Title: Wick's theorem for Matrix Product states
Date: Mar 25, 2013 04:00 PM
URL: http://www.pirsa.org/13030117
Abstract: Matrix product states and
their continuous analogues are variational classes of states that capture quantum many-body systems or quantum fields with low entanglement; they are at the basis of the density-matrix renormalization group method and continuous variants thereof. In this talk we show that, generically, N -point functions of arbitrary operators in discrete and continuous translation invariant matrix product states are completely characterized by the corresponding two- and three-point functions. Aside from having important consequences for the structure of correlations in quantum states with low entanglement, this result provides a new way of reconstructing unknown states from correlation measurements e.g. for one-dimensional continuous systems of cold atoms. We argue that such a relation of correlation functions may help in devising perturbative approaches to interacting theories. $<b r>$

Joint work with Andrea Mari and Jens Eisert.

arXiv:1207.6537

Wick's theorem for matrix product states

R. Hübener ${ }^{1}$, A. Mari ${ }^{1,2,3}$, and J. Eisert ${ }^{1}$
${ }^{1}$ Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, Berlin, Germany
${ }^{2}$ Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
${ }^{3}$ NEST, Scuola Normale Superiore and Istituto di Nanoscienze - CNR, Pisa, Italy

Waterloo, March 2013

Overview.

Main statement
Generically, in thermodynamic limit, translation-invariant (c)MPS allow for a Wick theorem. (but based on three-point-functions)

Overview.

Main statement

Generically, in thermodynamic limit, translation-invariant (c)MPS allow for a Wick theorem. (but based on three-point-functions)

Why should you care?

- Wick's theorem well known for Gaussians
- Statistics: All the moments of a Gaussian probability distribution can be expressed as functions of the second moments alone.
- Physics: Two-point-function $\langle\phi(x) \phi(y)\rangle$ determines properties of Gaussian states (e.g. vacuum of free theory).
- important in field theory: Feynman diagrams

Overview.

Main statement

Generically, in thermodynamic limit, translation-invariant (c)MPS allow for a Wick theorem. (but based on three-point-functions)

Why should you care?

- Wick's theorem well known for Gaussians
- Statistics: All the moments of a Gaussian probability distribution can be expressed as functions of the second moments alone.
- Physics: Two-point-function $\langle\phi(x) \phi(y)\rangle$ determines properties of Gaussian states (e.g. vacuum of free theory).
- important in field theory: Feynman diagrams
- MPS are totally unlike Gaussians
- but close to important ground states (area law)
- roughly speaking, they describe all states in 1D when entanglement saturates for large chunks
- think of ground states of locally interacting, gapped Hamiltonians in 1D

Overview.

Main statement

Generically, in thermodynamic limit, translation-invariant (c)MPS allow for a Wick theorem. (but based on three-point-functions)

Why should you care?

- Wick's theorem well known for Gaussians
- Statistics: All the moments of a Gaussian probability distribution can be expressed as functions of the second moments alone.
- Physics: Two-point-function $\langle\phi(x) \phi(y)\rangle$ determines properties of Gaussian states (e.g. vacuum of free theory).
- important in field theory: Feynman diagrams
- MPS are totally unlike Gaussians
- but close to important ground states (area law)
- roughly speaking, they describe all states in 1D when entanglement saturates for large chunks
- think of ground states of locally interacting, gapped Hamiltonians in 1D
- implications for
- diagrammatic methods
- reconstruction of field states
- open quantum systems
- statistics (hidden Markov models)

tensor splitting

$$
|\psi\rangle=\sum_{s_{1}, s_{2}, \ldots, s_{8}} A_{s_{1}, s_{2}, \ldots, s_{8}\left|s_{1}, s_{2}, \ldots, s_{8}\right\rangle}
$$

Behind it: singular value decomposition (SVD)

Tensor to matrix

$$
\text { tensor } A_{s_{1}, s_{2}, \ldots, s_{8}} \rightarrow A_{\left(s_{1}, \ldots, s_{4}\right)\left(s_{5}, \ldots, s_{8}\right)} \text { matrix }
$$

Then SVD

$$
\begin{aligned}
A_{\left(s_{1}, \ldots, s_{4}\right)\left(s_{5}, \ldots, s_{8}\right)} & =\sum_{\alpha} U_{\left(s_{1}, \ldots, s_{4}\right) \alpha} \lambda_{\alpha} V_{\alpha\left(s_{5}, \ldots, s_{8}\right)} \\
& =\sum_{\alpha} A_{\left(s_{1}, \ldots,{ }_{\alpha}\right.}^{0} A_{\alpha,\left(s_{5}, \ldots, s_{8}\right)}^{1}
\end{aligned}
$$

