Title: Classifying fractionalization: symmetry classification of gapped Z2 spin liquids in two dimensions

Date: Mar 26, 2013 03:30 PM

URL: http://pirsa.org/13030116

Abstract: Quantum number fractionalization is a remarkable property of topologically ordered states of matter, such as fractional quantum Hall liquids, and quantum spin liquids. For a given type of topological order, there are generally many ways to fractionalize the quantum numbers of a given symmetry. What does it mean to have different types of fractionalization? Are different types of fractionalization a universal property that can be used to distinguish phases of matter? In this talk, I will answer these questions, focusing on a simple class of topologically ordered phases, namely two-dimensional gapped Z2 spin liquids, and I will present a symmetry classification of these phases. I will also discuss efforts in progress to find microscopic models realizing different symmetry classes.

Pirsa: 13030116 Page 1/54

Pirsa: 13030116 Page 2/54

Thanks to...

- Andrew Essin (postdoc @ Boulder → postdoc @ Caltech IQI)
- Hao Song (student @ Boulder)

Pirsa: 13030116 Page 3/54

Themes / Questions

- 1. What is a quantum phase of matter?
- 2. What is quantum number fractionalization?

Goal: try to better answer these questions by developing classifications.

Pirsa: 13030116 Page 4/54

Outline

- 1. Motivation/background
- 2. Symmetry classification for non-point group symmetry
- 3. General symmetry classification
- 4. Realization of (some) symmetry classes in microscopic models

with Andrew Essin

with Hao Song and Andrew Essin

Pirsa: 13030116 Page 5/54

Quantum phases of matter

Pirsa: 13030116 Page 6/54

Gapped quantum matter (no symmetry)

• Throughout this talk: consider local bosonic models (*i.e.* generalized spin models with finite-range interactions)

Energy gap, no symmetry present

- $\underline{d=1}$: Only one trivial phase
- \bullet <u>d=2</u>:
- Trivial phase
- \bigcirc Kitaev E_8 state
- **№** Topologically ordered phases (anyons)
- d=3:
- Trivial phase
- Stack of d=2 states
- ❷ Topologically ordered phases (point and line "anyons")

Pirsa: 13030116 Page 7/54

Gapped quantum matter with symmetry

- Assume no spontaneous symmetry breaking.
- Notion of *symmetry enrichment*:

• For a fixed no-symmetry phase and fixed symmetry group G, we say that A, B, C are distinct symmetry enrichments.

Pirsa: 13030116 Page 8/54

Gapped quantum matter with symmetry

- Assume no spontaneous symmetry breaking.
- Notion of *symmetry enrichment*:

• For a fixed no-symmetry phase and fixed symmetry group G, we say that A, B, C are distinct symmetry enrichments.

Pirsa: 13030116 Page 9/54

Symmetry protected topological (SPT) phases

- SPT phases are symmetry enrichments of the trivial phase
- Recently, many more examples + developing systematic understanding

• <u>Key physical property</u>: non-trivial end/edge/surface states that are gapless, spontaneously break symmetry, or are otherwise non-trivial ... this is most robust for internal symmetries (*e.g.* time reversal, spin rotation)

Pirsa: 13030116 Page 10/54

Symmetry enriched topological (SET) phases

- SET phases are symmetry enrichments of topologically ordered phases
- Many examples of SET phases in models, but systematic understanding of how to classify SET phases is less developed than for SPT phases
- But many very recent works: M. Levin & A. Stern; A. Mesaros & Y. Ran; A. M. Essin & MH; L.-Y. Hung & X.-G. Wen; L.-Y. Hung and Y. Wan; Y.-M. Lu & A. Vishwanath; X.-G. Wen; C. Wang & T. Senthil

• In d=2 SET phases: anyon excitations \rightarrow non-trivial bulk properties. Space group symmetry is thus more important than for SPT phases.

Pirsa: 13030116 Page 11/54

Fractionalization

- What are distinct types of fractionalization?
- How to describe/classify?
- Can classifying fractionalization help classify SET phases?

