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Abstract: <span>In thistalk, we will describe our recent

work.& nbsp;& nbsp; Recently, we focus on the thermodynamical property and time
dependence of entanglement entropy. Using holography, we found that the
entanglement entropy for avery small subsystem obeys a property which is
analogous to the first law of thermodynamics when we excite the system. In
relativistic setups, its effective temperature is proportional to the inverse

of the subsystem size. This provides a universal relationship between the

energy and the amount of quantum information. Moreover, we will propose a new
holographic model of local quench and describe some results which we got by
using this model.

Thistalk is based on arXiv:1212.1164
[hep-th] and arXiv:1302.5703 [hep-th].</span>
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Introduction

In equilibrium system, entropy is well-defined by thermal entropy.

On the other hand, entropy is not well-defined in non-equilibrium
system.

In condensed matter physics, entanglement entropy is considered
as one of the candidates for the entropy.

Therefore, it is important to know the property of the

entanglement entropy.

The question appears.

Question

Are there the fundamental laws ( like the laws of thermodynamics )
which entanglement entropy (EE) should obey ?
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Introduction
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Introduction

Thermal entropy obeys the fundamental laws,

$

Are there the fundamental laws which
entanglement entropy (EE) should obey ?

P

At high energy, EE obeys the law analogous to
first law of thermodynamics.

dU = TdS <y dE, = TendSa.

Our result
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1. Entanglement Entropy (EE)

* Definition of Entanglement Entropy

We divide the total Hilbert space into AandB: H;,; = Hq4 ® Hp .
The reduced density matrix A is defined by PA = T’I'Bﬂf.uf.
This means the degrees of freedom in B are traced out.

The entanglement entropy is defined by von Neumann entropy S ,.

6A\

Sa=—Trapalogpa B

on a certain time slice
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Example

l
For a product state: |¥) = E(Hh +hAD@(D) s+ g)

=Reduced density matrix: ,, = l

o |

=Entanglement entropy: §, = ()

( |>‘\ H)H +'H),\ : H)f.’}

(11)a {114) + 5 (1104 (1)
= log 2

For an entangled state: |¥)

1l

0S| = —

=Reduced density matrix : Y

=Entanglement Entropy : S 4

T4+ 10 4) (a4 (L)
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Example

l
For a product state: W) =5 (IT)4 + 1))@ ([ +11)p)

L+ 100 (T + (L)

=Reduced density matrix: p, =

o |

=Entanglement entropy : S 4 = ()

|
For an entangled state: V) = 5 (4@ l)p + 114 @ 1))

=Reduced density matrix: ,, — %(m (1)) + l) (1) 4 (L)

N

=Entanglement Entropy : Si= 103’ 9

In general,

Entangled states (not-product state) have the entanglement entropy. |

S A measures the quantum entanglement.
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Properties 1

For a pure state, entanglement entropy satisfies

Sa = 5B.

For a mixed state (thermal state etc.),
entanglement entropy satisfies

Sa # Sp.

Strong Subadditivity

OA\

Entanglement entropy necessarily satisfies

Sa+B+c +5 < Sayp+ Spic
SA + Sc Sar + Spic

A\

@
-
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Properties 1

For a pure state, entanglement entropy satisfies

Sa =5g.

For a mixed state (thermal state etc.),
entanglement entropy satisfies

Sa # Sp.

Strong Subadditivity

OA\

Entanglement entropy necessarily satisfies

Sa+p+c +95 < Satp + Spic
Sa+ Sc Sar + Spic

A\

@
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Properties 2

Entanglement entropy can be defined in QFT.
However, EE gets divergent and depends on a cut off €.

* Arealaw:inad dimensional QFT, the leading divergent term of
entanglement entropy for its ground state satisfies

Arca(9A) |

frf—2

S'A

In the d=2 case, this divergence is replaced with a log divergence.
This property means:

OA\

Most strongly entangled —
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Properties 2

Entanglement entropy can be defined in QFT.
However, EE gets divergent and depends on a cut off €.