[^0]Behind it: singular value decomposition (SVD)

Tensor to matrix

$$
\text { tensor } A_{s_{1}, s_{2}, \ldots, s_{8}} \rightarrow A_{\left(s_{1}, \ldots, s_{4}\right)\left(s_{5}, \ldots, s_{8}\right)} \text { matrix }
$$

Then SVD

$$
\begin{aligned}
A_{\left(s_{1}, \ldots, s_{4}\right)\left(s_{5}, \ldots, s_{8}\right)} & =\sum_{\alpha} U_{\left(s_{1}, \ldots, s_{4}\right) \alpha} \lambda_{\alpha} V_{\alpha\left(s_{5}, \ldots, s_{8}\right)} \\
& =\sum_{\alpha} A_{\left(s_{1}, \ldots, s_{4}\right), \alpha}^{0} A_{\alpha,\left(s_{5}, \ldots, s_{8}\right)}^{1}
\end{aligned}
$$

Behind it: singular value decomposition (SVD)

Tensor to matrix

$$
\text { tensor } A_{s_{1}, s_{2}, \ldots, s_{8}} \rightarrow A_{\left(s_{1}, \ldots, s_{4}\right)\left(s_{5}, \ldots, s_{8}\right)} \text { matrix }
$$

Then SVD

$$
\begin{aligned}
A_{\left(s_{1}, \ldots, s_{4}\right)\left(s_{5}, \ldots, s_{8}\right)} & =\sum_{\alpha} U_{\left(s_{1}, \ldots, s_{4}\right) \alpha} \lambda_{\alpha} V_{\alpha\left(s_{5}, \ldots, s_{8}\right)} \\
& =\sum_{\alpha} A_{\left(s_{1}, \ldots, s_{4}\right), \alpha}^{0} A_{\alpha,\left(s_{5}, \ldots, s_{8}\right)}^{1}
\end{aligned}
$$

- $\left\{\lambda_{\alpha}\right\}$ very interesting: contains all important info about bipartite entanglement between both parties
- set $\left\{\lambda_{\alpha}\right\}$, ordered by magnitude, usually decays very quickly for physical states in 1D: area law ${ }^{1}$
- λ_{α} with small magnitude can be discarded, while resulting approximation remains norm-close
- ability to transform states with local operations into each other dictated by $\left\{\lambda_{\alpha}\right\}$
- it is a relaxation of mean-field
${ }^{1}$ J. Eisert et al., Rev. Mod. Phys. 82, 277 (2010)
R. Hübener et al. (FU Berlin)

Matrix Product States (MPS)

Repeated application of tensor splitting results in 'one tensor per local system'

$$
|\psi\rangle=\sum_{s_{1}, s_{2}, \ldots, s_{\mathrm{s}}} \operatorname{Tr}\left[A_{s_{1}}^{0} \ldots A_{s_{\mathrm{s}}}^{8}\right]\left|s_{1}, s_{2}, \ldots, s_{8}\right\rangle
$$

Figure: MPS with opem closed boundary conditions.
$0=$ densily matrix renormalization group ${ }^{2}$ (DMn tates

- approximation accurate for gapped local Hamiltoma.
- few parameters to describe the state
- efficient access to expectation values

[^1]

Definition of the term "generic"

Observation: gauge freedom

- remember

$$
\left\langle O^{\left(i_{N}\right)} O^{\left(i_{N-1}\right)} \ldots O^{\left(i_{1}\right)}\right\rangle=\operatorname{Tr}\left[M E^{n_{N-1}} M \ldots M E^{\infty}\right]=: C^{(N)}(\mathbf{n}),
$$

- possible simultaneous conjugation of all matrices

$$
E \rightarrow X E X^{-1}, \quad M \rightarrow X M X^{-1}
$$

- e.g. Jordan transformation of $E \rightarrow J(E)$

Definition

We say the MPS is generic if

- $J(E)$ is non-degenerate
- largest magnitude among eigenvalues occurs only once

Matrix Product States ${ }^{345}$

- discrete matrix product state vector

$$
\left|\psi_{\mathrm{MPS}}\right\rangle=\sum_{s_{\nu}, \ldots, s_{1}} \operatorname{Tr}\left[A^{(\nu)}\left[s_{\nu}\right] \ldots A^{(1)}\left[s_{1}\right]\right]\left|s_{\nu}, \ldots, s_{1}\right\rangle,
$$

