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Abstract: <span>In the study of the string/gauge theory duality (AdS/CFT), an important role is played by the relation between local operators and
Wilson loops. Perhaps the most well known example is the relation between twist two operators and the light-like cusp Wilson loop. On the string
side, the twist two operator is represented by a"long" string (GKP). In thistalk | use T-duality to argue that such relation is also natural for "short"
strings. | discuss some examples and present a map between the shape of a short string crossing the Poincare horizon and the shape of a
corresponding Wilson loop. <br>Based on arXiv:1212.4886 with Arkady Tseytlin (Imperial College). <br></span>
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Summary

e INntroduction

String / gauge theory duality ( )

e Relation between local operators and Wilson loops

Twist two operators and light-like cusp.
Involves far from BPS, “long” strings.

Much was learned from “short” near BPS strings (BMN).

Suggestive facts indicating a relation for “short”, near
BPS strings.
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e Map between short strings and Wilson loops.

Use T-duality to map short strings falling into the
Poincare extremal horizon to Wilson loops.

e Simple Examples

Point-like string along a light-like geodesic in AdS and

on the sphere (BMN vacuum).

e Fluctuations, LL model, etc.

One can map more generic states to wavy line Wilson
loops.

e Conclusions
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Gauge theory | String theory

Strings live in curved space, e.g.
AdS xS>

S%: Y, 24+Y 2+ . +Y 2=1

AdS.: X,2+X,%+...-X,?-X_,2=-1 (hyperbolic space)
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AdS/CFT correspondence (Maldacena 1997)

Gives a precise example of the relation between
strings and gauge theory.

Gauge theory String theory

N=4 SYM SU(N) on R* IIB on AdS xS°
A, , P, P radius R

: A
Operators w/ conf. dim.A String states wW/E = B

RO e

2 . A large — string th.
N — o, A=g, N fixed ‘A small — field th. l
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Poincare and global coordinates in AdS.

The boundary of global coordinates is RxS? and the boundary
of Poincare is R*!.

The field theory lives in the boundary metric, therefore string
theory in global AdS is dual to gauge theory on RxS? and in
Poincare dual to gauge theory on R%!.

[In Minkowski signature, Poincare coordinates have an
extremal horizon and, 1n fact, only cover part of the space.

)

ds® = — cosh” p dt* + dp* + sinh” p (JQ?_.{]

1
ds” = (dZ° 4+ dX,dX")

= —= =
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Relation between global and Poincare patches

Sy

coshp =1/cosé

1.2 dt* + dg? +).-i|1"’.~, HSZ'“J:ﬂ () < 5 < 7T/2

yad £
COS~< ¢
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String stateses L_ocal operators:

Strings moving inside global AdS
I AdS/CFT correspondence
States of field theory on S3xR!
t State/op. correspondence (conf. theory)

[Local operators for field theory on RG:-D

Example: BMN geodesic (angle ¢ is on the sphere S?)

t=J1r, o=.J1, p=0.
L |

O=TrX"’,

1
B |
VA
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Wilson loops: associated with a closed curve in space.

Basic operators in gauge theories. E.g. qq potential.

y /

| R
W = TTr P exp
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Open strings ending on the boundary

correspond to Wilson loop operators:

Example: Circular Wilson loop

Berenstein-Corrado-Fischler-Maldacena 1999
Gross-Ooguri 1998,
Erickson-Semenoff-Zarembo 2000
Drukker-Gross 2001

Pestun 2007

Equivalent to straight line Wilson loop:

l'=71, Z=o0
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Is there a relation between the two type of
observables, i.e. operators and Wilson loops?

Yes, perhaps the most well known example 1s the relation

between large spin twist two operators and light-like cusp
(

D

Wilson loop (Korchemsky-Marchesini 1993).

