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Abstract: <span>Quantum number fractionalization is a remarkable property
of topologically ordered states of matter, such as fractional quantum Hall
liquids, and quantum spin liquids. For a given type of topological order, there
are generally many ways to fractionalize the quantum numbers of a given
symmetry. What does it mean to have different types of fractionalization? Are
different types of fractionalization a universal property that can be used to
distinguish phases of matter? In thistalk, | will answer these questions,
focusing on asimple class of topologically ordered phases, namely
two-dimensional gapped Z2 spin liquids, and | will present a symmetry
classification of these phases.& nbsp; | will

also discuss efforts in progress to find microscopic models realizing different
symmetry classes.</span>
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Themes / Questions

. What is a quantum phase of matter?

2. What is quantum number fractionalization?

Goal: try to better answer these questions by
developing classifications.
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Motivation/background

Symmetry classification for non-point group symmeltry
with Andrew

General symmetry classification Essin

Realization of (some) symmetry classes in microscopic models L with Hao Song
and Andrew
Essin

Pirsa: 13030116 Page 5/54



Pirsa: 13030116

. Quannnnphasesofmatter _____________________

Goal: classify all
phases of matter

Goal: work on
problems I actually
have a chance of
solving

Conflicting
goals!

Simpler goal: study
classification of
phases with an
energy gap

(simpler, but not
too simple)
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® Throughout this talk: consider local bosonic models (i.¢. generalized spin
models with finite-range interactions)

Energy gap, no symmetry present

e d=1: Only one trivial phase

o (=2

Trivial phase

Kitaev Eg state

Topologically ordered phases (anyons)
More?

© © OO

Trivial phase
Stack of d=2 states
Topologically ordered phases (point and line “anyons™)

More?

© © O C
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® Assume no spontancous symmetry breaking.

® Notion of symmetry enrichment:

Break all

Symmetry G symmetry
£
Phase A !
Same no-
Phase B > symmetry
Phase C phase

® For a fixed no-symmetry phase and fixed symmetry
group G, we say that A, B, C are distinct symmetry
enrichments.
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Break all

Symmetry G symmetry
Phase A > .
\ Same no-
Phase B > symmetry
Phase C phase

® For a fixed no-symmetry phase and fixed symmetry
group G, we say that A, B, C are distinct symmetry
enrichments.
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® SPT phases are symmetry enrichments of the trivial phase

® C(Classic examples: @ Haldane phase of S=1 chain
@ Z> topological band insulators (d=2.3)
Kane & Mele: 1. E Moore & Balents: R, Roy: Fu, Kiane
& Mele)

e Recently, many more examples + developing systematic
understanding

® Key physical property: non-trivial end/edge/surface states that are
gapless, spontancously break symmetry, or are otherwise non-
trivial ... this is most robust for internal symmetries (e.g. time
reversal, spin rotation)
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® SET phases are symmetry enrichments of topologically ordered
phases

® Many examples of SET phases in models, but systematic
understanding of how to classity SET phases is less developed than
for SPT phases

L ] Bll[ []llin_\" \-"Cl':\" recent \-\-"()]'kﬁ: M. Levin & AL Sterns AL Mesaros & Y. Rang AL M., Essin &
MH: L.-Y, Hung & X.-G.Wen: L-Y. Hung and Y. Wan: Y.-M. Lu & A. Vishwanath: X .-G, Wen; C. Wane
&1, Senth

® Ind=2 SET phases: anyon excitations — non-trivial bulk properties.
Space group symmetry is thus more important than for SPT phases.
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Fractiona]ization

O Il: Q O O v = 1/3 Fractional

cl lect Charge ¢/3 Laughlin quantum Hall Liquid
“harge ¢ electron

quasiparticles

Gapped 72
spin liquid

S=1 "magnon” S=1/2 spinons

What are distinet types of fractionalization?
How to describe/classily?

Can classifying fractionalization help
classify SE'T phases?

Page 12/54



Gapped Z; spin liquids in 2d

®  Gapped Z> spin liquids = 7 topological order + no spontaneous symmetry breaking

/> topological order: particle types (anyons)

® T'wo bosons (¢ and n1). One fermion (£). Also one “trivial” boson (1).