* Arealaw :inad dimensional QFT, the leading divergent term of
entanglement entropy for its ground state satisfies

Area(0A) |

frf—2

S'A

In the d=2 case, this divergence is replaced with a log divergence.
This property means:

OA\

Most strongly entangled —
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Properties 3

The cut off independent parts of the entanglement entropy are

universal quantities. For example, if subsystem A is an interval with
width |in 2d CFT, the entanglement entropy is given by

_ : [
Sa = %10{2;

€
)

The usages of the entanglement entropy are as follows:

(i) A quantum order parameter in condensed matter physics.
(ii) A generalization of black hole entropy in string theory.
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2. Holographic Entanglement Entropy

* AdS/CFT correspondence

1. AdS/CFT correspondence says that the gravity on AdS
spacetime is equivalent to a CFT on its boundary.

2. Moreover, the AdS/CFT correspondence says that in AdS
spacetime the physics at 2 = E corresponds to the physics
of the state at an energy scale E in CFT.

\' Ad5d+1
CFT, \ —

ds* d—; - L_} ( dt? ~Zf/.:"rf.r') . \
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Holographic Entanglement Entropy

The black hole entropy Ssu is
A
4Gy |

/] is the area of the black hole horizon. A
(N is the Newton constant. Generalized

SBH =

Generalize

z>e e:Geometrical cutoff
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Holographic Entanglement Entropy

The black hole entropy The horizon is generalized to ya.

A
4(:3\'
/] is the area of the black hole horizon.
(N is the Newton constant.

SpH =

Generalize

When we divide the boundary into A and B at a certain time,
the holographic entanglement entropy (HEE) is given by

Arca(va)

Sq =
4G/

*The area of Y4 is minimum.

= Y4 is the minimal surface.

(OVA: OA) z>e e:Geometrical cutoff
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Properties 1

 HEE satisfies Area :
In AdS 4.1, we expand HEE(S4 ) with respect to ¢.
The leading divergent term of HEE is

Area(0A)

b“\ ~ (ff-—'.l

 HEE also satisfies Strong Subadditivity :

WA

Sa+B + Sptc |

i Bl Al
551./;.(-+5n
Sa+B + Sp4c |

A_Sf'l | AS"( )

VAN
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Properties 2

* General Behavior of HEE in AdS«1 A universal quantity which
characterizes odd dim. CFT.

| ] d—2 I d—4 .
SA = pi ((‘) T P2 (j) T F-theorem in 3 dim. CFTs

/

[ Do ((1) + pa, d:odd

+ <\ —_ ((1)3 + clog (L), d: even.
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Properties 2

* General Behavior of HEE in AdS«1 A universal quantity which
characterizes odd dim. CFT.

| ] d—2 I d—4 .
SaA =D ((‘) T P2 (j) T F-theorem in 3 dim. CFTs

/

[ Do ((1) + pda, d:odd

+ <\ - ((1)3 + ¢log ((i), d : even.
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3. Fundamental Law for Entanglement Entropy

Thermal entropy obeys the laws of thermodynamics.

ot

Are there the fundamental laws which

entanglement entropy (EE) should obey ?

‘&ﬁ ‘@mod yna@
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Setup

* Field theory side :
In CFT4, we excite the system somehow

( thermalization or producing massive particles and etc. ).
= Total system becomes non-equilibrium in general.

-

On AdSq+1 background, we deform the IR region (large z region).

* Gravity dual .

(The IR geometry changes to BH or star or etc.)

Metric:
- — Ad5d+1
ds* 'h_ [ f(z)dt* + g(z)dz* 4 Z((”’}J] 7
~ (=] \ > Z
Z->0
9(z) ~ 1/f(2) =1+ mz"
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Setup

* We divide the boundary into A and B at certain time.

The subsystem A is a strip with width /.