Twist two operators dominate Deep Inelastic Scattering in

QCD.
A cusp produces an anomalous dimension (Polyakov 1980).
When the lines forming the cusp become light-like, the angle

goes to infinity. The anomalous dimension diverges, the
divergence is controlled by the light-like cusp anomaly.
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In AdS/CFT 1t works the same way (MK 2002). In field theory
the same argument applies, e.g. in perturbation theory

Bl /
Otproney = Tr®'V, -V, @

210, usp lll[;i..Al

L
(PIW (A")[p) ~ e (—)

§
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In AAS/CFT 1t works the same way (MK 2002). In field theory
the same argument applies, e.g. in perturbation theory

Bl /
Otprney = Tr®V, oV, @

OS(A) = IT ((I)lvm “ .. V“H(I)l) ANGEI AN

7

L5 = (p|lOlp) = Cs(ip, AF)S (

2l cusp In(p.A)

L
(PIW (A |p) ~ e (Z)

(
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[In AdS/CFT it works the same way (MK 2002). In field theory
the same argument applies, e.g. in perturbation theory

Bl /
O{/’I"'/’H} = Iro V{m BE V,,h.}q)

OS(A) = 1T ¢ oo V“H(I)l) Al’l L. A/!s

Lo = (plO|p) = Cs(ip, Af)S (

21, usp llilp_,j.l

L
(PIW (A")[p) ~ e (—)

(
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[n string theory:
Twist two operators can be computed by long rotating strings
(Gubser-Klebanov-Polyakov 2002) GKP string.

X2+ X§

Xo X 4
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[n fact the two string solutions are related by a double analytic
continuation. (Roiban-Tirziu-Tseytlin-MK 2007)

cusp X,
X, + X6 -X{-X:=1

—

cusp X()X—l — XlX:‘Z

GKP X0 X_1 = X1Xp
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[n fact the two string solutions are related by a double analytic
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cusp X,
X, + X6 -X{-X:=1

—

-2 2
Xy — X1 = ;

cusp X()X—l — X1X2
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[n fact the two string solutions are related by a double analytic
continuation. (Roiban-Tirziu-Tseytlin-MK 2007)

cusp X,
X, + X5 -X{-Xs=1

—

cusp X()X—l — XlX:Q

GKP X0 X_1 = X1Xp
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Scattering amplitudes:

Field theory:
Bern-Dixon-Smirnov 2005 (BDS) formula, etc.

String theory:

Alday-Maldacena 2007 used T-duality to map the problem
of scattering amplitudes to the problem of computing

Wilson loops with cusps.

More recently: Basso-Sever-Vieira 2013
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T-duality

Kallosh and Tseytlin 1998 used T-duality to simplify the string
action.

The 1deas by Alday-Maldacena 2007 suggested an extension
of T-duality which was made more precise by Berkovits-
Maldacena 2008 and Beisert-Ricci-Tseytlin-Wolf 2008 . It

involves an extra (novel) fermionic form of T-duality.

Relates AdS xS to itself, equivalently relates ¥=# SYM to
itself as a “momentum <= position’ duality.
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. 1 5
Metric: 5= Zz((]Z— + d&,dx")

: “dod
Action: g — 5 ‘ ;_)T (0“Z0,Z + 0"X,,0,X")

EOM:

1 1
00’ P UJXXI — 07‘ ¢ (‘)TX“

8(7 87-28M — 8’7‘ aai’u

o, (220.%") = 9, (220,2")
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. 1 X
Metric: §” = 22((12_ + d A, dX"T)

: “dod
Action: g — 5 ‘ ;_)T (0“Z0uZ + 0"X,,0,X")

EOM:

1 1
Do | =50,XH ) = 0, | =50, X"
(z20m) =0 (o)
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Going back to relation between local operators and Wilson
loops, the GKP string for large S 1s a “long” string (large S 1s
the limit when 1t touches the boundary).

What about *“‘short” strings?. Let’s look at small S.
Dimension of the spin S and twist J operator or energy of the

dual *““short” spinning string has following expansion in the
small S limit (Basso 2011, Gromov 2012)

E? = J? + h(\,J)S + O(S?)
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And the cusp?. For small angle (Correa-Henn-Maldacena-
Sever 2012, Drukker et al. 2012):

‘ \/X /') \/X >
F(:usp((/)« y e 2 ) O~

d—0 __17-[-2 /](\/X)

¢ =0 =— straight line

Recall large S 1s large angle. Apparently small S may be

related to small angle?
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Another observation

The string action 1s the same for closed and open strings.

Short string solutions can be found using Riemann theta

functions associated with a hyperelliptic curve.

Closed strings: Dorey-Vicedo 2006, Jevicki-Jin 2009, Dorey-
Los1 2008

Open strings: Irrgang-MK 2012.

The spectral curves are the same. A+ A
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Use T-duality to map short strings to Wilson loops.

[n the spirit of D-branes, instead of considering open strings
ending at the horizon, consider closed strings that can fall into
the Poincare horizon which 1s mapped to the boundary. It will
therefore give a Wilson loop.