Pirsa: 13030116 Page 12/54

Gapped Z₂ spin liquids in 2d

• Gapped Z_2 spin liquids = Z_2 topological order + no spontaneous symmetry breaking

 Z_2 topological order: particle types (anyons)

- Two bosons (e and m). One fermion (ϵ). Also one "trivial" boson (1).
 - Fusion rules: $\epsilon \times \epsilon = m \times m = e \times e = 1$ $\epsilon \times m = e$, $\epsilon \times e = m$, $e \times m = \epsilon$
 - Mutual statistics:

Pirsa: 13030116 Page 13/54

Symmetry classification

• In presence of symmetry, there are many gapped Z₂ spin liquids (X.-G. Wen,)

With symmetry: Z_2A Z_2B Z_2C

Break all symmetry: Z_2

- Can we classify such distinct Z2 spin liquids?
- Simpler: symmetry classification

Pirsa: 13030116 Page 14/54

Symmetry classification

• In presence of symmetry, there are many gapped Z₂ spin liquids (X.-G. Wen,)

With symmetry: Z_2A Z_2B Z_2C

Break all symmetry: Z_2

- Can we classify such distinct Z2 spin liquids?
- Simpler: symmetry classification

Symmetry classes

Not in this talk: symmetry classes "beyond fractionalization."

Pirsa: 13030116 Page 15/54

Prior work

- Projective symmetry group classification (Xiao-Gang Wen, 2001)
- Ying Ran & Xiao-Gang Wen, 2002, unpublished
- Alexei Kitaev, Ann. Phys. 2006, Appendix F

Pirsa: 13030116 Page 16/54

Outline

- 1. Motivation/background
- 2. Symmetry classification for non-point group symmetry
- 3. General symmetry classification
- 4. Realization of (some) symmetry classes in microscopic models

Pirsa: 13030116 Page 17/54

Spin rotation symmetry

• e-particle could have S=0, 1/2, 1, 3/2, ...

$$e, S=1/2$$
 + $I, S=1$ ("magnon") $e, S=3/2$

- Only integer vs. half-odd-integer spin matters → two fractionalization classes
- Therefore, we *don't* want to classify by irreducible representations. Coarser classification is needed.

	0	m	3 11	
$S \operatorname{mod} 1$	1/2	0	1/2	Same, under relabeling e↔m
	0	1/2	1/2	
	1/2	1/2	0	
	0	0	0	

• Three symmetry classes if *only* SO(3) spin rotation symmetry present

Pirsa: 13030116 Page 18/54

Superselection sectors

- Cannot locally create single isolated e, m or ε . Create in pairs and separate.
- Topological superselection sectors

Contains *all* physical spin model states on finite torus

Sectors are closed under action of local operators

Pirsa: 13030116 Page 19/54

Superselection sectors

- Cannot locally create single isolated e, m or ε . Create in pairs and separate.
- Topological superselection sectors

• Sectors are closed under action of local operators

Pirsa: 13030116 Page 20/54

String operators

• To move an e-particle, or to create two isolated e's, act with string operator:

• *e*- and *m*-strings anti-commute at crossing points:

Loop operators/algebra:

- Translation symmetry: $T_x T_y = T_y T_x$ $T_x T_y T_x^{-1} T_y^{-1} = 1$ Holds for physical states (1-sector)
- Acting on state with two e-particles:

• Note: we assume *e* and *m* particles not exchanged under translation. This is "beyond fractionalization," and is incompatible with symmetry localization

Pirsa: 13030116 Page 22/54

- Translation symmetry: $T_x T_y = T_y T_x$ $T_x T_y T_x^{-1} T_y^{-1} = 1$ Holds for physical states (1-sector)
- Acting on state with two *e*-particles:

These operators localized near corresponding *e*-particles

Pirsa: 13030116 Page 23/54

- Translation symmetry: $T_x T_y = T_y T_x$ Holds for physical states (1-sector)
- Acting on state with two *e*-particles:

These operators localized near corresponding *e*-particles

Interpretation: e-particle feels 0 or π flux per plaquette

Pirsa: 13030116

- Translation symmetry: $T_x T_y = T_y T_x$ Holds for physical states (1-sector)
- Acting on state with two e-particles:

These operators localized near corresponding *e*-particles

Interpretation: e-particle feels 0 or π flux per plaquette

This is a consequence of $e \times e = 1$ fusion rule

 $T_x^e T_y^e T_x^{e-1} T_y^{e-1} = \sigma^e = \pm 1 \quad \text{is $\underline{constant}$ on the e-sector}$

Pirsa: 13030116 Page 26/54

 $T_x^eT_y^eT_x^{e-1}T_y^{e-1}=\sigma^e=\pm 1\quad \mbox{is $\underline{constant}$ on the e-sector}$

Argument: Suppose the contrary...