Assumption
This width / satisfies 'rn[d <L 1

Subsystem A
0 < €r < [ [,/2 < X2.3.....d—

X; ...
Z’A (_I) n B
/
(/‘
A—rt L
\ 4 )XI
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Relation between AS sand AFE 4

The energy of subsystem A :

AT, = = DR Im - ABA = [ dat AT, - (d - )miL "R
. — ‘ L - it — i
i l (iTr(T".‘\.’ . |();n (u N

The relation betweenAS, and AFE, :
(AS4is the change of HEE. by deformation. )

N Ra € R G
2(d? l)l.(',lf f .:‘ll) I‘(.'[:!J )]

)) ras, e~ dU =TdS
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Relation between AS 4and AFE 4

The energy of subsystem A :

=1y ' I — 1\milA—2Rd-!
AFIT - ( { { - AI \ — / (,J'rf IA’I}f = (r )”" ! )
h “”T(' N . 167Gy

The relation betweenAS, and AE, :
(AS4is the change of HEE. by deformation. )

AE 4 ( VC]((ﬁ))I((I_') )) 'l l-AHl# AEA — vnt ASA
2d? - ) (3 + 725 ) T (5t

—

LAt il << 1, this is the relation between amount of the quantum
| information and the energy in a subsystem.

*The effective temperature’l,.,, in the subsystem is proportional to
| the inverse of the subsystem’s size | 1.
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Round Ball Case

The energy of subsystem A AE, = —

=

|

-~
-

' ' T - ‘ cml?
The change of HEE. : ASx @7 O (SL) Gn 1°.

d+ 1

. I
The relation between AS, andAF, AL, ( — ) . AS,

-

At ml? << 1 , in the round ball case,
HEE. also satisfies the same relation:

| A4 = Tene - ASa.
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Round Ball Case

The energy of subsystem A AE, = —

=

~

-~
-

) ’ - A cml?
The change of HEE. : ASx @7 O (5L) Cx 1"

d+ 1

. I
The relation between AS, andAF, AL, ( — ) . AS, |

-

At ml? << 1 , in the round ball case,
HEE. also satisfies the same relation:

| AE4 = Toni - ASa.
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The effective temperature 7oy

i ( ;\.1[\,,,'If i)
Interval case: T, , = [_, TPRRTY ) ’

{I}I./'

Round ball case : Ten = ——
-

= The effective temperature does not depend on G, ,R (N, A).
It does not depend on the detail of the theories.
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The effective temperature 7oy

i ( ;\.1[\,,,'I[‘ i)
Interval case: T, , = [_, PR ) ’

{I}I‘II

Round ball case : Ten = ——
-

= The effective temperature does not depend on G, ,R (N, A).
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The effective temperature 7oy

, Vil (i) T (a4)
Interval case: T, , = [ TR ) ;

{I}I‘II

Round ball case : Ten = ——
-

= The effective temperature does not depend on G, ,R (N, A).
It does not depend on the detail of the theories.

_ .71 n_1
Zr«fzfn,?‘, = C l .| ef. S ¢

If we fix the shape of subsystem, at ml’ << 1, the effective
temperature is universal in large N strongly-coupled field theories.
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The effective temperature 7oy

, [ Var(mhn) ()
Interval case: T, , = [ TR ) *

{I}I‘/'

Round ball case : Ten = ——
-

= The effective temperature does not depend on G, ,R (N, A).
It does not depend on the detail of the theories.

If we fix the shape of subsystem, at ml’ << 1, the effective
temperature is universal in large N strongly-coupled field theories.
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The effective temperature 7oy

(se) T () This constant depends on
) | only the shape of subsystem A.

[ N
Interval case: T, . = [ o (he ) E ()

{I}I‘/'

Round ball case : Ten = ——
-

=  The effective temperature does notdepend on G, ,R (N, A).

Zr«fzfn,?‘, —

If we fix the shape of subsystem, at ml’ << 1, the effective
temperature is universal in large N strongly-coupled field theories.
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The effective temperature 7oy

, [ Var(mhn) ()
Interval case: T, , = [ T PEATY ) ;

{I}I‘II

Round ball case : Ten = ——
-

= The effective temperature does not depend on G, ,R (N, A).
It does not depend on the detail of the theories.

= n_ 1
Zr«fzfn,?‘, =c- | . of S ¢

If we fix the shape of subsystem, at ml’ << 1, the effective
temperature is universal in large N strongly-coupled field theories.

<
‘AEA — melt, ' AS/\

d _ _ . . .. .
At ml® << 1, this relationship is also universal.
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The effective temperature 7oy

, [ var(mhn) P ()
Interval case: T, , = [ - ) *

w4+ 79) M (o)

Round ball case : Ten = ——
-

= The effective temperature does not depend on G, ,R (N, A).
It does not depend on the detail of the theories.