- ν-partite spin system
- periodic boundary conditions
$\Rightarrow A^{(i)}\left[s_{i}\right] \in \mathbb{C}^{d \times d}$ for all i
- finite bond dimension d arbitrary but fixed
- correlation functions

$$
\left\langle O\left(O^{\left(i_{N-1}\right)} \ldots O^{\left(i_{1}\right)}\right\rangle=\operatorname{Tr}\left[M E^{n_{N-1}} M \ldots M E^{\infty}\right]=: C^{(}(\mathrm{n})\right.
$$

$>$ thermodynamic limit $\sim \infty \quad A^{(i)}[s]=A^{(j)}[s]$ for all i, j
\Rightarrow trandation O with support on \quad Erent) sites i_{k} with $0=i_{1}<\ldots<i_{N}$
$>M=\sum_{m, n} A^{*}[m] \otimes A[n](m|O|$
$>$ the transfer matrix $E=\sum, A^{*}[s], \quad$ vormalized and largest magnitude among

- $E^{\infty}:=\lim _{n \rightarrow \infty} E^{n}$ exists when the sta eigenvalues occurs only once
eigenvalues occurs only once
distances in compact form $\mathbf{n}=\left(i_{2}-i_{1}-1, \ldots, 1\right) \in \mathbb{Z}^{N-1}$

[^2]
Definition of the term "generic"

Observation: gauge freedom

- remember

$$
\left\langle O^{\left(i_{N}\right)} O^{\left(i_{N-1}\right)} \ldots O^{\left(i_{1}\right)}\right\rangle=\operatorname{Tr}\left[M E^{n_{N-1}} M \ldots M E^{\infty}\right]=: C^{(N)}(\mathrm{n}),
$$

- possible simultaneous conjugation of all matrices

$$
E \rightarrow X E X^{-1}, \quad M \rightarrow X M X^{-1}
$$

- e.g. Jordan transformation of $E \rightarrow J(E)$

Definition

We say the NIPS is generic if

- $J(E)$ is hon-degenerate
- largest magnitude among eigenvalues occurs only once

Main result

Situation

- In general, to characterize the full state of a quantum system one needs to specify all the correlation functions.
- One may ask the following question: "Is it possible to completely characterize a (continuous) matrix product state from low order correlation functions?"

Main statement of this talk

With the only initial assumption of a bond dimension d ($=$ limited entanglement) we can
(1) Certify that the given (c)MPS is generic.
(2) Reconstruct the full state of a (c)MPS from low order correlation functions once (1) has been verified.

Data structure and transformations

Consider discrete MPS

- correlation functions

$$
\left\langle O^{\left(i_{N}\right)} O^{\left(i_{N-1}\right)} \ldots O^{\left(i_{1}\right)}\right\rangle=\operatorname{Tr}\left[M E^{n_{N-1}} M \ldots M E^{\infty}\right]=: C^{(N)}(\mathbf{n}),
$$

- Z-transform

$$
\mathcal{Z}^{(N)}(\mathbf{s}):=\sum_{n_{1}, \ldots, n_{N-1}} s_{1}^{n_{1}} \ldots s_{N}^{n_{N-1}} C^{(N)}(\mathbf{n}), \quad s_{1}, \ldots, s_{N-1} \in \mathbb{C}
$$

- key observation: when $J(E)$ is non-degenerate

$$
C^{(N)}(\mathbf{n})=\sum_{k_{N-1}, \ldots, k_{1}=1}^{d^{2}} c^{(N)}\left(k_{N-1}, \ldots, k_{1}\right) \times\left(\mu_{k_{N-1}}\right)^{n_{N-1}} \ldots\left(\mu_{k_{1}}\right)^{n_{1}},
$$

with μ_{i}, the eigenvalues of E

- application of Z-trafo to correlators

$$
\mathcal{Z}^{(N)}(\mathbf{s})=\sum_{k_{1}, \ldots, k_{N-1}}^{d^{2}} \frac{c^{(N)}\left(k_{N-1}, \ldots, k_{1}\right)}{\left(1-\mu_{k_{N-1}} s_{N-1}\right) \cdots\left(1-\mu_{k_{1}} s_{1}\right)}
$$

- meromorphic function. has characteristic poles and residues

$$
c^{(N)}\left(k_{N-1}, \ldots, k_{1}\right)=\langle 1| M\left|k_{N-1}\right\rangle\left\langle k_{N-1}\right| M \ldots\left|k_{1}\right\rangle\left\langle k_{1}\right| M|1\rangle
$$

Data structure and transformations

Consider discrete MPS

- correlation functions

$$
\left\langle O^{\left(i_{N}\right)} O^{\left(i_{N-1}\right)} \ldots O^{\left(i_{1}\right)}\right\rangle=\operatorname{Tr}\left[M E^{n_{N-1}} M \ldots M E^{\infty}\right]=: C^{(N)}(\mathbf{n}),
$$

