[A] = [d®x N'O,Ef  Three independent U(1)

Gauss law constraints

D[N] = [d®x E?LzAL  Diffeomorphism constraint

HIN] = 1 [d°x Ne"™ EPEPFS[A]  Euclidean Hamiltonian constraint
with Abelian curvature F;, := 20;,Ay

Subalgebra of D and H again generates the HD algebra

4CQG 9 883 1992

il
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Loop quantum kinematics

Holonomies & Fluxes
h? [A]] = exp (if.-q"_]‘eA") L igl e

fl[S] — / E,'a’}abc‘lxb N\ llXC
J S

§ = (qi, qf. qi)
‘Charge’ networks |c)—graphs
embedded in  with edges labeled
by 3 integers (U(1)? representations)

€3
These span a dense subset D whose completion wrt (c|c’) = d. . is the
kinematical Hilbert space Hin.

U(1)® gauge invariance—For each i = 1,2, 3 separately, and at each vertex v,
the sum of the charges on (outgoing) edges vanishes:

Ze,ﬁ{v}q; T 0

(Finite) Diffeomorphisms: For ¢ € Diff(X), U(¢)|c) := |¢ - ¢).
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Smolin's Weak-Coupling Limit*

Euclidean, self-dual, first order action:

E .
S[e. UJ] — G_‘I (14X |e|e; e_i' R“VUI[LU] uJ“’J —_ Ef‘ KLLU'”KL
N
Define A = Gglw. take Gy — 0, 3+1 split, get
where

S[A, E] = [dt (_];£(|3x E?A, — G[A] — D[N] - H[N])
G[A] = [d3x Ni,E?

D[N] = [d®x E? LA

Three independent U(1)
HIN] = 1 [d°x NeP EFEPFLA]

Gauss law constraints

Diffeomorphism constraint

Euclidean Hamiltonian constraint
4CQG 9 883 1992

Subalgebra of D and H again generates the HD algebra
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Loop quantum kinematics

Holonomies & Fluxes
h? [A]] = exp (if.-q"_]‘eA") wri=

ff[S] = / E,-al}abcilxb A dx©
J S

q = (qi, qf. qi)
‘Charge’ networks |c)—graphs
embedded in  with edges labeled
by 3 integers (U(1)? representations)

€3

These span a dense subset D whose completion wrt (c|c’) = d. . is the

kinematical Hilbert space Hin.

U(1)® gauge invariance—For each i = 1,2, 3 separately, and at each vertex v,
the sum of the charges on (outgoing) edges vanishes:

Ze,ﬁ{v}q; o 0

(Finite) Diffeomorphisms: For ¢ € Diff(X), U(¢)|c) :

Al
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Local operator quantization in LQG

o Given a phase space function O[A, E] in terms of the local fields A, E,
approximate by Os[h, f] in terms of holonomies and fluxes such that
lims—o Os[h, f] = O[A, E].

o If E)g[h. f] is well-defined on D C Hin, its action can be computed:
Oslh, f]|c). The continuum limit lims—o Os|c) is generally not
well-defined.

o Let D* be the algebraic dual to D so that every W € D" is a linear map

lim (V] Os]c)

from D to C. For every pair (V, c), compute the one-parameter family of
complex numbers (W|Os|c). The continuum limit action is defined to be

Pirsa: 13040104

The set of W chosen determines the limit operator (c.f. URS topology)
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Constraint algebra revisited

obvious choice is (note overall ¢ independence)

The density 1 H[N] = 3 [d®x Ng~/?¢"™E?EPF, must be regularized. An
= B —1 E(S%) El(S2) 1
— 2 Sl ke " Se i, i S e
i AGZT:(O_)( il 102 5 52 Vet qls
Its action on |c) is (schematically)

Thus

New vertices are trivial due to edge tangent structure and volume operator.

Hs: [M]Hs[N]|c) = M(v)N(v)

Pirsa: 13040104

L

Page 19/43



Constraint algebra revisited ||

o The continuum commutator is defined via diffeomorphism-invariant states;
e.g.,

c A B
(Vair| = ZQEI)HT(Z)(Y c|

(VS| O(6) = (Win
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Constraint algebra revisited ||

o The continuum commutator is defined via diffeomorphism-invariant states;
eg.,

(Vai| = deniﬁ(:)<‘; g = (Wi U(¢) = (Weiin
o Then

(Vi [HIMIAIN]€) = lim lim (Wase|(Hs [M]Fs[N] = (N > M))]c)
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Constraint algebra revisited ||

e.g.