=1 n_ 1
Zr«fzfn,?‘, — C'Z \ of S ¢

If we fix the shape of subsystem, at ml’ << 1, the effective
temperature is universal in large N strongly-coupled field theories.

< -
‘AEA = (1_‘(‘111; ' AS/\

d _ _ . . . .
At ml® << 1, this relationship is also universal.
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The interpretation of mi’ << 1in the field theoretic language

In the gravity side ,
ml? << 1 - T - 1% << R(I_I/GN

In a strongly coupled large N gauge theory,

Ty - 14 << O(N?). i

In a strongly coupled large N gauge theory, when / satisfies this constraint,
EE and energy obey

‘AEA — Tent ' ASA
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The results from CFT. at Finite Temperature
In CFT at finite temperature o _ 3-1, the EE of an interval with width / is

, (4 ] i ﬁ'/
S 4 __|{:g — sinh — | .
3 e 5]

When we expand the EE with respect to 1/:,.')' in the limit [ - 3 (= mil? ),

' l ',T.'hf")f."
.5‘.1. — -_r—]ng'(—) $ ‘ . } C’('}"lfl),

3 ¢ 18

| . T OUTLC C l
( The EE for its ground state is 5% " 5 log (’_)_)
The difference (AS, = 54 — §97°“"") is
o K Rml?

AS4 = = _ 2. AE,
18 8GN 3 .

mlR
167Gy

(m = (2rT)%,c = )( 7 AEA
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The results from CFT.

( This result dose not depend on the calculation on gravity side. )
In field theory side, we calculate the EE for the primary state

with conformal weight (h, ).
This total system is a circle.

We divide the total system into A and B.

The size of the subsystem A is T
A /-'_\
e
In the limit [ < 1, we expand EE with respect to /,
the EE is )
A
‘ \size =
AS = Stptal _ gground i ham (LY =™ Al
- o 3 o 3 . e
W
h+ 1/ 0
( The EE for its ground state is h’_"l‘“”“", AE, (h + h) )
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The results from CFT.

( This result dose not depend on the calculation on gravity side. )
In field theory side, we calculate the EE for the primary state

with conformal weight (h, ).
This total system is a circle.

We divide the total system into A and B.

The size of the subsystem A is t
A /-'-—'\
g
In the limit | < 1, we expand EE with respect to /,
the EE is )
A
: \size =
AH' S-ﬂrr.’rll' S!fj!'ll““(, ~ Z?T': (h 1 / ) ! - ;'T[ Al
. A A q L o ; ‘. j—
W
h+1 0
( The EE for its ground state is S """, AE, (h+h) )
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The results from CFT.

( This result dose not depend on the calculation on gravity side. )
In field theory side, we calculate the EE for the primary state

with conformal weight (h, ).

This total system is a circle.

We divide the total system into A and B.
The size of the subsystem Ais /. t

Inthe limit [ < 1, W Suggestion fh respect to/,
the EE is

Tent is also universal in any CFT,

| . \

size = |

O ZT‘: { : 0 l
AS = sigtet — gground o 2T uu/»)(.,__) "1 AE4

( The EE for its ground state is .sf‘;"””" , AE,
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Holographic Local Quench

Based on arXiv:1302.5703
with Tadashi Takayanagi ( YITP, Kyoto )
and Tokiro Numasawa ( YITP, Kyoto )

* Motivations:

1. In the time-dependent case,
The relationship, AE A4 = Tont - AS4 holds ?

2.We would like to construct gravity dual to local quantum quench.
And we would like to study the behavior of local quantum quench

in detail.

- Non-equilibrium physics

Pirsa: 13030081 Page 48/61



Thermodynamical relation

For d=2,3,4 case, we derive the thermodynamical relation in the limit | < /a2 + 2

AEA . Tont ' ASA,

d+1 _,
Tont. = — 7",
2
L
In time-dependent case, the thermodynamical relation — B

( effective temperature) also holds.

G- !

>0

We expect that this thermodynamical relation ( effective
temperature 1 opyt ) holds in any dimensional time-
dependent case.
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Case 2

We studied the behavior of the entanglement entropy in AdSs .
is the point where we add the energy.