® Fusion rules: ¢ x

(S

®  Mutual statistics:
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® In presence of symmetry, there are many gapped Z, spin liquids (X6 wen
With symmetry: 7oA Z-B LrC e
Break all symmetry: 72
®

Can we classify such distinet 22 spin liquids?

e Simpler: symmetry classification

e N
Z> spin liquids
4 N\ A
Symmetry class | Symmetry class 2
Distinct phases: Distinct phases:
la, 1b; 1c, ... 2ay 20526 e
. /O /
\. J

, Fractionalization classes
Symmetry classes - . —
(types of fractionalization)
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® In presence of symmetry, there are many gapped Z, spin liquids (X6 wen
With symmetry: 7oA Z-B LrC e
Break all symmetry: 72
®

Can we classify such distinet 22 spin liquids?

e Simpler: symmetry classification

e N
Z> spin liquids
( N\ [ D
Symmetry class | Symmetry class 2
Distinct phases: Distinct phases:
la, 1 1c, ... PP o)
- /N /
\. J
Not in this talk: symmetry
. Fractionalization classes - .
Symmetry classes . classes “beyond
’ ’ (types of fractionalization) -

fractionalization.”
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Prior work

® Projective symmetry group classification (Xiao-Gang Wen, 2001)
® Ying Ran & Xiao-Gang Wen, 2002, unpublished

® Alexei Kitaev, Ann. Phys. 2006, Appendix F
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Motivation/background

Symmetry classification for non-point group symmetry

General symmetry classification

Realization of (some) symmetry classes in microscopic models
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Spin rotation symmetry

/

, S=1/2 1.5=1("magnon™) ¢, 85=3/2

® Only integer vs. half-odd-integer spin matters — two fractionalization classes

® Therefore, we don't want to classify by irreducible representations. Coarser
classification is needed.

p)
el l /" Same. under relabeling

/ eem
Smod |

®  Three symmetry classes if only SO(3) spin rotation symmetry present
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Superselection sectors

e Cannot locally create single isolated ¢, m or €. Create in pairs and separate.

® Topological superselection sectors

| - "Trivial” sector ¢ - fermion

Contains all physical spin
model states on finite torus

O

m - vison (boson) ¢ - boson

®  Scctors are closed under action of local operators
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Superselection sectors

e Cannot locally create single isolated ¢, m or €. Create in pairs and separate.

® Topological superselection sectors
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Contains all physical spin
model states on finite torus

@

m - vison (boson) ¢ - boson

®  Scctors are closed under action of local operators
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-
String operators
® To move an e-particle, or to create two isolated ¢’s. act with string operator:

® - and m-strings anti-commute at crossing points:

//= (-1>\/\

®  [oop operators/algebra:

Ly L) =0 D=4 irrep (4-fold
' ground state
( my <
{ L_:/' L.r } = () degeneracy)

l' ],”j ]._
rr ( ey
L, L

X

Pirsa: 13030116 Page 21/54



‘Translation symmetry

- . Holds for physical
» [ranslation symmeltry: P
states (1-sector)

® Acting on state with two e-particles:

." @ “Symmetry
. \ / localization™

These operators localized near

corresponding e-particles

/\
o- -0

Region R¢) Region Re;

e Note: we assume ¢ and m particles not exchanged under translation. This is
“beyond fractionalization,” and is incompatible with symmetry localization
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Translation symmetry

. . 1.1, = 1,1, Holds for physical
® Translation symmetry: " *- ¢ 087 O1Cs TOT PRYSIC
rar,Tr. T, I states (1-sector)

®  Acting on state with two e-particles:

@ ¢ @ “Symmetry
T' l)T ( ) @ localization™

These npu‘um.\ Inmli‘/,cd near

corresponding e-particles

e  —+©

Region R¢) Region Re;

e Note: we assume ¢ and m particles not exchanged under translat
“beyond fractionalization,” and is incompatible with symmetry |
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- : I 1, =11, Holds for physical
® ‘Translation symmetry: 9 o Y ’
ladyly 4y | states (1-sector)

® Acting on state with two e-particles:

T, ©> —Te(ri(2)] @ s
o/ /@

These operators localized near

corresponding e-particles

r—
‘l.' ‘l-"‘.-lA‘ II .' I
Interpretation: e-particle feels
=07 0 or m flux per plaquette
Tor(re) NT) T = 4
J (—
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- : ., 11, =171, Holds for physical
® ‘Translation symmetry: 9 o Y ’
r.r,T. T | states (1-sector)
® Acting on state with two e-particles:

— T€ 1)71((_) O “Symmetry

(&
[\r ( " @ localization™

These operators localized near

T, | ©

corresponding e-particles

...... '—--—'——"""'—-—-—-—b
IT,Tr.'T, I
Interpretation: e-particle feels
¢ =07 0 or m flux per plaquette
15T ) (1)) Q]
! Y  —
This 1s a consequence of ¢ x ¢ I fusion rule
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Translation symmetry

i fodd bl -0 ' i “b = %= 41 is constant on the e-sector
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Translation symmetry

i fpd G0 -0 ' d s “1 = %= 41 is constant on the e-sector

Argument: Suppose the contrary...

— 0

o =1

— 1

: . o rr—
I-sector region on which 7,7, T "1

Contradiction!
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Translation symmetry

r Cr Wer 16 — I [ ‘l“--—l — i e
TeTeTe 1T = g° =

+1

1s constant on the e-sector

Argument: Suppose the contrary...

o =1

. . S s ale Al | »
I-sector region on which 1,7, T "1

r— 1
Y

Contradiction!

This implies that @° is a robust property of a Z> spin
liquid phase, as long as gap remains open and
translation symmetry is preserved.
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Translation symmetry: classes

®  Translation symmetry: 2
fractionalization classes &

3 symmetry classes

These classes all realized in
Kitaev toric code model

(vary signs of vertex &
plaquette terms)

®  This is not a classification of irreps, but instead 1s the coarser classification desired.
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Some mathematics...
Consider symmetry group G, elements g € (4, projective representation ['(g)

(1) (g2) = w(gr,g2)1(g192), w(g1.92) € Zs

\ N

“Factor set” From fusion rules
Associativity constraint: w(g1, g2 )w(g192.93) = w(g1, g293)w(g2, g3)
Abelian group structure: (wWawp)(gr.g2) = walgr. g2)wp(91,92)

“Gauge™” transformation:

P(g) = Mg)T(g) = w(g1.92) = A (g)A (g2) M g192)w (91, g2)

. L > o L . i . f
Classify factor sets up to “gauge™ equivalence. 2nd cohomology
group, coelhcients

. : . Y VP .
Factor set classes also form Abelian group: H (G, Z5) in 7

Fractionalization . . 9 ,
: Elementof H=((/, Z5)
class (for one sector) =

Page 31/54



oo : ., 11, =171, Holds for physical
® ‘Translation symmetry: 9 o Y ’
r.r,T. T, | states (1-sector)

®  Acting on state with two e¢-particles:

T, ©> = Te(pi(2)] @ s
o/ /@

These operators localized near

corresponding e-particles

r——
‘l.' ‘l."‘.lA‘ II.' I
Interpretation: e-particle feels
=07 0 or m flux per plaquette
Tor(ro) N(T) T = 4
J (—
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Fractionalization : . 9 -
. Element of H=((7, Z5)
class (for one sector) ' -

® Symmetry class given by specifying fractionalization class for each non-trivial

. )y - \
superselection sector: w, . wy,.w, € H*((, Z5)
®  Butonly two are independent: We = Welyy, (From ¢ = ¢ x m fusion rule.)

®  Pairlwe.wy) can also be viewed as element ol 1= (G, Z, < Z,),
since H= (G, Zy x 7o) ~ H* (G, Z,) x H*(G, Z5)

e Symmetry classes are elements of /(G Zy < Z3)  up 1o ¢ <= m relabeling
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General symmetry group: symmetry classes

Fractionalization : . Vi o
_ Elementof H*((/, Z5)
class (Tor one sector) /

Symmetry class given by specifying fractionalization class for each non-trivial

. )y r \
superselection sector: w, . wy,.w, € H*((, Z,)
But only two are independent: We = Wely, (From e % fusion rule.)

1 ( \ L » ) v r N
Pair (we. wye ) can also be viewed as element of H=((/, Z, x Z5),

Hil]L'L' I/_}':(Ir. Z: X X_JI o 112((:. Z_JI X I!J"(;Z_ﬂ )

Symmetry classes are elements of /17((, Z, % Z5)  up 1o ¢ <> m relabeling
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® General space group operations move some points large distances. Notion of
symmeltry localization needs to be modified.