—
—
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Another way of motivating this idea

Consider the computation of a correlation function for the

field theory living on S?

Should map to a
correlation function of the
theory 1n flat space.

However, Poincare
coordinates only cover part
of the space and also of the
boundary.

A string can ’escape”
through the horizon!.

Page 36/81



Pirsa: 13030111

Another way of motivating this idea

Consider the computation of a correlation function for the

field theory living on S?

Should map to a
correlation function of the
theory 1n flat space.

However, Poincare
coordinates only cover part
of the space and also of the
boundary.

A string can ’escape’
through the horizon!.

Page 37/81



Global Poincare

boundary boundary
honzon boundary

The disappearing string should be represented by an
operator 1n the field theory. Which operator? == WL
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[t should be interesting to compute “pure’ correlators, for
strings coming out of the past horizon and going into the
future horizon never touching the boundary. This should be T-
dual to ordinary WL correlators.

Global

“ Correlator of WL
in usual &=« SYM.

Poincare boundary

boundary boundary
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Examples:
Consider the case of a small string ( ~ massless )
Two possibilities for massless geodesics:

AdS massless

tant = k7, sinhp = kT

AdS massive (rotating on S°)
(BMN geodesic).

t=J1r, o=J1, p=020.
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First case (Massless AdS geodesic):

1
Z=—

y
KT

L 0,T

7 =

~

O <> T T = k7, £ =
Straight-line Wilson loop!
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A point-like string becomes a straight WL of the T—duaZEI3
theory.
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Second case (Massless BMN geodesic):

Global 1

[ = ——, T =cotanJ T
sin /T

T
7:0 —> —
J

1
=

_~ —~

T = Jo, Z =sinJt, ¢

O, T =

o1 =7

~

1T JT. Z = sin Jo,

-

boundary boundary 7
’ .
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Therefore the dual to the BMN geodesic i1s two parallel lines

running on opposite directions and on top of each other.
Each line is at opposite poles on the S°.
In Euclidean signature this 1s equivalent to a BPS cusp with

angle & (or 0 depending on convention) in space and m on the
sphere.
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Another simple way to see that this Wilson loop 1s BPS i1s to
look at the D3-brane picture. The string 1s just perpendicular
to the brane, there 1s a minimum radius and on the sphere
goes from pole to pole.
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Consider now small fluctuations of the (first) string.

Since the string is a small fluctuation of the point-like
string we can just study the string in flat space.
Moreover, we can use light-cone gauge (since in flat
space it is a type of conformal gauge) and the equations
reduce to a set of harmonic oscillators.

More formally, start from embedding coordinates:

‘ ‘ ‘ s‘) ") ‘
X2+ X5 - X7 - X5 —-Xi{—X] =

and expand around X,=1:

X()N 1—|—€2 . Xj\[;,é()NF
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The metric around this (any) point is approximately:

ds* >~ € (—dy; + dy,dy,)

Light-cone gauge: r=1.4
Y- =Yo —Ys = T

Most general solution for the other coordinates:

yi(o,7) =yi(o,7) =y (0 +7)+y; (0 —7)

=0 corresponds to the horizon. Classically we need to
specify the shape and velocity of the string on that
surface. 33
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Consider the case of a small string ( ~ massless )
Two possibilities for massless geodesics:

AdS massless

tant = k7, sinhp = kT

AdS massive (rotating on S°)
(BMN geodesic).

t=Jr, o=.J1, p=020.

Pirsa: 13030111 Page 53/81



Second case (Massless BMN geodesic):

Global 1

Z = ——, T =cotanJr
sin /T

T
7:0 —> —
T

1
—

~ —~

/Z =sinJT, ¢

O, T =

0.T =T

-~ —~

/Z =sinJo, o =Jo

-

boundary boundary 7
’ .

Pirsa: 13030111 Page 54/81



Second case (Massless BMN geodesic):

Global 1

Z = ———, T =cotanJr
sin /T

s
T:0— —

-~ -~

Z =sinJo, o = Jo

-

boundary boundary 7
’ .
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The metric around this (any) point is approximately:

ds* >~ € (—dy; + dy,dy,)

Light-cone gauge: r=1..4
Y- =Yo —Ys = T

Most general solution for the other coordinates:

yi(o,7) =vi(o,7) =y (6 +7) +vy; (0 —7)

=0 corresponds to the horizon. Classically we need to
specify the shape and velocity of the string on that
surface. 33
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A point-like string becomes a straight WL of the T—duaZEI3
theory.
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There seems to be a problem. These fluctuations
should be mapped to fluctuations of the Wilson loop
which is in AdS and not in flat space ?!.