1-sector region on which $T_x T_y T_x^{-1} T_y^{-1} = -1$

Contradiction!

 $T_x^e T_y^e T_x^{e-1} T_y^{e-1} = \sigma^e = \pm 1$ is $\underline{\it constant}$ on the e-sector

Argument: Suppose the contrary...

1-sector region on which $T_x T_y T_x^{-1} T_y^{-1} = -1$

Contradiction!

This implies that σ^e is a robust property of a \mathbb{Z}_2 spin liquid phase, as long as gap remains open and translation symmetry is preserved.

Translation symmetry: classes

- Translation symmetry: 2 fractionalization classes & 3 symmetry classes
- These classes all realized in Kitaev toric code model (vary signs of vertex & plaquette terms)

• This is *not* a classification of irreps, but instead is the coarser classification desired.

Pirsa: 13030116 Page 29/54

Translation symmetry: classes

- Translation symmetry: 2 fractionalization classes & 3 symmetry classes
- These classes all realized in Kitaev toric code model (vary signs of vertex & plaquette terms)

• This is *not* a classification of irreps, but instead is the coarser classification desired.

Pirsa: 13030116 Page 30/54

General symmetry group: fractionalization classes

- Some mathematics...
- Consider symmetry group G, elements $g \in G$, projective representation $\Gamma(g)$

$$\Gamma(g_1)\Gamma(g_2) = \omega(g_1,g_2)\Gamma(g_1g_2), \ \omega(g_1,g_2) \in Z_2$$
"Factor set" From fusion rules

- Associativity constraint: $\omega(g_1, g_2)\omega(g_1g_2, g_3) = \omega(g_1, g_2g_3)\omega(g_2, g_3)$
- Abelian group structure: $(\omega_A \omega_B)(g_1, g_2) = \omega_A(g_1, g_2)\omega_B(g_1, g_2)$
- "Gauge" transformation:

$$\Gamma(g) \to \lambda(g)\Gamma(g) \implies \omega(g_1, g_2) \to \lambda^{-1}(g_1)\lambda^{-1}(g_2)\lambda(g_1g_2)\omega(g_1, g_2)$$

• Classify factor sets up to "gauge" equivalence.

- 2nd cohomology group, coefficients
- Factor set classes also form Abelian group: $H^2(G, \mathbb{Z}_2)$
- in \mathbb{Z}_2

Fractionalization class (for one sector) Element of $H^2(G, \mathbb{Z}_2)$

- Translation symmetry: $T_x T_y = T_y T_x$ Holds for physical states (1-sector)
- Acting on state with two e-particles:

These operators localized near corresponding *e*-particles

Interpretation: e-particle feels 0 or π flux per plaquette

Page 32/54

Pirsa: 13030116

General symmetry group: symmetry classes

Fractionalization class (for one sector) Element of
$$H^2(G, \mathbb{Z}_2)$$

- Symmetry class given by specifying fractionalization class for each non-trivial superselection sector: $\omega_e, \omega_m, \omega_\epsilon \in H^2(G, \mathbb{Z}_2)$
- But only two are independent: $\omega_{\epsilon} = \omega_e \omega_m$ (From $\epsilon = e \times m$ fusion rule.)
- Pair (ω_e, ω_m) can also be viewed as element of $H^2(G, Z_2 \times Z_2)$, since $H^2(G, Z_2 \times Z_2) \simeq H^2(G, Z_2) \times H^2(G, Z_2)$
- Symmetry classes are elements of $H^2(G, \mathbb{Z}_2 \times \mathbb{Z}_2)$, up to $e \leftrightarrow m$ relabeling

Pirsa: 13030116 Page 33/54

General symmetry group: symmetry classes

Fractionalization class (for one sector) Element of
$$H^2(G, \mathbb{Z}_2)$$

- Symmetry class given by specifying fractionalization class for each non-trivial superselection sector: $\omega_e, \omega_m, \omega_\epsilon \in H^2(G, \mathbb{Z}_2)$
- But only two are independent: $\omega_{\epsilon} = \omega_e \omega_m$ (From $\epsilon = e \times m$ fusion rule.)
- Pair (ω_e, ω_m) can also be viewed as element of $H^2(G, Z_2 \times Z_2)$, since $H^2(G, Z_2 \times Z_2) \simeq H^2(G, Z_2) \times H^2(G, Z_2)$
- Symmetry classes are elements of $H^2(G, \mathbb{Z}_2 \times \mathbb{Z}_2)$, up to $e \leftrightarrow m$ relabeling

Pirsa: 13030116 Page 34/54

Space group fractionalization classes

- General space group operations move some points large distances. Notion of symmetry localization needs to be modified.
- Example: P_x ($x \rightarrow -x$ reflection symmetry)
- Still have $P_x|\psi\rangle = P_x^e(1)P_x^e(2)|\psi\rangle$

• But now $P^{e_x}(i)$ has support on the union of regions R_i and R'_i and a linear region connecting the two. On this linear region, $P^{e_x}(i)$ is an e-string.

