Title: Frustrated Magnets and Quantum Spin Liquids

Date: Mar 20, 2013 02:00 PM

URL: http://pirsa.org/13030097

Abstract: A

quantum spin liquid is a solid whose atoms have magnetic moments but, because of quantum fluctuations, these moments fluctuate like a liquid even at zero temperature. Two dimensional spin liquids have been suggested as a way to produce high temperature superconductivity, and to build quantum computers. Just as helium is the only element which is a liquid at zero temperature,

2D spin liquids have been extremely difficult to find, despite decades of effort, raising the question, do realistic spin liquids even exist?

Recently, apparent spin liquids have been found experimentally, stimulating theoretical work to find simple model Hamiltonians of frustrated spin systems that have spin liquid ground states.

In this talk, I will give a broad overview of spin liquids and then focus on our simulations of the kagome Heisenberg model, a simple, realistic model of some of the recent experimental spin liquids, where we find a spin liquid ground state.

Pirsa: 13030097 Page 1/35

Frustrated Magnets and Quantum Spin Liquids

Steve White, UC Irvine

Collaborators: Simeng Yan (UCI) and David Huse (Princeton)

Outline

- What is a quantum spin liquid?
- Why are they so interesting?
- The Kagome Heisenberg model--a realistic model with a spin liquid ground state

Pirsa: 13030097 Page 2/35

Here's a better version of this question: Is there any element or substance which does not order even at absolute zero?

Pirsa: 13030097 Page 3/35

Here's a better version of this question: Is there any element or substance which does not order even at absolute zero?

Pirsa: 13030097 Page 4/35

Here's a better version of this question: Is there any element or substance which does not order even at absolute zero?

Perhaps not! Liquid helium has superfluid order. Liquid He-3 does not Bose condense but at very low T gets a different form of superfluid order.

Pirsa: 13030097 Page 5/35

Here's a better version of this question: Is there any element or substance which does not order even at absolute zero?

Perhaps not! Liquid helium has superfluid order. Liquid He-3 does not Bose condense but at very low T gets a different form of superfluid order.

Let's change the question again for a condensed matter physicist: is there any magnetic material which does not magnetically order even at absolute zero?

Pirsa: 13030097 Page 6/35

Here's a better version of this question: Is there any element or substance which does not order even at absolute zero?

Perhaps not! Liquid helium has superfluid order. Liquid He-3 does not Bose condense but at very low T gets a different form of superfluid order.

Let's change the question again for a condensed matter physicist: is there any magnetic material which does not magnetically order even at absolute zero?

Maybe! Yes! Such a system would be called a spin liquid.

Pirsa: 13030097 Page 7/35

Quantum Spin Liquids: what are they?

als Band Insulators

• Then (at least) three classes of possible ground states.

Magnetic order

$$\langle \psi | \vec{S}_i | \psi \rangle \neq 0$$

Valence bond order

$$\langle \psi | \vec{S}_i \cdot \vec{S}_j | \psi \rangle \neq const$$
$$VB = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$$

Spin liquid

No broken symmetries

 A spin liquid has no order at T=0 because quantum fluctuations overcome all tendencies for order.

Undoped cuprates (high T_c superconductors): local magnetic moments but not a spin liquid

2D square lattice S=1/2 Heisenberg model

$$\mathcal{H} = J \sum_{\langle i,j \rangle} \mathbf{S}_i \mathbf{S}_j$$

- This model has no exact solution--but it is wellunderstood through the combination:
 - Approximate analytic theory (esp. NLσM, Chakravarty, Halperin, & Nelson)

Planar cuprate

- Numerical simulations (esp quantum Monte Carlo)
- Experiments
- Key property: antiferromagnetic order: $|\langle \vec{S}_i \rangle| \approx 0.307 \neq \frac{1}{2}$

Pirsa: 13030097

High temperature superconductivity and spin liquids

- Undoped: |S| reduced by 40%: proximity to a spin liquid?
- Phil Anderson: doping could induce a spin liquid with the singlet pairs already there!
 - Superconductivity arises naturally.
- "resonating valence bonds" (RVB), an idea dating back to Linus Pauling.
- This led to a big surge in interest in spin liquids.
- Eventually, interest waned...
 - 2D systems with spin liquid ground states were very hard to find
 - Competing ideas arose to explain the disappearance of AF order, including "stripes"