- Z-transform

$$
\mathcal{Z}^{(N)}(\mathbf{s}):=\sum_{n_{1}, \ldots, n_{N-1}} s_{1}^{n_{1}} \ldots s_{N}^{n_{N-1}} C^{(N)}(\mathbf{n}), \quad s_{1}, \ldots, s_{N-1} \in \mathbb{C}
$$

- key observation: when $J(E)$ is non-degenerate

$$
C^{(N)}(\mathbf{n})=\sum_{k_{N-1}, \ldots, k_{1}=1}^{d^{2}} c^{(N)}\left(k_{N-1}, \ldots, k_{1}\right) \times\left(\mu_{k_{N-1}}\right)^{n_{N-1}} \ldots\left(\mu_{k_{1}}\right)^{n_{1}},
$$

with μ_{i}, the eigenvalues of E

- application of Z-trafo to correlators

$$
\mathcal{Z}^{(N)}(\mathbf{s})=\sum_{k_{1}, \ldots, k_{N-1}}^{d^{2}} \frac{c^{(N)}\left(k_{N-1}, \ldots, k_{1}\right)}{\left(1-\mu_{k_{N-1}} s_{N-1}\right) \cdots\left(1-\mu_{k_{1}} s_{1}\right)}
$$

- meromorphic function. has characteristic poles and residues

$$
c^{(N)}\left(k_{N-1}, \ldots, k_{1}\right)=\langle 1| M\left|k_{N-1}\right\rangle\left\langle k_{N-1}\right| M \ldots\left|k_{1}\right\rangle\left\langle k_{1}\right| M|1\rangle
$$

Example

Consider the following case.

- Given a generic MPS with finite d, let the operators O and the state be such that the corresponding matrices $X M X^{-1}$ have only non-zero elements.
- Under this condition, all two-point function transforms show all the poles
- Computationally, all residues of all the poles of all N-point functions with $N \leq 3$ can be obtained.

Matrix Product States ${ }^{345}$

- discrete matrix product state vector

$$
\left|\psi_{\mathrm{MPS}}\right\rangle=\sum_{s_{\nu}, \ldots, s_{1}} \operatorname{Tr}\left[A^{(\nu)}\left[s_{\nu}\right] \ldots A^{(1)}\left[s_{1}\right]\right]\left|s_{\nu}, \ldots, s_{1}\right\rangle,
$$

- ν-partite spin system
- periodic boundary conditions
- $A^{(i)}\left[s_{i}\right] \in \mathbb{C}^{d \times d}$ for all i
- finite bond dimension d arbitrary but fixed
- correlation functions

$$
\left.\left\langle O^{\left(i_{N}\right)} O^{\left(i_{N-1}\right)} \ldots O^{\left(i_{1}\right)}\right\rangle=\operatorname{Tr}\left[M E^{n_{N-1}} M \ldots M E^{\infty}\right]=: C^{(}\right)(\mathrm{n})
$$

$>$ thermodynamic limit $\nu \rightarrow \infty$

- translation invariant case, i.e. $A^{(i)}[s]=A^{(j)}[s]$ for all i, j
\Rightarrow operators O with support on (different) sites i_{k} with $0=i_{1}<\ldots<i_{N}$
$\Rightarrow M=\sum_{m, n} A^{*}[m] \otimes A[n]\langle m| O|n\rangle$
$>$ the transfer matrix $E=\sum_{s} A^{*}[s] \otimes A[s]$
$>E^{\infty}:=\lim _{n \rightarrow \infty} E^{n}$ exists when the state is normalized and largest magnitude among eigenvalues occurs only once
- distances in compact form $\mathrm{n}=\left(i_{2}-i_{1}-1 \ldots i_{N}-i_{N-1}-1\right) \in \mathbb{Z}^{N-1}$
${ }^{3}$ D. Perez-Garcia et al., Quant. Inf. Comp. 7,
${ }^{4}$ M. Fannes et al., J. Phys. A 24, L185 (1991)
${ }^{5}$ U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).