Pirsa: 13030116 Page 35/54

Space group fractionalization classes

- General space group operations move some points large distances. Notion of symmetry localization needs to be modified.
- Example: P_x ($x \rightarrow -x$ reflection symmetry)
- Still have $P_x|\psi\rangle = P_x^e(1)P_x^e(2)|\psi\rangle$

• But now $P^{e_x}(i)$ has support on the union of regions R_i and R'_i and a linear region connecting the two. On this linear region, $P^{e_x}(i)$ is an e-string.

Pirsa: 13030116 Page 36/54

Space group fractionalization classes

- General space group operations move some points large distances. Notion of symmetry localization needs to be modified.
- Example: P_x ($x \rightarrow -x$ reflection symmetry)
- Still have $P_x|\psi\rangle = P_x^e(1)P_x^e(2)|\psi\rangle$

• But now $P^{e_{\chi}}(i)$ has support on the union of regions R_i and R'_i and a linear region connecting the two. On this linear region, $P^{e_{\chi}}(i)$ is an e-string.

Pirsa: 13030116 Page 37/54

Square lattice example

• $G = Square\ lattice\ space\ group \times time\ reversal \times spin\ rotation.$

• Square lattice space group generators: T_x , P_x , P_{xy}

• Note that: $T_y = P_{xy}T_xP_{xy}^{-1}$

• Time reversal \mathcal{T}

• Generators + relations specify the symmetry class in each non-trivial sector:

$$P_{x}^{2} = \sigma_{px} \qquad \qquad \mathcal{T}T_{x}\mathcal{T}^{-1}T_{x}^{-1} = \sigma_{Ttx}$$

$$P_{xy}^{2} = \sigma_{pxy} \qquad \qquad \mathcal{T}P_{x}\mathcal{T}^{-1}P_{x} = \sigma_{Tpx}$$

$$(P_{x}P_{xy})^{4} = \sigma_{pxpxy} \qquad \qquad \mathcal{T}P_{xy}\mathcal{T}^{-1}P_{xy} = \sigma_{Tpxy}$$

$$T_{x}T_{y}T_{x}^{-1}T_{y}^{-1} = \sigma_{txty} \qquad \qquad R(2\pi\hat{n}) = \sigma_{R}$$

$$R(\theta\hat{n})\mathcal{T} = \mathcal{T}R(\theta\hat{n})$$

$$T_{y}P_{x}T_{y}^{-1}P_{x}^{-1} = \sigma_{typx} \qquad \qquad R(\theta\hat{n})P_{x} = P_{x}R(\theta\hat{n})$$

$$\mathcal{T}^{2} = \sigma_{T} \qquad \qquad R(\theta\hat{n})T_{x} = T_{x}R(\theta\hat{n})$$

$$(+ \text{Lie algebra of spin rotations})$$

• Here the σ 's = ± 1

• 11 independent Z_2 parameters \rightarrow H²(G, Z_2) = (Z_2)¹¹

Space group symmetry classes and braiding

- How to determine ε fractionalization class from e and m classes?
- It turns out that the H^2 product is "twisted": $\omega_\epsilon = \omega_t \omega_e \omega_m$
- Basic idea: view ε as a composite of e and m, work out symmetry-localized group relations keeping track of new statistical phase factors.

Pirsa: 13030116 Page 39/54

Space group symmetry classes and braiding

• Result for ω_t factor set (specify in terms of group relations):

$$(P_xP_{xy})^4=-1 \qquad \text{Other relations trivial}.$$

$$(P_x^eP_{xy}^e)^4=\sigma_{pxpxy}^e \quad (P_x^mP_{xy}^m)^4=\sigma_{pxpxy}^m \quad (P_x^\epsilon P_{xy}^\epsilon)^4=-\sigma_{pxpxy}^e\sigma_{pxpxy}^m$$

• Only the "rotation" relation is modified ... consequence of braiding statistics.