]

o The continuum commutator is defined via diffeomorphism-invariant states;

c | Jr—
(Vaig| := ZQEDHT(Z)<

i C’|
o Then

(Wil 0(6) = (Ve
(Vi [HIMIAIN]c) = lim lim (Wase|(Hs [MIFs[N] = (N > M))]c)
o Every term is of the form

\
M(v)N(v) (Wi (U

(¢) - 1) ﬂ\> =0
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Constraint algebra revisited ||

o Extend the set of W4 to include diffeo-non-invariant states and recheck
o Lewandowski-Marolf habitat:

( £ | — Zpel)iﬂ’(z) f(;(\/l) .....

p())lp-cl, f:E"=C
f = constant gives a diff-inv distribution.
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Constraint algebra revisited ||

o Extend the set of W4ig to include diffeo-non-invariant states and recheck

o Lewandowski-Marolf habitat:
(OF] =3 o (00)s oWl €l,  F:E">C

f = constant gives a diff-inv distribution.
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Constraint algebra revisited ||

o Extend the set of Wgig to include diffeo-non-invariant states and recheck

o Lewandowski-Marolf habitat:
(O] =3 o (00)s W)l €l,  F:E"»C

f = constant gives a diff-inv distribution.

o Terms in the commutator are now of the form
M(V)N(v)(®F |(U(¢s) — 1) [HHE) = M(v)N(v) ((f o ¢5) (v) — F(v))
But f is smooth, and lims—o ¢s = id, so

(&F |[AIM]H[N]][c) =0 —
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Lessons from Toy Models

dynamical embedding

o Parameterized field theory: Scalar field on Minkowskian cylinder with
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Lessons from Toy Models

o Parameterized field theory: Scalar field on Minkowskian cylinder with
dynamical embedding

o Must alter the density weight of the lapse
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Lessons from Toy Models

o Parameterized field theory: Scalar field on Minkowskian cylinder with
dynamical embedding

o Must alter the density weight of the lapse
o Cannot take continuum limit on Hyi,. but on a space of distributions
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Lessons from Toy Models

o Parameterized field theory: Scalar field on Minkowskian cylinder with
dynamical embedding

o Must alter the density weight of the lapse
o Cannot take continuum limit on Hyi,. but on a space of distributions

o Diffeomorphism constraint: Construct an operator b[N] on a suitable
space of states such that

[D[N], D[M]] = ihD[LzM)] (%)
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Lessons from Toy Models

o Parameterized field theory: Scalar field on Minkowskian cylinder with
dynamical embedding

o Must alter the density weight of the lapse
o Cannot take continuum limit on Hyi,. but on a space of distributions

o Diffeomorphism constraint: Construct an operator b[N] on a suitable
space of states such that

[D[N], D[M]] = ihD[LzM)] (%)

o Strategy: Quantize a regularized operator b(s [N] on Hyin such that
e

E U(Q)N) 1

i )

This guarantees that (x) holds in the continuum limit 6 — 0 (on the LM
habitat).

Ds[N] =
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Lessons from Toy Models

o Parameterized field theory: Scalar field on Minkowskian cylinder with
dynamical embedding

o Must alter the density weight of the lapse
o Cannot take continuum limit on Hyi,. but on a space of distributions

o Diffeomorphism constraint: Construct an operator f)[ﬁl] on a suitable
space of states such that

[D[N], D[M]] = ihD[LzM)] (%)

o Strategy: Quantize a regularized operator Ds [N‘] on Hyin such that

o h Ej(‘-"’(S )—-1
Ds[N] = v

|

)
This guarantees that (x) holds in the continuum limit § — 0 (on the LM
habitat).

o Curvature operator on Hyi, must be state-dependent, and requires
non-perturbative corrections:

Fi tr(ho ') 2i tr(hg — 1)

!

I — E;(S
0 52 3!% ’52 l( 6)

2"d term is higher-order in 4, so limg_ F(;: = F' classically.
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U(1) Ingredients

Choose the density weight to get overall factors of 4 so that derivatives could
be generated.

Look for a geometric interpretation of H, and ask that the finite-triangulation

operator mimic that action by exploiting the availability of non-perturbative
corrections.

