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Abstract: <span>We construct a

self-consistent model which describes a black hole from formation to

evaporation including the back reaction from the Hawking radiation. In the case
where anull shell collapses, at the beginning the evaporation occurs, but it

stops eventually, and a horizon and singularity appear. On the other hand, in

the generic collapse process of a continuously distributed null matter, the

black hole evaporates completely without forming a macroscopically large

horizon nor singularity. We also find a stationary solution in the hesat bath,

which can be regarded as a normal thermodynamic object. (hep-th: 1302.4733)</span>
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Introduction : Is horizon really
QM+GR=Hawking radiation

A
=What is the origin of the entropy Sgy = n ?
How does the information come back?

= Usually: /

*Neglect effect from the Hawking radiation in a collapse process
* Assume formation of horizon
*Use a static black hole geomerty

=Question:
when we take quantum effect into account in the collapse process,
is the horizon really formed?

= We tried to solve the semi-classical Einstein equation by including the
back reaction of the collapsing matter and radiation:

Guv = 811G Tw ’Collapsingmatterand Hawking radiation
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Introduction2:

A naive viewpoint from an outside observer

* Inclassical collapse process, from viewpoint of an outside
observer, it takes infinite time to form a horizon and
singularity.

=Introduce quantum effects

=If BH evaporates in finite time from viewpoint of the outside
observer, then the horizon and singularity will not occur.

2M

™ N

==K\ viooN

Hawking radiation occurs

evaporation
Collapse matter asr. = 2M
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Introduction3:
General idea of construction of a model
;+ . it

L l+

& Hawking
i0 radiation
- i Oconnect i
]~ time reversal
collapse matter

I-

* -

i I
formation evaporation

Collapse matter
]q—
formation and

evaporation
Hawking radiation occurs without horizon.

L

A simple model=flat + null shell+ outgoing Vaidya
=Question:
Is this a solution of the semi-classical Einstein equation?
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Intoduction4: Our results

* Construct a self-consistentmodel which describes a black hole
from formation to evaporation including the back reaction from

the Hawking radiation.

* Inthe case where a null shell collapses, at the beginning the
evaporation occurs, but it stops eventually, and a horizon and
singularity appear.

* Inthe generic collapse process of a continuously distributed null
matter, the black hole evaporates almost completely without
forming a macroscopically large horizon nor singularity.

* Find a stationary solution in the heat bath

Note

We mean by “black hole” not one that has an event horizon defined globally as in the
rigorous sense, but one that is formed in a semi-classical collapse process.
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Talk Plan

1 Introduction
2 Construction of a model and a flux formula

3 Asingle null collapse
4 Generic collapse and stationary solution

5 Summery and Discussions
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2-1: Outgoing Vaidya metric

ds? = — (1 - a(u)) du? — 2dudr + r?dQ?

T [Vaidya 1951]

~This describes outgoing radiation without U
the gray-body factor.

(The Bondi mass m(u) = %)

Outgoing
radiation

*spherically symmetric
*Traceless: GH, =0

_ a(u)

r2

*the only non-zero component: G, =

The physical meanings
Assume massless particle
Neglect the Weyl anomaly
Neglect partial waves with [ > 1
Neglect the gray-body factor
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Intoduction4: Our results
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2-2:Connecting the two metrics on the shell

Flat metric:

ds?® = —dU? = 2dUdr + r?dQ? |

s (U)
&
junction conditionontheshell ry: | _ _ =L

U= gy = —2dr, = dU a(u) flat U [

\ rs(u) / \

GJrface energy-momentumon the shell\

[Barrabes and Israel 1991]

Vaidya

surface energy density: u =

8mGrs? i0
—Trea i

surface pressure:p = 4776(;_“)2 \:::fc‘r!?c
Null shell

>0
(The work done by the shell as it contracts iD
qmsformed to the Hawking radiation.) /
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2-3: General behavior of the shell

The equation of motion for r,(u) is given by
drg — 1:(w) —a(u)

du 21 (u)
where a(u) is a given function.

=71, approaches a in time ~a if

a . Cf. In the case of
a LK — (& |a] K 1) |hehevgneradaton

|al e
=The general solution is given by

u

T'S(ll) ~ (l(ll) — Za(ll)fl(ll) —— Ca(ll)e_Zmu,
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2-3: General behavior of the shell

The equation of motion for r,(u) is given by
drg  1s(w) —a(u)

du 21, (u)
where a(u) is a given function.