The distance from the

(u.!.:;)\(l..-ﬂﬂ\ (ol &) =(1.5.2) T = (1,5,4)

TS
o
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Local Quantum Quench

We prepare the two independent systems

of each other.

We add interaction locally.
I

We join these and add a new local interaction A B

I
|
v
o

between them at certain time.

This total system is excited.

We study the time-evolution of entanglement
by using the entanglement entropy.
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I
|
v
@

between them at certain time.
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We study the time-evolution of entanglement
by using the entanglement entropy.

Pirsa: 13030081 Page 52/61



Case 1
A
We studied the behavior of the entanglement entropy at two regions in AdS, .
AS, A
Regionl: /<<« -
‘ 3". =>
The peak appears at t =0. “ ] f - .‘ z
> t o
(ev,l) = (1,0.5)
AS 4
AX
Region2: | J«a , ’ !
The peak appears at t~ |/, / i . g f-----i B
_ _ ¢
o
(ev, ) I, 5)
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Case 2

We studied the behavior of the entanglement entropy in AdSs .
is the point where we add the energy.
The distance from the center of subsystem Ato Eis €.

ASA As,q ASA . I-f I+f
't , ‘ A

N b N

1€

4

"

(a,1,€) = (1,5.,0) (a.1.€) = (1.5.2) (a.1,§) = (1,5,4)

[ B
Center

TS
o
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The interpretation of these behavior

This thermodynamical relation

AE g =Tent - AS4

says that AE,

AS 4 t ( time direction )

v =L
~

(a,l) =(1,0.5)
X ( radial direction)

Pirsa: 13030081 Page 55/61



Pirsa: 13030081

Exact result

ASa

ASa

) i
o |
: \
..E' |
i |
I y

Blue line : t=0
Red line : t=5
Black line : t=10

ASa

Page 56/61



Exact result

Blue line : t=0
x = 1 Red line : t=5
Black line : t=10
ASa ASa

> — >$ ' > ¢
[ =3 [ = 10

In this region (1 <« /a2 + 2 ), the amount of quantum information seems to be
conserved at each time.

8-
In this region (; - Va2 + 12 ), the thermodynamical relation | AE 4 = T, - AS 4 holds.
B
The energy is conserved. » Itis true.
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Exact result

L [dEASA(1,E.1) Blue line : [=1
. ' A Red line : /=5
We introduce a new quantity : [dcAS,(Le.1) . Black line : / =10
7 [ EASALEY js the quantity which is integrated T
with respect to €. F
f X ;
This quantity approaches to the constant ; i
at the late time. o Y S——

A 4
~

The time which this quantity reaches at the constant depend[ on the width of
the interval.
[

2
. : .
The saturation time is o

)

We introduce the new quantity ( Entanglement Density ) to describe this behavior.
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Entanglement Density

We introduce the Entanglement Density as the quantity which measures

the entanglement between two points.

We assume the entanglement between two bodies only contributes to
the entanglement between two points.

So, this quantity counts the number of entanglement pair
between two points.

An (l,&,t) measures the entanglement

between these points.
This quantity is defined by —

l 0%9 l f l
An(lE) = = —— 2 _ T l

2 9IM Y1),

A
A

(D) / /(2)
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Entanglement Density

We introduce the Entanglement Density as the quantity which measures

the entanglement between two points.

We assume the entanglement between two bodies only contributes to
the entanglement between two points.

So, this quantity counts the number of entanglement pair
between two points.

An (l,&,t) measures the entanglement

between these points.
This quantity is defined by —

1 0°S l f l
An(l,&,t) = A T :

2 9lWPI2).

A
X

J(D) ’ 1(2)
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We found that the entanglement density between ;(1) — _/s2 | 42 and
1 = /12 + o2 is dominant. (= dominant entangled pair)

! . : :
At t< ot the distance between dominant pair

is less than the width of the interval. dominant pair

Then, the intervals which center l l
|5t——< £ < —t+7 Linclude the both points : > X
of domlnant pair. t=1 I
These intervals do not contribute to ; [das..c.1).
l . : .
At t> 7 the distance between dominant pair
is larger than the width of the interval. dominant pair
The number of intervals which contribute to # [ &ASi(l.&1) l l
is saturated. 21 2l

> X
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