Indeed, the action for the fluctuations around Z=0,
T=t is (notice interchange of o and T):

5= [ 9 (0.0, — (2,07

2072

which gives the equations:

2
O’x; — O2x; + —O,x; =0 2
o
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But, in fact, it was already shown by A. Mikhailov that
these equations are solved by

z;(7,0) = x;(7) = X;

O3x;(1,0) = =202 [xH(7) — x;

So, indeed the equations are like in flat space. In fact
using the rules of T-duality we find

f dr’ y;(7")
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xi(71,0)

Dxi(7,0) = =202[x (1) — x; (

So, indeed the equations are like in flat space. In fact
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First change to Poincare coordinates

) | l Y
4 = ) Xo =T = . X; = —
€ (Yo — Ya) € (Yo — Y1) Yo — Ya

and perform a rescaling (boost) by ¢, the solution is

~ yilo.T)

/

I
Z:T:: ;1’,‘

T-duality gives:
Z

T

Yy, = vilo.

T

)
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First change to Poincare coordinates

) | l Y,
Z = A Xo =T = ) X, = :
€ (Yo — Ya) € (Yo — yy) Yo — Ui

and perform a rescaling (boost) by ¢, the solution is

- Yilo.T)

/

I
Z:T:: :1’,‘

T-duality gives:

T

yi = yilo,

T

)
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First change to Poincare coordinates

) | | U,
/= . Xo=T = i X, = :
€ (Yo — ya) € (Yo — Yy) Yo — Yy

and perform a rescaling (boost) by ¢, the solution is

- Yilo.T)

/

I
Z:T:: ;1’,‘

T-duality gives:

. T

Y, = yilo,

T

)
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The expectation value of the Wilson loop is related
to the area of the dual world-sheet

_ 1 ' ,
Stn = —I/(/T.I','(T. 0)(O2x;) (T, 0)

y _ A3 4 a3, — l
X, -+ .\',' )(()T‘\;i o ()Tx"l ) — _)
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The energy of the open string ending on the boundary
Is not conserved (we need do work on the quark to
move it along a specified trajectory). The total energy
change, however, for these solutions is:

"+‘X.
AF = F(4+o00) — F(—o0) = / dr (a=% —a™?)

o —OC

*+ X
— / dr [(0;y;7)? — (0:y]7)?] =0
It vanishes from the level matching condition for the
closed string. However if we add the left and right

movers we get the energy of the closed string:

40C
Fel — / dr (a 2 +u+2)

X
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The energy of the open string ending on the boundary
Is not conserved (we need do work on the quark to
move it along a specified trajectory). The total energy
change, however, for these solutions is:

"+‘X.
AFE = F(+o00) — F(—0o0) = / dr (a=* —a™?)

o —OC

*+ X
— / dr [(0;y;7)? — (0:v7)?] =0
It vanishes from the level matching condition for the
closed string. However if we add the left and right

movers we get the energy of the closed string:

400
E = / dr (a % +a'?)

X
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The spin is also not conserved.

0;S;; = (('j_(lj_ — -1'}L(1,7L) — (v; a;

The velocity and acceleration are evaluated at the
boundary. The reason is that the spin defines a
conserved current, any increase in spin is due to a flux
from the boundary. The total spin absorbed by the open

string is precisely equal to the spin of the original
closed string.

AS,'J' — /(/_
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Second case: BMN geodesic.

An 1nteresting way to study the motion around the BMN
vacuum 1s to use a LL model which contains the leading terms
in the action in the case where the motion 1s slow compared
with the fast motion of the center of mass. In the field theory
side 1t appear also as a way to study the operators in term of
spin chains.

t=Jr, o=J1m, p=0.
[ |

1
O=TX", J=—-—J
VA
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Ground state (s)

— Ir(XX...XXXX)
<— Ir(YY ...YYYY)

[ TTTT)
LD

First excited states

k)= e™|1 Pt 1), k =2”7”;(J = J,+J,)

A An®
e(k) = T(— 1 + cosk) —> > 7 (BMN)

More generic (low energy) states: Spin waves
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Other states, e.g. with J,=J,

R s

Spin waves of long wave-length have low energy and are

described by an effective action 1n terms of two angles 0, ¢:
direction in which the spin points.