White & Scalapino

Pirsa: 13030097 Page 10/35

High temperature superconductivity and spin liquids

- Undoped: |S| reduced by 40%: proximity to a spin liquid?
- Phil Anderson: doping could induce a spin liquid with the singlet pairs already there!
 - Superconductivity arises naturally.
- "resonating valence bonds" (RVB), an idea dating back to Linus Pauling.
- This led to a big surge in interest in spin liquids.
- Eventually, interest waned...
 - 2D systems with spin liquid ground states were very hard to find
 - Competing ideas arose to explain the disappearance of AF order, including "stripes"

White & Scalapino

Pirsa: 13030097 Page 11/35

Spin liquids, the next generation

Recently there has been a new upsurge in interest in spin liquids. A few of the reasons:

- New materials, new theories
- Topological order (Wen) and possible topological quantum computing (Kitaev)
- Exotic fractional excitations--anyons

Xiao-Gang Wen

Even more recently:

- Integration of entanglement and other ideas from quantum information into condensed matter
 - Characterize exotic states
 - Identify hidden transitions
 - New methods to numerically simulate quantum states
 - Positive identification of spin liquids through numerical simulation!

Alexei Kitaev

Pirsa: 13030097 Page 12/35

Kagome systems: funny names

Kagome: Is it the name of a Japanese physicist?

No! It's a Japanese basket!

 $ZnCu_3(OH)_6Cl_2$: the most interesting current Kagome material. Is it named after a person? Yes, with both first and last names!

Herbertsmithite!

- No magnetic order down to fractions of IK; it appears to be a spin liquid
- Complications: high concentration of impurities?
 What is the right model?

Pirsa: 13030097 Page 13/35

How do you make a spin liquid?

- Suppose you didn't know about superfluid He: how would you know where to look for a quantum liquid?
 - KE vs PE
 - So you have two "knobs" to turn: low mass, weak interactions
 - · He is the natural candidate
- Can we turn a knob for spins to increase the KE, decrease the PE?

$$\vec{S}_i \cdot \vec{S}_j = S_i^z S_j^z + \frac{1}{2} (S_i^+ S_j^- + S_i^- S_j^+)$$
"PE" "KE (spin flips)"

- The knob for KE/PE is usually "stuck". And, if you turn up the KE x-y knob, the order rotates to that direction and it is the new PE.
- Other knobs:
 - Few neighbors/ID
 - Frustration

Pirsa: 13030097 Page 14/35

Frustration

Frustration: triangular lattice structure prevents satisfying all bonds

Example: the triangular lattice:

120° order

Anderson's original RVB proposal was for the triangular lattice

P.W.Anderson, *Mat. Res. Bul.* **8**, 153 (1973). P.Fazekas and P.W.Anderson, *Phil Mag* **30**, 23 (1974).

Unfortunately, the triangular lattice has 120° magnetic order.

Numerical approaches

- Exact diagonalization of small clusters (Lanczos method, sparse techniques exploiting symmetries)
 - Exponential growth in Hilbert space limits sizes, $N_{\text{state}} \sim 2^N$
- Quantum Monte Carlo: frustration ⇒ sign problem

Fermions:

Negative Probabilities

- Low Entanglement methods (<u>DMRG</u>, PEPs, MERA)
 - Density Matrix Renormalization Group: originally based or RG ideas, not entanglement
 - Now understood as the natural low entanglement approach for ID

Pirsa: 13030097 Page 16/35

Ground states have low entanglement!

(compared to the horribly high entanglement they could have)

S for every eigenstate

1 1 1 1 1 1 1 1 1 1 1

Von Neumann Entanglement entropy

Why? The short answer: high entanglement doesn't help reduce the energy!

Low entanglement ⇒ few quantum fluctuations across a cut ⇒ representation with a few states ⇒ efficient "matrix product state" representation of the ground state

Pirsa: 13030097 Page 17/35

Matrix Product States = DMRG

 $\Psi(s_1,\!s_2,\!..s_N)\approx A^1[s_1]\,A^2[s_2]\,...\,A^N[s_N]$

Exp'ly large

 2^{N}

Highly compressed

 $N m^2$

Sweeping

Pirsa: 13030097 Page 18/35

Matrix Product States = DMRG

 $\Psi(s_1,\!s_2,\!..s_N)\approx A^1[s_1]\,A^2[s_2]\,...\,A^N[s_N]$

Exp'ly large

 2^{N}

Highly compressed

 $N m^2$

Sweeping

Pirsa: 13030097

DMRG Convergence in ID

Comparison with Bethe Ansatz

Pirsa: 13030097 Page 20/35

2D algorithms

Traditional DMRG method (MPS state)