Matrix Product States ${ }^{345}$

- discrete matrix product state vector

$$
\left|\psi_{\mathrm{MPS}}\right\rangle=\sum_{s_{\nu}, \ldots, s_{1}} \operatorname{Tr}\left[A^{(\nu)}\left[s_{\nu}\right] \ldots A^{(1)}\left[s_{1}\right]\right]\left|s_{\nu}, \ldots, s_{1}\right\rangle,
$$

- ν-partite spin system
- periodic boundary conditions
- $A^{(i)}\left[s_{i}\right] \in \mathbb{C}^{d \times d}$ for all i
- finite bond dimension d arbitrary but fixed
- correlation functions

$$
\left.\left\langle O^{\left(i_{N}\right)} O^{\left(i_{N-1}\right)} \ldots O^{\left(i_{1}\right)}\right\rangle=\operatorname{Tr}\left[M E^{n_{N-1}} M \ldots M E^{\infty}\right]=: C^{(}\right)(\mathrm{n})
$$

- thermodynamic limit $\nu \rightarrow \infty$
translation invariant case, i.e. $A^{(i)}[s]=A^{(j)}[s]$ for all i, j
> opelators O with support on (different) sites i_{k} with $0=i_{1}<\ldots<i_{N}$
$>M=\sum_{m, n} A^{*}[m] \otimes A[n]\langle m| O|n\rangle$
$>$ the transfer matrix $E=\sum, A^{*}[s] \otimes A[s]$
- $E^{\infty}:=\lim _{n \rightarrow \infty} E^{n}$ exists when the state is normalized and largest magnitude among eigenvalues occurs only once
- distances in compact form $\mathrm{n}=\left(i_{2}-i_{1}-1, \ldots, i_{N}-i_{N-1}-1\right) \in \mathbb{Z}^{N-1}$
${ }^{3}$ D. Perez-Garcia et al., Quant. Inf. Comp. 7, 401 (2007)
${ }^{4}$ M. Fannes et al., J. Phys. A 24, L185 (1991)
${ }^{5}$ U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).

Example

Consider the following case.

- Given a generic MPS with finite d, let the operators O and the state be such that the corresponding matrices $X M X^{-1}$ have only non-zero elements.
- Under this condition, all two-point function transforms show all the poles
- Computationally, all residues of all the poles of all N-point functions with $N \leq 3$ can be obtained.
Now we can, using the construction above, give explicit formulas that express all N-point functions in terms of the 2 - and 3 -point functions.
- We have

$$
\mathbb{C} \ni 1=1^{(k)}:=\frac{M_{1, k} M_{k, 1}}{c^{(2)}(k)}
$$

- The residues are, e.g.,

$$
\begin{aligned}
c^{(4)}\left(k_{3}, k_{2}, k_{1}\right) & =M_{1, k_{3}} M_{k_{3}, k_{2}} M_{k_{2}, k_{1}} M_{k_{1}, 1} \\
& =M_{1, k_{1}} 1^{\left(k_{3}\right)} M_{k_{3}, k_{2}} 1^{\left(k_{2}\right)} M_{k_{2}, k_{1}} 1^{\left(k_{1}\right)} M_{k_{1}, 1} \\
& =\frac{\left(M_{1, k_{3}} M_{k_{3}, 1}\right)\left(M_{1, k_{3}} M_{k_{3}, k_{2}} M_{k_{2}, 1}\right)\left(M_{1, k_{2}} M_{k_{2}, k_{1}} M_{\left.k_{1}, 1\right)}\left(M_{1, k_{1}} M_{k_{1}, 1}\right)\right.}{c^{(2)}\left(k_{3}\right) c^{(2)}\left(k_{2}\right) c^{(2)}\left(k_{1}\right)} \\
& =\frac{c^{(3)}\left(k_{3}, k_{2}\right) c^{(3)}\left(k_{2}, k_{1}\right)}{c^{(2)}\left(k_{2}\right)}
\end{aligned}
$$

Wick's theorem-interaction picture - "Feynman approach"

- interaction picture in field theory
- starting point is vacuum of free theory, i.e. Gaussian states
- perturbation is interaction term V, polynomials in field-operators
- formal S-matrix

$$
S=\sum_{n=0}^{\infty} \frac{i^{n}}{n!} \mathcal{T} \prod_{j=1}^{n} d x_{j}^{4} V\left(\mathbf{x}_{j}\right)
$$

- Wick's theorem: Gaussians? We can express everyting with two-point-functions!

$$
\left\langle\mathcal{T} \prod_{j=1}^{n} V\left(\mathbf{x}_{j}\right)\right\rangle_{0}=\sum_{\text {all contractions }}(\pm) \mathcal{N} \overline{\phi\left(x_{\sigma_{1}}\right) \phi\left(x_{\sigma_{2}}\right)} \overline{\phi\left(x_{\sigma_{3}}\right) \phi\left(x_{\sigma_{4}}\right)} \ldots
$$