Determine how to quantize D[]

Find a controllable set of distributions a la LM that allow the continuum limit
to be taken non-trivially

L
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Density weight

ForaeR, g%~ E3 ~ §%

3 FEl E(SR) B(SX) oF
3 ab|d A I\ Zras
= [N] : 102 52 52 qs

Wi

. -_1 reg
gives Hs = 0" x H5®.

Note:

o Now the lapse has density weight —%

o Classically, density weight « leads to the RHS

D[l-:'] L / (l3X ql—Zaqab (N()aM K M();,,N) FticEr'C 6 dl?a—s

L 1

x =

W=

Can possibly generate diffeos... Note also that

G — = Ds [..:'] ~ 0

N =

so trivial continuum limit is no surprise.
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Geometric interpretation

o Let Nf := Ng~'/3E}. Classically this “electric shift” is a (density weight
zero) vector field. The action of H on A can be written

(AL, HINT} = N~ EPFly = —e Ly A + 0, (f’f“Nj"Ag)
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Geometric interpretation

o Let N7 := Ng~'/3E}. Classically this “electric shift” is a (density weight
zero) vector field. The action of H on A can be written

(AL HIN]} = Ng 2R EPFl, = — g Ak + 0, (*NPAY)

o First term generates “diffeomorphisms” in the direction of a
triad-dependent vector field.
o Second term is a gauge transformation.

o This translates into an action on charge networks:

Fs.u[N]|c) ~ N(v)A ”322q, (Ie1,is) — |€))
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Geometric interpretation

o Let Nf := Ng~'3E}. Classically this “electric shift” is a (density weight
zero) vector field. The action of H on A can be written

{A; H[N]} — N _1/3(*UkE}'bF:b = -

'f“cﬁ,jAﬁ - (f-ff“Nj"A‘;)
o First term generates “diffeomorphisms
triad-dependent vector field

in the direction of a
o Second term is a gauge transformation

o This translates into an action on charge networks

Hs.u[N]|c) ~

3470, iy T q; (lcris) —

<))

o Non-trivial vertex is moved, leaving the original
at displaced vertex!

vertex trivial = 2" H acts

il

Al
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Commutator and continuum limit

To take the continuum limit, we require a habitat. Construct a set Byga of
set V(c)

charge network bras based on a given charge network ¢ with non-trivial vertex
Bysa 3 ¢’ ~ [1o(¢a - Hs)c

Then

(W

/
C
BS g

f !
( B(s;\' o ZEEBC’

o F(V(@)(E
AN, AIMIE) ~v 32,3000 A5 P (VA (vi) (MOIN — NoyM) o f
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Commutator and continuum limit

To take the continuum limit, we require a habitat. Construct a set Byga of
set V(c)

charge network bras based on a given charge network ¢ with non-trivial vertex
Bysa 3 ¢’ ~ [1.(¢a - Hs)c

Then

(Vs
(V]

c |
VSA
/
C
BS/g

= Yeese,, F(V())(E
AN, AIMIE) ~v 32,3000 A5 P (VA (vi) (MOIN — NoyM) o f
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RHS

D[]

Possible problem: Straightforward quantization of

-1/3 -1/3,
) Wl (7)) B (")

e —agi NE=

[d®x q*E7EP (N9;M — MO,N) Fj_Ef
would give an action proportional to /\‘,'2/3(\/). whereas LHS contains

Solution: Consider the diffeomorphism generator smeared with electric shift
D[Ni] = [d®x NiF.,Ef
Remarkable identity:

Instead quantize D[&] as

> {D[Ni], D[M]} = (2« — 1) D[]

1 1

2a — 1 ih

(V)
J[D[Ni], D[M]]

Naturally gives the same structure as [I:I I:I] and matches in continuum limit
Interesting feature: (V) trivializes for the usual density 1 choice o =

Pirsa: 13040104
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Summary (hopefully | did not bore you into slumber)

o This Gy — 0 theory is a nice toy model for testing LQG

o Applying the lessons of previous work

constructions

o QSD—general framework and Thiemann tricks
LM—habitats

PFT—Lkinematically singular operators necessary

o
o
o diff constraint—geometric interpretation is key

leads to an off-shell representation of the HD algebra

I
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To do

Habitat-based calculation
U(1) Classical solutions—Smolin's original idea of QG as power series in Gy

Observables

SU(2)
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To do

Habitat-based calculation

U(1) Classical solutions—Smolin's original idea of QG as power series in Gy
Observables

SU(2)
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