Pirsa: 13030116 Page 40/54

Outline

- Motivation/background
- 2. Symmetry classification for non-point group symmetry
- 3. General symmetry classification
- 4. Realization of (some) symmetry classes in microscopic models

Pirsa: 13030116 Page 41/54

Concrete model: toric code

A. Kitaev

$$H = -u\sum_{s} A_s - K\sum_{p} B_p$$

Choose $u, K = \pm 1$

- Ground state has: $A_s = u, B_p = K$
- $\emph{e}\text{-particles live at vertices }\emph{s} \text{ where } A_s = -\emph{u}$
- *m*-particles live at plaquettes p where $B_p = -K$
- Focus on square lattice space group symmetry. Can show four symmetry classes realized depending on u, K: $(P_x^e)^2 = 1$ $(P_x^m)^2 = 1$

$$(P_x)^- = 1$$
 $(P_x^e)^- = 1$ $(P_x^m)^- = 1$ $(P_x^m)^2 = 1$ $(P_x^m)^2 = 1$ $(P_x^e P_{xy}^e)^4 = 1$ $(P_x^m P_{xy}^m)^4 = u$ $T_x^e T_y^e T_x^{e-1} T_y^{e-1} = K$ $T_x^m T_y^m T_x^{m-1} T_y^{m-1} = u$ $T_x^e P_x^e T_x^e P_x^{e-1} = 1$ $T_x^m P_x^m T_x^m P_x^{m-1} = 1$

 $T_{\nu}^{e}P_{x}^{e}T_{\nu}^{e-1}P_{x}^{e-1}=1$

$$(P_{xy}^{m})^{2} = 1$$

$$(P_{xy}^{m})^{4} = u$$

$$(P_{x}^{m}P_{xy}^{m})^{4} = u$$

$$T_{x}^{m}T_{y}^{m}T_{x}^{m-1}T_{y}^{m-1} = u$$

$$T_{x}^{m}P_{x}^{m}T_{x}^{m}P_{x}^{m-1} = 1$$

$$T_{y}^{m}P_{x}^{m}T_{y}^{m-1}P_{x}^{m-1} = u.$$

Concrete model: toric code

A. Kitaev

Choose $u, K = \pm 1$

- Ground state has: $A_s = u, B_p = K$
- $\emph{e}\text{-particles}$ live at vertices \emph{s} where $A_\emph{s}=-\emph{u}$
- *m*-particles live at plaquettes p where $B_p = -K$
- Focus on square lattice space group symmetry. Can show four symmetry classes realized depending on u, K: $(P_x^e)^2 = 1$ $(P_x^m)^2 = 1$

$$(P_{xy}^e)^2 = 1$$

$$\left(P_{xy}^m\right)^2 = 1$$

$$\left(P_x^e P_{xy}^e\right)^4 = 1$$

$$(P_{xy}^m)^4 = u$$
$$(P_x^m P_{xy}^m)^4 = u$$

$$T_{x}^{e}T_{y}^{e}T_{x}^{e-1}T_{y}^{e-1} = K \qquad \qquad T_{x}^{m}T_{y}^{m}T_{x}^{m-1}T_{y}^{m-1} = u$$

$$\left(P_x^m P_{xy}^m\right)^2 = u$$

$$v^m x^{m-1} x^{m-1}$$

$$T_x^e P_x^e T_x^e P_x^{e-1} = 1$$

$$T_y^m T_x^m T_x^{m-1} = 0$$

$$T_x P_x T_x P_x = 1$$

 $T_v^e P_x^e T_v^{e-1} P_x^{e-1} = 1$

$$T_x^m P_x^m T_x^m P_x^{m-1} = 1$$

$$T_y^m P_x^m T_y^{m-1} P_x^{m-1} = u.$$

Pirsa: 13030116 Page 44/54

Pirsa: 13030116 Page 45/54

Pirsa: 13030116 Page 46/54

Define: $T_x^e(r) = (-1)^{r_y} \sigma_{r,r+x}^z$ $T_x = T_x^e(r_1) T_x^e(r_2)$

Pirsa: 13030116 Page 47/54

Concrete model: toric code

A. Kitaev

$$H = -u\sum_{s} A_s - K\sum_{p} B_p$$

Choose $u, K = \pm 1$

 $\left(P_{xy}^m\right)^2 = 1$

 $\left(P_x^m P_{xy}^m\right)^4 = u$

- Ground state has: $A_s = u, B_p = K$
- $\emph{e}\text{-particles}$ live at vertices \emph{s} where $A_\emph{s}=-\emph{u}$
- *m*-particles live at plaquettes p where $B_p = -K$
- Focus on square lattice space group symmetry. Can show four symmetry classes realized depending on u, K: $(P_x^m)^2 = 1$