Data structure and transformations

Consider discrete MPS

- correlation functions

$$
\left\langle O^{\left(i_{N}\right)} O^{\left(i_{N-1}\right)} \ldots O^{\left(i_{1}\right)}\right\rangle=\operatorname{Tr}\left[M E^{n_{N-1}} M \ldots M E^{\infty}\right]=: C^{(N)}(\mathbf{n}),
$$

- Z-transform

$$
\mathcal{Z}^{(N)}(\mathbf{s}):=\sum_{n_{1}, \ldots, n_{N-1}} s_{1}^{n_{1}} \ldots s_{N}^{n_{N-1}} C^{(N)}(\mathbf{n}), \quad s_{1}, \ldots, s_{N-1} \in \mathbb{C}
$$

- key observation: when $J(E)$ is non-degenerate

$$
C^{(N)}(\mathbf{n})=\sum_{k_{N-1}, \ldots, k_{1}=1}^{d^{2}} c^{(N)}\left(k_{N-1}, \ldots, k_{1}\right) \times\left(\mu_{k_{N-1}}\right)^{n_{N-1}} \ldots\left(\mu_{k_{1}}\right)^{n_{1}},
$$

with μ_{i}, the eigenvalues of E

- application of Z-trafo to correlators

$$
\mathcal{Z}^{(N)}(\mathbf{s})=\sum_{k_{1}, \ldots, k_{N-1}}^{d^{2}} \frac{c^{(N)}\left(k_{N-1}, \ldots, k_{1}\right)}{\left(1-\mu_{k_{N-1}} s_{N-1}\right) \cdots\left(1-\mu_{k_{1}} s_{1}\right)}
$$

- meromorphic function. has characteristic poles and residues

$$
c^{(N)}\left(k_{N-1}, \ldots, k_{1}\right)=\langle 1| M\left|k_{N-1}\right\rangle\left\langle k_{N-1}\right| M \ldots\left|k_{1}\right\rangle\left\langle k_{1}\right| M|1\rangle
$$

- Essentially the same applies to the associated field states, continuous MPS!

Wick's theorem-interaction picture - "Feynman approach"

- interaction picture in field theory
- starting point is vacuum of free theory, i.e. Gaussian states
- perturbation is interaction term V, polynomials in field-operators
- formal S-matrix

$$
S=\sum_{n=0}^{\infty} \frac{i^{n}}{n!} \mathcal{T} \prod_{j=1}^{n} d x_{j}^{4} V\left(\mathbf{x}_{j}\right)
$$

- Wick's theorem: Gaussians? We can express everyting with two-point-functions!

$$
\left\langle\mathcal{T} \prod_{j=1}^{n} V\left(\mathbf{x}_{j}\right)\right\rangle_{0}=\sum_{\text {all contractions }}(\pm) \mathcal{N} \overline{\phi\left(x_{\sigma_{1}}\right) \phi\left(x_{\sigma_{2}}\right)} \overline{\phi\left(x_{\sigma_{3}}\right) \phi\left(x_{\sigma_{4}}\right)} \ldots
$$

Wick's theorem-interaction picture -"Feynman approach"

- interaction picture in field theory
- starting point is vacuum of free theory, i.e. Gaussian states
- perturbation is interaction term V, polynomials in field-operators
- formal S-matrix

$$
S=\sum_{n=0}^{\infty} \frac{i^{n}}{n!} \mathcal{T} \prod_{j=1}^{n} d x_{j}^{4} V\left(\mathbf{x}_{j}\right)
$$

- Wick's theorem: Gaussians? We can express everyting with two-point-functions!

$$
\left\langle\mathcal{T} \prod_{j=1}^{n} V\left(\mathbf{x}_{j}\right)\right\rangle_{0}=\sum_{\text {all contractions }}(\pm) \mathcal{N} \overline{\phi\left(x_{\sigma_{1}}\right) \phi\left(x_{\sigma_{2}}\right)} \overline{\phi\left(x_{\sigma_{3}}\right) \phi\left(x_{\sigma_{4}}\right)} \ldots
$$

- $\overline{\phi\left(x_{\sigma_{1}}\right) \phi\left(x_{\sigma_{2}}\right)}$ are propagators, i.e. two-point-functions in quasi-free vacuum states of non-interacting theories
- mental image is

Wick's theorem-interaction picture-"Feynman approach"

- interaction picture in field theory
$>$ starting point is vacuum of free theory, i.e. Gaussian states
\Rightarrow perturbation is interaction term V, polynomials in field-operators
$>$ formal S-matrix

$$
S=\sum_{n=0}^{\infty} \frac{i^{n}}{n!} \mathcal{T} \prod_{j=1}^{n} d x_{j}^{4} V\left(x_{j}\right)
$$

