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Abstract: <span>Non-perturbative effects are responsible for the

essential dynamical features of the four-dimensional gauge theories such as
QCD.&nbsp; The N=2 supersymmetric four-dimensional theories are an interesting
class of models in which non-perturbative computations can be carried out with
arbitrary precision using localization of the path integrals. | will explain

the new exact non-perturbative results and the relation to classical and

guantum integrable systems for alarge class of N=2 supersymmetric QCD.</span>
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Non-perturbative QFT

(O(X)) = / DX #5X0(x)

S(x)
Feynman
diagrams
>
Xo X1
Perturbative:
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Non-perturbative: other critical points contribute ...e  9°
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N Why?

® Non-perturbative real QCD:
in phenomenology we ask about L7y
but in experiment we measure

hadron states in IR s

QFT

® Dynamical supersymmetry breaking:
might explain the hierarchy problem

® May be supersymmetry in UV ?
Maybe N =2 / N =1 hybrid model
(In a hidden sector and/or in UV)
(Also motivations in string/brane constructions)
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Mathematical physic, statistical

mechanics and condensed matter:

® classical and quantum mechanical integrable
systems (Toda and others)

® exactly solvable lattice models and spin chains
(Yang-Baxter, Bethe ansatz)

® 2d conformal field theory

Z_\’__Q(S ]) _— U 'I oo ‘;:>Liouville
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Mathematics:

® Quantum geometry of various moduli spaces:
instantons, monopoles, Hitchin systems

® Geometric representation theory

® Mirror symmetry & top strings; GW, SW, GV, DT
Invariants

® (Quantum groups
® Wall crossing, BPS states counting

® C(luster algebras, Y-systems
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N = 25QCD

N = 2 gauge multiplet N = 2 matter multiplet
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The space of vacua

Supersymmetric ground states, or vacua, are zero
energy states |u) such that

Hlu) =0

In fact: zero energy state <=> supersymmetric state

)

(u|H|u) = (u|Q'Q|u) = |Q|u)|”

N = 2 theories have infinitely degenerate ground state !

Define: M = { space of inequivalent ground states |u) }

also known as the space of vacua
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Classical space of vacua

scalar potential: V= tr[®, O]

:(])_(]);: 0 ., P « te
maximal commuting subalgebra of Lie(G)

~\/Ic|assica| l(,‘_‘/{”

Weyl group
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Non-abelian UV gauge theory |
N = 2 gauge multiplet G rk(G) =r
N = 2 matter multiplet Rep(G)

[
Lirv —tr(F, F* +iblDy + .. .)
2'(/0\/

(- vy
Abelian IR non-linear sigma model U(l)"
Maps(R>1, M)

metricon M is special Kahler: N
5 S 0°F(a)
ds® = ImT;;da’da’ rijla) Vil
special coordinates on M prepotential |
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What is F(a)

Typically:

l 5
Fla) _)Tu ]()“ (1 Z Frla)

instanton expansion parameter ¢ = exp(2miT) = ¢
complexified gauge coupling constant 7

contribution of charge k instanton Fi.(a)
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Algebraic integrable system:
hyperKahIer fibration

fibers: complex tori
(abelian variety)

dim¢cP = 2r

— P

dime(fiber) = r

: dime M = r
) ,
{.’f /\ d lvd
J B

base M: quantum space of vacua

(., are coordinates on M

_ D OF
rr,“ are dual coordinates on M ; Oa.
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Algebraic|integrable system:
hyperKahler fibration

fibers: complex tori dimeP = 2r

abelian variet \
( riety) ) —i\ 7)
dimq(fiber) = r ' |

(IJ: % (lrl‘x_,'
J A

; flilll: _\/[ e

base M: quantum space of vacua

(; are coordinates on M
D :
;" are dual coordinates on M
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Seiberg-Witten curve

a and a® are periods
of Seiberg-Witten differential

\4 (1, / \ ASW

D
(i f, AST

quantum space of vacua M
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Goal:
Given the A/ = 2 QCD (G,R) in UV,
compute (sum up all instantons):
eThe prepotential I((,)
eThe SW curve and the differential \ g1/

eThe algebraic integrable system 7) R M

The following is based on a joint
work with Nikita Nekrasov (2012)

arXiv:1211.2240
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Chiral ring operators

O, { l"]’/"
correlation function factorize
(OrOr) = (0)(O)

But, because of contact terms the
relations are corrected by instantons.