=171, approaches a in time ~a if

a . Cf. In the case of
a LK — (& |a] K 1) |hehevgneradaton

|al e
=The general solution is given by

u

r.(u) =~ a(u) — 2a(u)a(u) + Ca(u)e 2ax
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2-4: Flux formula

* We here derive a flux formula .
dm m  Energy qux
_ = — u
= (W)

Derivation

J(w) = 4nr? < 0]: Ty, (w):]0 > at ¥ > a

* Minkowskivacuum:a, |0 > = 0,w > 0 (in Heisenberg picture)
* Point-splitting regularization:

* Eikonal approximation

* Only use the s-wave

. U(w)> 2U@w) h
](u)_&rltf(u)z 30 (w)| ~ 8n

o U}
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Appendix2: derivation of the Flux formula

We here derive a flux formula
i ]( ) I .
— u
du .

Derivation Ener qux
o J(u) =4nr? <0]:Ty(w):|0 > at r » a m &Y

» Heisenberg picture:a,,|0 >=0,w > 0
Point-splittingregularization:

< 0]: Typu(W): 10 > = !}}I_I.lu[< 0]: 9, Pp(w)d, Pp(u'): |0 >—< 0]: 9y po(w)dypo(u'): [0 >]

* Eikonalapproximation
* Onlyuse the s-wave

A N i
' q)ONe-iwu r p~e lwf(u)

flat

.

-

Before collapse U After collapse u

R [Uw)?* 20w
](u)_Bn[U(u)z 30 ()|~ 8

{u U}
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2-6: Test of the equations

* Let’s test the equations in the casea = 0.

=1,(u) = ay + Cage 2%
ho[Fs(w)? 2~f~"(u)l h T o 2
= = ) —— = =
J () 81 L‘s(u)z 375 (u) 96mayg:  6h Ty
h
471'(10

= 1D black body radiation with T =

Note: The Planck distribution can be also derived in the same setup.
=Then the horizon structure is not used. All that is necessary is that

the affine parameters are related exponentially.[Barcelo et al 2011]
u—u.

Uu) = —2r.(u)~a(u,)e 2a.)
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a@)/L, 3-1:Numerical Result
HHM 1()().(!(]()(}:

99.9995|

60 :
99.9990}
40! -

99,9985/

0 200000 400000 600000 800000 1 x 10° 0 5000 10000 15000 20000,

u/l,

= At the beginning, the radiation occurs, but it stops eventually.

=t cannot evaporate even though the back reaction is taken into
account.

=The horizon and singularity appear (at u = o).
[nitial conditions:

. n e
1:(0) =na(0), 7(0)= — 7:(0) =0,
a(0) > 1, n>1, n=~1

Q
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3-2:Analytical result
~ Why does the evaporation stop?~

From the general behavior of the shell, for large u,

u
r.(uw) = a(u) — 2a(uw)a(u) + C e 2a(u)
TS ? This term will
Q damp as time passes.
=1r.(u) = a(u) r\—o
=In this case, we can solve the equations analytically:
DZ.
i
67‘[8
§ 1erz
a(u) = a(0) — Bf d{'e4
D

where B, D are integration constants, and B is small and positive.
=a(u) will not necessarily vanish as u — oo,
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4-1: the general collapse process of a
continuously distributed null matter

Suppose that a continuously distributed null
matter collapses. Each shell approachesthe
Schwarzschild radius.

r Hawking radiation

. A
!
1
1

time of the outside: U

: |

——

r -

AN

time around the origin: U

a' = Z da

under the sell
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4-2: Equations for each layer

For each shell, the following equations hold in its time u’, and we
consider the case where time has passed sufficiently u’ > 1.

o ds?=-— (1 _a )) du'® — 2du'dr + r2dQ?

r

dr' M (u ) =a' (u do! _ul
. = _r()-aq )=>r’(u’) ~a' —2a'—+ e 2as

du’ 2r' (u)

da' o NLZ N is the degrees of freedom
« — =-26]'(W) = ———{u,U } ofthefields. (Cf. In the

du 41T
standard model, N~100.)
Cf. Hawking
: da’ ’ da 1
Assumption: —— = —f(a’) e .

Page 23/32

Pirsa: 13030093



Pirsa: 13030093

4-3: Redshift factor

*  We estimate the redshift factor here.