|
Syr=J9- Efdadtcose Jd_¢—

- 322J2 fdodr[((?(ﬁ)z +sin® 6(d,¢) |

The same action describes the motion of a string.
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Other states, e.g. with J,=J,

R s -

Spin waves of long wave-length have low energy and are

described by an effective action 1n terms of two angles 0, ¢:
direction in which the spin points.

|
Syr=J9- Efdadtcos(ﬂ Jd_¢—

- 322J2 fdodr[((?(ﬁ)z +sin® 6(d,¢) |

The same action describes the motion of a string.
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/

ly)

Strings are useful to describe states of a large number
of particles.
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Other states, e.g. with J,=J,

[/ AN

Spin waves of long wave-length have low energy and are

described by an effective action in terms of two angles 0, ¢:
direction in which the spin points.

I
Sy =J —Efdodrcosﬂ Jd_¢—

_ ﬁfd(fd‘lf[(é’”@)z +sin” 8(6",¢)2]

The same action describes the motion of a string.
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LL model also works for WL at least on string side.

Consider the Wilson loop we had as T-dual of BMN

- - - T
T'=Jr, Z=sinJo, o =J0o 02()—>7
-

and do fluctuations that are near BPS. What we need to do 1s
to keep, at all times, the quark and anti-quark approximately

on opposite poles of the S?
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siny sin(¢p; — ¢2) Y3 cos 1 sin(oq + ¢o)

siny cos(¢p1 — ¢p2) Y cos Y cos(p1 + ¢2)

—dt* + dz?

A et

‘) ‘) ‘)
+ d* + doT + dos + 2 cos 2¢ do1d oo

At

< = COSO
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siny sin(¢p, — ¢2) Y3 cos 1) sin(¢y + @)

siny cos(¢p1 — ¢p2) Y cos Y cos(p1 + ¢2)

—dt* + dz?

A et

‘) ‘) ‘)
+ dy* + doy + dos + 2 cos 20 doyd oo

At

<~ — COSO
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O, (o, 7) and 0,5 (0, 7) are small

dr-Y1 = —Cos2y J-09
‘)

i ‘ P ‘) . ‘) p
e X1 = —COS20 Jyiy — %(f),—r 1)< — %Hm“zz_' (Jr0o)”

Y . .

A2 — 281N 29 cos 20 ((’)_r)-;)“ — 28In 29 d,09

O, (sin” 20 Oy05) — O, (cos 21)

= / (0,10)* + sin® 20 (-09) /(()H'_)(‘(),,(,)._)
/ (0.0)* + sin* 0 (()ﬂ,, /(us()('),,,;
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Conclusions

We review the relation between twist two operators and
the light-like cusp and discussed suggestive facts for the
case of short, near BPS strings.

We proposed that a simple way to relate small strings
and Wilson loops is to apply to closed strings the same

T-duality used by Alday and Maldacena on open strings.

We discussed two simple examples that showed some
Interesting relations between the fluctuations of a small
closed string and the open string dual to a Wilson loop.

This should open new possibilities to study AdS/CFT.
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Field theory side? [--Work in progress--|

On the field theory side one can consider perturbation theory.
The only observation 1s that, for the near BPS Wilson loop
0~¢ the cusp anomaly 1s (Correa-Henn-Maldacena-Sever
2012, Drukker et al. 2012):

. .. B\
7?2

+ O((¢*

Uensp (0, 0) = —7r2((__-')‘ — 0°)

[ D
— O~
A =
Notice that here we are interested in 6~¢~m and therefore it

seems that one can have A small also at strong coupling.
(reminiscent of BMN)
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On the field theory side one can consider perturbation theory.

The only observation 1s that, for the near BPS Wilson loop

0~¢ the cusp anomaly 1s (Correa-Henn-Maldacena-Sever
2012, Drukker et al. 2012):

B(\)

T2

== ()"

Notice that here we are interested in O~¢~m and therefore

seems that one can ha\ )\ small also at strong coupling.
(reminiscent of BMN)
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And the cusp?. For small angle (Correa-Henn-Maldacena-
Sever 2012, Drukker et al. 2012):

\/X /_’(\/X) 5.

F('llh‘l)((j)‘A) h—0) = ——17'("2 / (\/X) Q-
|

¢ =0 = straight line

Recall large S is large angle. Apparently small S may be
related to small angle?
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