For example, for G =SU(2)

/4 el 4\ l w2\ 2 A
(trd™) .),11(1) - 2 Crq

V4 :
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Ing operators

O = trd"

correlation functibn factorize

*.’:C);,C);‘,. ' ""C);,-; ”’O/J.

But, because of contact terms the
relations are corrected by instantons.

For example, for G = SU(2)

] B —
i 'l\\ Y _'.’ .3 "
<11"I) ) = 3{_11}‘1’ 0T Ar 2 r‘;‘.q'r
Z =

———
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\

Density-potentials ()

['1—_-‘ 1S ‘_.{I- .|_|' i'_;_l'_‘ L'H'! 1?_‘

all powers

b

density potentjals capture all chiral ring structure

support of

density function

5
The Riemann sutface of the anglytic potential IS
Seiperg-Witten curve @t a point2

SRAace Qy vacua .
lensr potentials

of the quantum

{ ) 5
NI
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density potentials capture all chiral ring structure

vz ) = ™ exp ( L I} (trd* u>

k=1

The Riemann surface of the analytic potential /(. ) is

Seiberg-Witten curve at a point 1 & M of the quantum
space of vacua
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Cross-cut

In quiver theory there i density pi(x) for each SU(N;) factor

(trd:') = / " pi(z)®  yi(x) = exp / log(z — 2")pi(z")da’

Let Pi(x) encode the fund matter and couplings g;:
."\':h

Pi(x) = ¢ [ [ (@ — maiy)

f=1

The master equations

y:r(:l:)yi_ (@)="P; () H Yi(z + my;)

1313 >#0
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Cross-cut|transformations

If quiver graph is acyclic, represent bi-fund masses as

il
and redefine

yi(a

vl = mi —m;
) = y(x +my;)

The cross-cut equations can be thought as cross-cut

transformations:

/:Iane
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H y;(x)

2:<Ji>#0
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Cross-cut invariants for quiver
theories

» (/}
;98- }f"‘*” plane

How we get invariants of the above transform for quivers?

o e . /§U(6 J(J
SU(5) SU(\

Nr <

SU( 2

We shall use the deep fact: the J\f-z quiver graphs fall in
the famous ADE classification
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Cross cut invariants for \/ = 2

quivers are ADE Weyl invairiants

the transformatio

yi(z) =y (z) Pi(x) H y;(z)

11 <g1>#0
is equivalent to the i-th Weyl reflection on the ADE
quiver group element:

P O Arexample:
g(:I,) — H Ul(-l) < A= (.I,“_Ji \ & x) 0
icl P;(z)s ' 0 \ ”‘-"':.fﬂ-f'l)

YT RT ok
here o, Ay : C* = Te, . . are coroots (coweights)

of the ADE quiver group
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SW curve for ADE quiver theories

Take for as the cross-cut invariants the system of
fundamental charad

Az (g()) =

Main result

The SW curve is defined by the system of equations \
Wil(W;)ier] = Ti(z; w), 1 € I}

where y; are ADE characters

and Ti(x;u) are polynomials in x of degree N;, with

\  coefficients u parametrizing moduli space M

/
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Method

To derive the cross-cut equations on the density
potentials yi(x) we compute the partition function
of \ = 2 theories in a twisted space-time R(ll‘

Co

R: | = ¢ y @
H RZ R2 €

then we take the limit €1,€0 — 0 [LMNS, Nekrasov, Nekrasov-Okounkov]

D4 4 .
L\&lf/f.l'.lf’:f' <_> ;Sl. V[E
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Method

To derive the cross-cut equations on the density
potentials yi(x) we compute the partition function
of \ = 2 theories in a twisted space-time R{ll‘

Co

R,ll‘,,,: C X C
A R, €2

then we take the limit €1,€0 — 0 [LMNS, Nekrasov, Nekrasov-Okounkov]

R'f ) & S,l V.P.]

/r.1/r

Pirsa: 13030103 Page 29/29