Look at the shell ' from the both sides r
r' —a’ r'—aq" e ——
—du' = dr' = du''l A ;o T T T TT
r! r! ,Ha
Ifa"—a"" = daissmall, !
du” r' — a’ da I
= =1-— a
du’ r'—a' pf
By integrating it, we obtain the redshift factor for finite distance
a!
du" J’ da
—_—=cexp| — | —
dw P (@)
a!.’

* We introduce
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4-4:Hawking Radiation from each shell

If the flux formula is rewrittenin &',

(i

N 5

du’) 6h
l 1
f! - —

2a’

r —

= The Hawking radiation occurs from each shell.

= But the radiation is emitted substantially only from the
~outermost region because of the large redshift.

. a
S NL2®  du’ fd_ a ..
= - ~ =» ~ — -
P Taw T du P aN[ ‘ L
o 7 | J (u)
Hawking radiation ' : ’“T
. ' PR R B A B BN A R | 2
Radiating layers | ‘ ‘ . a I [
A = 1 u ] (Il )
oyt T TS
=u_+u

Non-effective layers
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4-5:The Stationary Metric

* Suppose that the black hole is put in the heat bath, and it becomes
stationary. Then the inside metric is given by

N r? —oo(a?=r?)  24mr?
ds? = —p—4e NG dt? + dr? + r?dQ0?
24ma Nlp2
Nly?
* This is smoothly connected to the Schwarzschild metric atr = a + 24:;0.

* This does not have a horizon.

* This does not have a semi-classical limit (A — 0) because we has made it in
the self-consistent manner. (cf. Ising model + mean field approximation)

* The time around the origin T is almost frozen from viewpoint of the outside

Nl 2 _ 121 a2
dT = —2-e Vb" dt
a
* This does not have a large curvature compared with lp_2 if N > 100:

10000 1
at T‘”\/Nlp Raﬁyé‘RaByS‘” - < 2
N<L, L
* This also takes into account the back reaction from the Weyl anomaly.
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4-5:The Stationary Metric

* Suppose that the black hole is put in the heat bath, and it becomes
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10000 1
at r~\/ﬁlp R < —
NZ2L, L,
* This also takes into account the back reaction from the Weyl anomaly.

aﬁ’y&?RaByS'”
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4-4:Hawking Radiation from each shell

If the flux formula is rewrittenin &',

(i

N 5

du’) 6h
l 1
f’ - —

2a’

—

=The Hawking radiation occurs from each shell.

= But the radiation is emitted substantially only from the
~outermost region because of the large redshift.

’ a
oy dd NG du fd— ) PP
= — ~ = ~ _ .
’ Yaw T T “NL? i
d | J'(u")
Hawking radiation ' , AT
T | -
Radiating layers | ‘ ‘ “““ a‘ P EEEEEE e
I 1/
e\ W)
: R EERREEEEEEEEE LD
=u_+u

Non-effective layers
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4-6: How does the black hole evaporate?

* The time evolution of total mass is determined by

da NL,?
du  48ma?
Actually it evaporates gradually from the outermost shell as

if one peels off an onion.

* However, the innermost shell with a0~\/_l cannot
evaporate forever because of the same reason inthe a
single shell case. It has the horizon and singularity, which

are not macroscopically large.

small Schwarzschild BH with a,~vN1,

Our internal metric with a’ > lp

~
/l\ §

Vaidya metric with a > [,

HawklngradlatlonW|th Ty = m p—) Spy = 412
- | p

Page 31/32

Pirsa: 13030093



Pirsa: 13030093

5-2:Discussion
What is the origin of the entropy?
How does the information come back?

Our stationary solution has neither horizon nor singularity, so the
information inside the hole must come back after evaporation.
However, we don’t understand the mechanism clearly yet.

For example, suppose that we throw a newspaper into the
stationary black hole described by our metric. It will behave like
another null shell going to the hole as it approaches the surface.
Clearly its energy will be transformed into the Hawking radiation by
our mechanism.

However, the radiation itself comes from the quantum field on the
past infinity, or the vacuum. How will the information of the
newspaper come back?

A clue to this problem is that we have taken the expectation value
of the energy-momentum tensor in our self-consistent equations,
which might correspond to the coarse-graining procedure in the
ordinary statistical mechanics.

The microscopic origin of the black hole also comes from the same
point.
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