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PLAN OF TALK

Double null sheets as initial data hypersurfaces
Advantages of null canonical gravity
- the holographic principle
The Poisson brackets
How can one understand the holographic entropy bound?
Klein-Gordon field in terms of null initial data in curved spacetime

Inconclusion and a conjecture on holography.
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DOUBLE NULL SHEETS AS INITIAL DATA
HYPERSURFACES

e A double null sheet is a pair of intersecting null hypersurfaces (or
“lightfronts™) - like an open book 1n spacetime.

bR

NR

S

0

o Ng, Ny are 3-surfaces swept out by null geodesics emerging normally
from the two sides of 2-disk Sj. S

0
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e initial data on N' = N U Nk specifies solution in domain of
dependence DN/

D[A ] — a4 dimensional spacetime region
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ADVANTAGES OF NULL CANONICAL
GRAVITY

No constraints -can identify free, complete data (~ 1962 Sachs, Bondi,
van der Burg, Metzner, Penrose, Dautcourt)

[Lorentzian

Observables - main free initial data has direct interpretation in terms of
test lightrays — allow formulation of observables

There 1s a natural, preferred, class of time evolutions

sR
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e Holography Beckenstein - 't Hooft - Susskind - Bousso bound: If
generators of a branch (N say) are non-expanding at S, then they
argue

Area|Sy]

4Al’iunrk

Entropy on N <

with saturation possible.

e Normally the highest entropy thermodynamic macrostate of a system has
essentially all microstates. This suggests

AlSp]
dimH ns, = e **Pianck

AlSy
dimH n = e *APlanck

with H s the Hilbert space of gravity and matter in D[N].
e Canonical GR on N seems ideal framework to check this.
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THE POISSON BRACKETS FOR FREE DATA
ON N FOR CLASSICAL VACUUM GR
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Entropy on N < 1So]

4Al’imirk

with saturation possible.

e Normally the highest entropy thermodynamic macrostate of a system has
essentially all microstates. This suggests

AlSg]
dimH ns, = e **Pianck

AlSy
dimH s = e *Planck

with H s the Hilbert space of gravity and matter in D[N].
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THE POISSON BRACKETS FOR FREE DATA
ON N FOR CLASSICAL VACUUM GR

Brackets not shown vanish.
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HOW CAN ONE UNDERSTAND THE
HOLOGRAPHIC ENTROPY BOUND?

Let’s try to understand why the Hilbert space of a scalar field interacting
semiclassically with gravity should satisfy a holographic bound on its
dimensionality.

e A simple picture: Suppose n quanta of the scalar field cross a branch

NR OfN.

e Suppose we try to stuff one more quantum through N. The generators

converge more strongly and the quantum that formerly at the tip of N
falls off. The number of quanta on Nz remains n.

Suppose we glue together two identical double null sheets As so they
form a single double null sheet /" with twice the cross sectional area
Ag, . If the Hilbert space ‘H as for data on N has dimension N then it
seems reasonable to suppose that the Hilbert space of N should have
dimension N2, since the points in the two A/s are spacelike to each
other. Thus the log of the dimensionality of H s should be extensive in

Ag, .
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e A somewhat better picture, purely in terms of initial data on N:

e Let @ be the expansion of the congruence of generators, and A an affine
parameter. Then

10 .,
= = S0 - oo™ — 8TGTs.

dA
The shear o will be ignored, it only makes the convergence of the
generators faster, and we will assume that the null energy density 7'x has
a uniform value 7 on Nz (and 0 = @ = \ at Sy). Then
0 = —2V/47GT tan V4G )\, and the generators form a caustic at

T 1

Amm - .
2 \/ArGt

The value A of \ where the generators of N are cut off must be less than
Amaz -

Suppose a mode of the scalar field on N is exited with one quantum.
Then p, = hk, and p, = (Tux)MAs,f, with f < 1. Thus

T = (Tan) = hkx/(Ms,f) > h2mm/(X*As, )

where m is the number of wavelengths of the mode along the generator.
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* A\ < A then implies m < As, /(32Gh) = As, /(32Apunck ). If several
modes m are occupied with n, quanta in each then

Z mny, < As,/(32Apianck).

m

o If we apply the same reasoning to the other branch N, and furthermore

assume that AgALOx, - 05, > Apianck then only a finite subset of the Fock
basis is allowed. Looks holographic!
e Can one do better using a proper quantum field theory?
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FOCK QUANTIZATION OF
KLEIN-GORDON FIELD IN CURVED
SPACETIME

Work with Rodrigo Eyheralde.

e Standard procedure: Linear system == choose linear (real) canonical
coordinates Q;, P; and require corresponding operators satisfy
[Q,', P,l = lh,(’,jl.

o Equivalently set a; = 1/v/2h(Q; + iP;) and require [a;, af[ = thd;1.

» Define representation of operator algebra by requiering a;|0) = 0Vi for
one state |0) and the rest of the Hilbert space = Fock space is the span
of the vectors obtained by acting on |0) with a finite number of a's.

But do not need a particular set of linear canonical coordinates to define

) ‘NACe sfine ¢ 2ty 0 — \" 2 2 A OO
Fock space. Q;, P; define a metric, g = ) .(Q7 + P7), on phase space
that makes these coordinates orthonormal. g and symplectic 2-form 2
define Fock quantization uniquely, modulo change of ON basis within
each n-particle level.
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A MODEST PROPOSAL
Here is a way to make a Fock quantization of data on N:
o First use the standard flat spacetime quantization of the K-G field to
quantize initial data on N a pair of intersecting null hyperplanes in
Minkowski space.

N={x"=0x">0u{xt =0,x" >0}, xt=x"4+xx" ="

e Now import this quantization to A in curved spacetime:
e The symplectic 2-form on NV is

Qn|pr, 2] = - (1)
(2)

(020501 — @105p2)dsd x™* (3)

Qe 2] (4)

. . L 2 .
where ¢ = /p¢, p is the area density, s, x~ ranges over R4 X R”, and s is
a function of p fixed at p is a fixed function of s.

— X .
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* One phase space metric compatible with €2 is gar (b1, P2) = gv (1, @2).

e This defines the quantization. But it has the same Hilbert space of states
as the flat spacetime theory, no matter how the scalar field affects the
geometry. No holography!
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MICROLOCAL SPECTRAL CONDITION

e What’s wrong with this quantization?
e If there are several quantizations, how do I know which is the good one?
e [s the expectation value (7) well defined in this quantum theory?
All these questions are answered by the microlocal spectral condition (uSC).
uSC:

e In Minkowski space field theory one demands that energy of all states
be positive. More generally that (P?) lie within the future light cone.

e In curved spacetime no natural Fourier transform to define P¢.

e But by equivalence principle it positivity of energy should still hold
locally for high frecuency modes.
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1SC is a precise statement of that: Multiply distribution ¢(x)|0) by a
smooth test function of compact support to localize it. Take Fourier
transform in your favourite coordinates. Fourier transform at nk should
fall off more rapidly than any inverse power of 1 as n — oo except if k
lies on the past light cone.

Radzikowski 1996 showed that 4 SC is equivalent to requiering that the
vacuum state is “Hadamard”

Expectation values of T, defined on a dense subspace of Fock space if
vacuum i1s Hadamard.

Verch 1994 showed that Fock spaces with Hadamard vacua are
indistinguishable via the expectation values of functions of the fields on
an open spacetime domain of compact closure.

Hadamard vacua are the good vacua.
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INCONCLUSION

e Well, is the vacuum defined by our gar Hadamard? Almost, but not
quite.

e Conjecture: Holography follows as a consequence of the uSC.
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