on
$$u, K$$
: $(P_x^e)^2 = 1$ $(P_x^m)^2 = 1$ $(P_x^m)^2 = 1$ $(P_{xy}^m)^2 = 1$ $(P_{xy}^m)^2 = 1$ $(P_x^e P_{xy}^e)^4 = 1$ $(P_x^m P_{xy}^m)^4 = u$ $T_x^e T_y^e T_x^{e-1} T_y^{e-1} = K$ $T_x^m T_y^m T_x^{m-1} T_y^{m-1} = u$ $T_x^m P_x^m T_x^m P_x^{m-1} = 1$

$$\begin{split} T_x^e P_x^e T_x^e P_x^{e-1} &= 1 & T_x^m P_x^m T_x^m P_x^{m-1} &= 1 \\ T_y^e P_x^e T_y^{e-1} P_x^{e-1} &= 1 & T_y^m P_x^m T_y^{m-1} P_x^{m-1} &= u. \end{split}$$

Define: $T_x^e(r) = (-1)^{r_y} \sigma_{r,r+x}^z$ $T_x = T_x^e(r_1) T_x^e(r_2)$

Pirsa: 13030116 Page 49/54

Explicit realization of (more) symmetry classes

with Hao Song

- Can all symmetry classes be realized? Probably not, in strictly 2d models. For some on-site symmetries, we know some classes can only be realized as the boundary theory of a d=3 SPT phase! (Vishwanath & Senthil; C. Wang & Senthil).
- Then, which/how many classes can be realized in 2d models?
- Approach: we study a class of generalized toric code models. Within this class, we prove that most of the 2080 symmetry classes are impossible, and find explicit realizations for the 82 others.
- <u>Class of models:</u> toric code defined on (almost) arbitrary 2d lattice. (Links may cross, but vertices may not stack.)
- No "spin-orbit coupling." Label links by ℓ , then:

Symmetry
$$S:\ell o S(\ell)$$

$$S: \sigma^z_\ell \to \sigma^z_{S(\ell)}$$

$$S: \sigma_{\ell}^x \to \sigma_{S(\ell)}^x$$

Pirsa: 13030116 Page 50/54

Explicit realization of (more) symmetry classes

with Hao Song

- Can all symmetry classes be realized? Probably not, in strictly 2d models. For some on-site symmetries, we know some classes can only be realized as the boundary theory of a d=3 SPT phase! (Vishwanath & Senthil; C. Wang & Senthil).
- Then, which/how many classes can be realized in 2d models?
- Approach: we study a class of generalized toric code models. Within this class, we prove that most of the 2080 symmetry classes are impossible, and find explicit realizations for the 82 others.
- <u>Class of models:</u> toric code defined on (almost) arbitrary 2d lattice. (Links may cross, but vertices may not stack.)
- No "spin-orbit coupling." Label links by ℓ , then:

Symmetry
$$S:\ell o S(\ell)$$

$$S: \sigma^z_\ell \to \sigma^z_{S(\ell)}$$

$$S: \sigma_{\ell}^x \to \sigma_{S(\ell)}^x$$

Pirsa: 13030116 Page 51/54

All e-fractionalization classes can be realized

- Model on this lattice has six independent Z₂ parameters controlling the sign of fluxes in the ground state.
- All 26 e-fractionalization classes realized by varying these parameters
- *m*-fractionalization class is trivial

Pirsa: 13030116 Page 52/54

Other classes

• General arguments show that only 82 symmetry classes are possible (so only 18 where both *e* and *m* classes are non-trivial)

Pirsa: 13030116 Page 53/54

Open issues

- General understanding of which symmetry classes possible in strictly 2d? Can all classes be realized at boundary of 3d SPT phases?
- Generalization to other topological orders (this is trivial for any Abelian topological order with non-point group symmetry)
- Three dimensions ... connection to edge states of 2d SPT phases?
- How can symmetry class be determined given ground state wavefunction, excited states? Application to numerics on kagome & J₁-J₂ Heisenberg models?
- Experimental signatures?

Pirsa: 13030116 Page 54/54