- Wick's theorem: Gaussians? We can express everyting with two-point-functions!

$$
\left\langle\mathcal{T} \prod_{j=1}^{n} V\left(\mathbf{x}_{j}\right)\right\rangle_{0}=\sum_{\text {all contractions }}(\pm) \mathcal{N} \sqrt{\phi\left(x_{\sigma_{1}}\right) \phi\left(x_{\sigma_{2}}\right)} \overline{\phi\left(x_{\sigma_{3}}\right) \phi\left(2\left(\sigma_{4}\right) \ldots\right.}
$$

- $\overline{\phi\left(x_{\sigma_{1}}\right) \phi\left(x_{\sigma_{2}}\right)}$ are propagators, i.e. two-point-functions in quasi-free vacuum states of non-interacting theories
- mental image is

- problem: the quasi-free theory is very different from the interacting theory
- problem: representations and questions about what kind of mathematical object is constructed this way

Perturbation theory with expansion into three-point-functions

- Suggestion
- start perturbation from locally interacting massive theory
- series expansion as usual
- evaluate the S-matrix with 'our Wick theorem'
- new virtual processes with three-point-functions
- applicable to 1D right now (e.g. quantum wire)
- Questions: remember

$$
c^{(4)}\left(k_{3}, k_{2}, k_{1}\right)=\frac{c^{(3)}\left(k_{3}, k_{2}\right) c^{(3)}\left(k_{2}, k_{1}\right)}{c^{(2)}\left(k_{2}\right)}
$$

ν is $c^{(p)}$ related to field equation?
\Rightarrow role of $c^{(3)}$?
$>$ diapams?

- simple expressions for dynamics?
- extension of (c)MPS-essentials to $>1 \mathrm{D}$?

Perturbation theory with expansion into three-point-functions

- Suggestion
> start perturbation from locally interacting massive theory
\downarrow series expansion as usual
- evaluate the S-matrix with 'our Wick theorem'
$>$ new virtual processes with three-point-functions
> applicable to 1D right now (e.g. quantum wire)
- Questions: remember

$$
c^{(4)}\left(k_{3}, k_{2}, k_{1}\right)=\frac{c^{(3)}\left(k_{3}, k_{2}\right) c^{(3)}\left(k_{2}, k_{1}\right)}{c^{(2)}\left(k_{2}\right)}
$$

$>$ is $c^{(2)}$ related to field equation?
\Rightarrow role of $c^{(3)}$?

- diaframs?
- simple expressions for dynamics?
- extension of (c)MPS-essentials to >1 D?

Thanks for your attention.

our paper: R. Hübener, A. Mari, and J. Eisert
Phys. Rev. Lett. 110, 040401 (2013).
also [arXiv:1207.6537]

continuous MPS ${ }^{67}$

- state vectors

$$
\left|\psi_{\mathrm{cMPS}}\right\rangle=\operatorname{Tr}_{\mathrm{aux}}\left[\mathcal{P} e^{\int_{0}^{L} d x Q(x) \otimes \mathbb{1}+R(x) \otimes \Psi^{\dagger}(x)}\right]|\Omega\rangle
$$

- one dimensional non-relativistic bosonic quantum field
- field operators $\Psi(x)$ and $\Psi^{\dagger}(x)$, with $\left[\Psi(x), \Psi\left(x^{\prime}\right)^{\dagger}\right]=\delta\left(x-x^{\prime}\right)$ and $\Psi(x)|0\rangle=0$
- $Q(x)$ and $R(x)$ are complex $d \times d$-matrices

[^3]R. Hübener et al. (FU Berlin)
\[

$$
\begin{aligned}
& h\left[A\left[s_{\nu}\right] \ldots A\left[s_{1}\right]\right]\left(s_{0} \ldots s_{1}\right) \\
& \lim _{\nu \rightarrow \infty}\left(1+\frac{s}{v}\right)^{d} \rightarrow e^{x}
\end{aligned}
$$
\]

continuous MPS ${ }^{67}$

- state vectors

$$
\left|\psi_{\mathrm{cMPS}}\right\rangle=\operatorname{Tr}_{\mathrm{aux}}\left[\mathcal{P}^{\int_{0}^{L} d x Q(x) \otimes 1+R(x) \odot \Psi^{\dagger}(x)}\right]|\Omega\rangle .
$$

> one dimensional non-relativistic bosonic quantum field
field operators $\Psi(x)$ and $\Psi^{\dagger}(x)$, with $\left[\Psi(x), \Psi\left(x^{\prime}\right)^{\dagger}\right]=\delta\left(x-x^{\prime}\right)$ and $\Psi(x)|0\rangle=0$