Calc time: $L_x L_y^2 m^3$; allows $m \sim 10000$, $L_y \sim 10-12$

Pirsa: 13030097 Page 21/35

2D algorithms

Traditional DMRG method (MPS state)

Calc time: $L_x L_y^2 m^3$; allows $m \sim 10000$, $L_y \sim 10-12$

Pirsa: 13030097 Page 22/35

Kagome Basics

C

- The Heisenberg model on the kagome lattice is one of the most frustrated systems
 - Without frustration, magnetic order
 - Much more frustrated than the triangular lattice
- The kagome lattice has a small coordination z=4

- It has an exponentially large number of degenerate VB configurations
- Resonance of the VBs breaks the degeneracies

All these features make the kagome Heisenberg model an <u>excellent</u> candidate for an RVB ground state, a <u>spin liquid</u>. But, it could also be a <u>valence bond crystal</u>.

Pirsa: 13030097 Page 23/35

Valence bond crystal versus spin liquid

• Early field theory treatments gave a \mathbb{Z}_2 spin liquid as a possible ground state (Sachdev, ...)

Other approximate treatments pointed to a complicated 36 site unit

cell VBC, the honeycomb VBC. Why?

- → Resonance only occurs in loops
- → Shortest loop is 6 site hexagon
- → Close pack the hexagons w/o touching
- → Use higher order flucs to break ties
- → The resulting HVBC appears (meta)stable: it doesn't melt into a spin liquid!

Pirsa: 13030097 Page 24/35

Pirsa: 13030097 Page 25/35

Direct comparison of HVBC and SL

- Given metastability, and possible biases, how can you rule out the HVBC?
 - Make all the biases favor the HVBC. Then, if it's unstable, you have strong evidence.

-To make a strong bias: make the DMRG mapping to ID

follow the HVBC state!

- Nonresonating HVBC stable at m=2
- Other ways to promote HVBC: initial state (pinning "fields"

= strong J's); edge shaped to match HVBC

Pirsa: 13030097 Page 26/35

Pirsa: 13030097 Page 27/35

Ruling out an HVBC on a width 12 cylinder

Pirsa: 13030097 Page 28/35

Energies of various cylinders and methods

Pirsa: 13030097 Page 29/35

How can we understand the nature of the spin liquid?

- Is it closely connected to a nearby VBC? (a "melted" VBC)
- In an RVB description, what are the key resonances?
- What do we measure to answer these questions?

Pirsa: 13030097 Page 30/35

Response to small bond perturbations

Response to 1% increase in J on one diamond

Response to 1% increase in J on one hexagon

Response to 0.5% increase/decrease in J on fat vertical bonds: the "diamond pattern", which fits only on the even cylinders

Pirsa: 13030097 Page 31/35

Pirsa: 13030097 Page 32/35

How to get on the cover of Science:

- 1. Get your article in Science.
- 2. Submit artwork that looks really cool and is related to your work

Pirsa: 13030097 Page 33/35

Conclusions

- The kagome ground state is a spin liquid.
- The spin liquid has very short correlation lengths of all types, and a gap to all spin excitations.
- The internal structure of the SL/RVB favors 8 site resonant loops, not 6 site. Close to a "diamond pattern" VBC.
- New results: next nearest neighbor J₂
 - The spin liquid phase extends to substantial $J_2>0$; but $J_2=0$ is close to the left edge of the phase.
- Recent results (preprints in the last week): Topological order verified in this spin liquid (using DMRG also).

Pirsa: 13030097 Page 34/35

Conclusions

- The kagome ground state is a spin liquid.
- The spin liquid has very short correlation lengths of all types, and a gap to all spin excitations.
- The internal structure of the SL/RVB favors 8 site resonant loops, not 6 site. Close to a "diamond pattern" VBC.
- New results: next nearest neighbor J₂
 - The spin liquid phase extends to substantial J₂>0;
 but J₂=0 is close to the left edge of the phase.
- Recent results (preprints in the last week): Topological order verified in this spin liquid (using DMRG also).

Pirsa: 13030097 Page 35/35