® Example: P, (v — -x reflection symmetry)

e Stillhave P.[¢)) = PI(1)PS(2))

/ Region R,

Region R’y

©

. ¥ »(r >,
Region R Region R

I I I I L L L

®  But now P\(i) has support on the union of regions R; and R’; and a linear region
connecting the two., On this lincar region, P¢,(i) 18 an ¢-string.
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® General space group operations move some points large distances. Notion of
symmeltry localization needs to be modified.

® Example: P, (x — -xreflection symmetry)

e Stillhave P.[¢)) = PL(1)PS(2)|w)

/ Region R,

Region R’y

©

. ¥ »(r >,
Region R Region R

B I I I I e R I
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® General space group operations move some points large distances. Notion of
symmeltry localization needs to be modified.

® Example: P, (x — -xreflection symmetry)

e Stillhave P.[¢)) = PL(L)PS(2)|w)

/ Region R,

Region R’y

©

. " »(r >,
Region R Region R

- e o e e e e s wom w m

®  But now P\(i) has support on the union of regions R; and R’ and a linear region
connecting the two. On this lincar region, P¢,(i) 18 an e-string.
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® (G = Square lattice space group x time reversal x spin rotation.,

]

®  Square lattice space group generators: 7', Py, Py, i
]
]

e Notethat: 7, = P, 1.FP [ —
ety i
|
|

® Time reversal 7 —
;
’ . . . { ]
®  Spin rotation (by 0 about n-axis): [2(0n) P

®  Generators + relations specily the symmetry class in each non-trivial sector:

P: =a,, TET ' = oy,

P2 = 0pny TP, T "P,. =0y,

PPy - TPyT ' Puy = 0rpay
v 1 —1 R(2mn) = op
falyla Ty Gtaty (00T TR0
LPTP = o RO P, = P, R(0n)
1P, P =a ypi R(OM)P,, = P, R(01)
T? =0y RiOn)T, ' R0

(4 Lic algebra ol spin rotations)
® Herethe o's =1

® |l independent Z; parameters — HX(G Zy) = (7))
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® How to determine € fractionalization class from ¢ and m classes?
® [t turns out that the H- product 1s “twisted™ w, = Wi W,

®  Basic idea: view € as a composite of ¢ and m, work out symmetry-localized

group relations Keeping track of new statistical phase factors.

L
L
(a) @ .
L)
R X R I
L]
X
L ]
. t
RE R K
K.
L]
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Result for wy factor set (specily in terms ol group relations):

Other relations trivial.

(l’..'l’ﬁ;,r}l '_'l

{ l)f l). PI py I ])‘r.rr l)_:.",; :] | il ': ]): [)r ]i

y
rooay papry Py Ly

(

parpry

LT

Py

Only the “rotation™ relation 1s modified ... consequence of braiding statistics.
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Outline

Motivation/background
Symmetry classification for non-point group symmeltry

General symmetry classification

Realization of (some) symmetry classes in microscopic modclsJ
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AL Kitaes

o

”_\.:3_ SR | I HZ,L KB,

I

Choose 1. N = +1

e Ground state has: A, = wu. l’),, K

® c-particles live at vertices s where A, = —u
® m-particles live at plaquettes p where [3,, I\

® [Focus on square lattice space group symmetry. Can show four symmeltry classes

realized depending on u, K: (P - (P
(P:) =1 (P =1

(Pepe ) =1 (P Pyt =

TeTeTe-iTe-l = K Tttty

TEpeTEpe~1 = T prmpn-l o

TEPSTE Pt = YN I N L=
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v Kitaes

o

”.\.:3_ SR | I HZ,L KB,

12

Choose 1. N = +1

® Ground state has: A, = wu. l’),, K

® c-particles live at vertices s where A, = —u
® m-particles live at plaquettes p where 3, I\

®  Focus on square lattice space group symmetry. Can show four symmeltry classes

realized depending on u, K: (P - (P -
(Pr)" =1 (P =1

(repe ) =1 (Prpmy! =

TeTiTe TSt = K Tmmin=iem=l = g

TEpPeTEpe~1 = T pnmpn-l o

TEPSTE Pt = Pl pitl = g,
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r
L

[nitial state:

two e-particles.

connected by string

"