- $Q(x)$ and $R(x)$ are complex $d \times d$-matrices
- correlation functions

$$
\left\langle\Psi^{\dagger}\left(x_{2}\right) \Psi^{\dagger}\left(x_{3}\right) \Psi\left(x_{2}\right) \Psi(0)\right\rangle=\operatorname{Tr}\left[M^{[1]} e^{T \tau_{2}} M^{[3]} e^{T \tau_{1}} M^{[2]} e^{T \infty}\right]=\mathcal{C}_{\mathrm{j}}^{(3)}(\tau)
$$

- thermodynamic limit $L \rightarrow \infty$
- tranklation-invariant case, i.e. $R(x)=R$ and $Q(x)=Q$
> repr sent all normal ordered N-th order correlation functions as, e.g., with $\tau=\left(x_{2}, x_{3}-x_{2}\right), \mathrm{j}=(1,3,2)$, and $M^{[1]}=R^{*} \otimes 1, M^{[2]}=1 \otimes R$ and $M^{[3]}=R^{*} \otimes R$.
- Liotvillian matrix $T=Q^{*} \otimes 1+1 \otimes Q+R^{*} \otimes R$
\Rightarrow differences between points $\tau_{i}=x_{i+1}-x_{i}$ summarized as $\tau=\left(\tau_{1}, \tau_{2}, \ldots, \tau_{N-1}\right) \in \mathbb{R}^{N-1}$
\Rightarrow matrices $M^{[j]}$ be equal to $R^{*} \otimes \mathbb{1}, \mathbb{1} \otimes R$ or $R^{*} \otimes R$ etc.
${ }^{6}$ F. Verstracte et al., Phys. Rev. Lett. 104, 190405 (2010)
${ }^{7}$ T. J. Osborne et al., Phys. Rev. Lett. 105, 260401 (2010).

Data structure and transformations II: cMPS Consider continuous MPS

- correlation functions

$$
\left\langle O^{\left(i_{N}\right)} O^{\left(i_{N-1}\right)} \ldots O^{\left(i_{1}\right)}\right\rangle=\operatorname{Tr}\left[M e^{T \tau_{N-1}} \ldots e^{T \tau_{1}} M e^{T \infty}\right]=: C^{(N)}(\tau)
$$

- Laplace-transform

$$
\mathcal{L}^{(N)}(\mathrm{s}):=\int_{0}^{\infty} d^{N-1} \tau e^{-\mathrm{s} \cdot \tau} \mathcal{C}^{(N)}(\tau), \quad s_{1}, \ldots, s_{N-1} \in \mathbb{Q}
$$

- key observation: when $J(T)$ is non-degenerate

$$
\begin{aligned}
& \mathcal{C}^{(N)}(\tau)=\sum_{k_{1}, \ldots, k_{N-1}=1}^{d^{2}} c^{(N)}\left(k_{1}\right. \\
& \text { with } \lambda_{i}, \text { the eigenvalues of } T \\
& \text { application of laplace-trafo to correlators }
\end{aligned}
$$

$$
\mathcal{L}^{(N)}(s)=\sum_{k_{1}, \ldots, k_{N-1}}^{d^{2}} \frac{c^{(N)}\left(k_{1}, \ldots, k_{1}-1\right)}{\left(\lambda_{k_{1}}-s_{1}\right) \cdots\left(\lambda_{k_{N-1}}-s^{\prime}{ }_{-1}\right)}
$$

- meromorphic function. has characteristic poles and residues

$$
\begin{aligned}
& \text { function. has characteristic poles and residues } \\
& c^{(N)}\left(k_{1}, \ldots, k_{N-1}\right)=\langle 1| M\left|k_{N-1}\right\rangle\left\langle k_{N-1}\right| M \ldots\left|k_{1}\right\rangle_{1}|\lambda|
\end{aligned}
$$

[^0]: ${ }^{1}$ J. Eisert et al., Rev. Mod. Phys. 82, 277 (2010)

[^1]: ${ }^{2}$ S. R. White, Phys. Rev. Lett. 69, 2863 (1992).

[^2]: ${ }^{3}$ D. Perez-Garcia et al., Quant. Inf. Comp. 7, 401 (2007)
 ${ }^{4}$ M. Fannes et al., J. Phys. A 24, L185 (1991)
 ${ }^{5}$ U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).

[^3]: ${ }^{6}$ F. Verstraete et al., Phys. Rev. Lett. 104, 190405 (2010)
 ${ }^{7}$ T. J. Osborne et al., Phys. Rev. Lett. 105, 260401 (2010).