O
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r
L

[nitial state:

two e-particles.

connected by string T :
¢ Y & [Tanslation

"

O —

Move each particle by

adding piece of string

)
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Explicit construction of symmetry localization

Initial state:
two e-particles.

connected by string

Translation

I

Move each particle by
adding piece of string
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Explicit construction of symmetry localization

Initial state:
two e-particles.

connected by string

Translation

b o e o ] e e e = = = -

I

Move each particle by
adding piece of string

=)

Shift string over

Fan
~

Ly

- 2y
Gives phase sp

Define: 7 (r) = (- 1)o7 ., |:"> T, =T, (r)T;(r2)
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o

-

SN

- | I

w. B, = K

Ground state has: A, P

e-particles live at vertices s where A, = —u

m-particles live at plaquettes p where 3, I

”Z A,

I

Choose 1. I\ = +1

Focus on square lattice space group symmetry. Can show four symmetry classes

realized depending on u, K:

(Pepe ) =1

T\ TS = K
TEpPeTEpe~1 =
Torers et =

(PM)° =1

(Pry) =1

(P Pyt =
vttt =y
T pnmpn-l o
T phrm-ipn=l oy,

I\'ZH

L

AL Kitaes
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Explicit construction of symmetry localization

Initial state:
two e-particles.

connected by string

Translation

I

Move each particle by
adding piece of string

=D

Shift string over

Fan ¥
-

- 2y
Gives phase sp

1)0“[10: l:“J ': I:'IU(T!:.J'-;:,' @ TI — T:(,l )T!((Iz)
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Explicit realization of (more) symmetry classes

with Hao Song

Can all symmetry classes be realized? Probably not, in strictly 2d models. For
some on-site symmetries, we know some classes can only be realized as the
boundary theory of a d=3 SPT phase! «Vishwanath & Senthil: €. Wang & Senthil)

Then, which/how many classes can be realized in 2d models?

Approach: we study a class of generalized toric code models. Within this class,
we prove that most of the 2080 symmetry classes are impossible, and find
explicit realizations for the 82 others.

Class of models: toric code defined on (almost) arbitrary 2d lattice. (Links may
cross, but vertices may not stack.)
No “spin-orbit coupling.” Label links by £ then:

Symmetry S:l{— nSr(()

f s £
AS 0-( _) (T'S'((*)

Pirsa: 13030116 Page 50/54



Explicit realization of (more) symmetry classes
with Hao Song

Can all symmetry classes be realized? Probably not, in strictly 2d models. For
some on-site symmetries, we know some classes can only be realized as the
boundary theory of a d=3 SPT phase! (Vishwanath & Senthil: C. Wang & Senthil)

Then, which/how many classes can be realized in 2d models?

Approach: we study a class of generalized toric code models. Within this class,
we prove that most of the 2080 symmetry classes are impossible, and find
explicit realizations for the 82 others.

Class of models: toric code defined on (almost) arbitrary 2d lattice. (Links may
cross, but vertices may not stack.)
No “spin-orbit coupling.” Label links by £ then:

Symmetry S:l{— 15’(()

S:o;, = (73:-( 0)

Pirsa: 13030116 Page 51/54



]/\\/"\ § ]f‘\\)\\‘ . . . .

.S \JS .) . ) . . . . .

G &S ) aey &
' ,-'5 \JS _ S \JS : K . K i K .
NN AT A

S ! \JS 3 ! K . K . K .

C L NRIPIAIRED
k_(\J kf\J . . . .

® Model on this lattice has six independent Z, parameters controlling the sign of
fluxes in the ground state.

® All 2° e-fractionalization classes realized by varying these parameters

® -fractionalization class is trivial
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Other classes

®  General arguments show that only 82 symmetry classes are possible (so only
I8 where both ¢ and m classes are non-trivial)
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Open issues

General understanding of which symmetry classes possible in strictly 2d? Can
all classes be realized at boundary of 3d SPT phases?

Generalization to other topological orders (this is trivial for any Abelian
topological order with non-point group symmetry)

Full symmetry classification, including “beyond fractionalization™ ¢ <= m

interchange
Three dimensions ... connection (o edge states of 2d SPT phases?

How can symmetry class be determined given ground state wavefunction,
excited states? Application to numerics on kagome & J-J> Heisenberg models?

Experimental signatures?
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