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Abstract: <span>A mixed state can be expressed as a sum of D tensor product matrices, where D is its operator Schmidt rank, or as the result of a
purification with a purifying state of Schmidt rank D', where D' is its purification rank. The question whether D' can be upper bounded by D is
important theoretically (to establish a description of mixed states with tensor networks), as well as numerically (as the first decomposition is more
efficient, but the second one guarantees positive-semidefiniteness after truncation). Here we show that no upper bounds of the purification rank that
depend only on operator Schmidt rank exist, but provide upper bounds that also depend on the number of eigenvalues. In addition, we formulate the
approximation problem as a Semidefinite Program.<br>Joint work with N. Schuch, D. Perez-Garcia, and J. I. Cirac.</span>
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Mixed states

Used to describe « condensed matter
* atomic physics

* chemistry
* high energy physics

Thermal states of quantum many-body systems <

Systems out of equilibirium, e.g. experiments

Dissipative dynamics

Lack of knowledge of a system
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Mixed states

Appear in
Used to describe + condensed matter
* atomic physics
* chemistry
* high energy physics

L

Thermal states of quantum many-body systems <

* Systems out of equilibirium, e.g. experiments

* Dissipative dynamics
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State ef_'y €ve
* Lack of knowledge of a system Mixeq
* Boundary of a pure state in one more dimension
iy Develop good theoretical description of mixed states
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Tensor networks

Goal: develop an alternative description of quantum many-body systems

establish neat relations between

Physics Mathematical properties
of the system of the tensors
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Tensor networks

Matrix Product States (MPS)

e Canonical form:

injective/non-injective
* parent Hamiltonian

* symmetries

* topological order

* classification of phases

* link to CP maps

* Numerical algorithms
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Outline

The setting Can one upper bound the purification rank

as a function of the operator Schmidt rank?

* A counterexample No.

Upper bounds

* Approximate solutions
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Prelude

¢ Mixed state

It is described by a positive semidefinite tensor of trace 1.

g = Z Pivig,jrda |1112){J1J2
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Prelude

¢ Mixed state

It is described by a positive semidefinite tensor of trace 1.

P = E Piyia, g1 ’-I’.._' flf._’

e Purification

Every mixed state can be seen as a subsystem of a larger pure state.

O—®

s
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The setting

Given a positive semidefinite matrix , consider these 2 decompositions:

Operator Schmidt decomposition Local Purification

= “.;nn ll; .:.\[I

D'
W) Zs 2 B,
=]

purification rank

D
f‘**Z[}rn (|.)4|
x ]

operator Schmidt rank
D'
O LT
(O—®)

Choose the purifying state

with minimal bond dimension
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The setting

Operator Schmidt decomposition Local Purification

operator Schmidt rank purification rank
D'’
) ? Oan0
(9 —

Can D' be upper bounded by a function of D ?
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Classical states

* Diagonal in the computational basis:

nonnegative matrix

d
p = Z pii|i)(i| @ |7){J J t
t.g=1

In how many ways can P be decomposed?
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Classical states

Nonnegative matrix

Arbitrary matrices Nonnegative matrices

Rank Nonnegative rank
rank(P) rank. (P)
min r s.t. P can be min r s.t. P can be written
written as a sum of r as a sum of r non-negative
rank-1 matrices. rank-1 matrices.

Cohen & Israel, Lin. Alg. and
its Appl. 190, 149 (1993).
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L2

~  Classical states

“\'a?

stochastic map

Arbitrary matrices Nonnegative matrices Positive semidef. matrices

Y

rank of the map minimal middle dimension minimal middle dimension
needed to decompose P needed to decompose P
as a sequence of two as a sequence of two
stochastic maps completely positive maps
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st Classical states

Nonnegative matrix

O
Arbitrary matrices Nonnegative matrices

determines the classical
communication complexity
of P

Positive semidef. matrices
r Y
(B—

determines the quantum
communication complexity
of P

Jain, Shi, Wei & Zhang, arXiv:1203.1153,

Page 35/83



rank nonnegative rank positive semidef. rank
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rank nonnegative rank positive semidef. rank

(BH—
Quantum states

ot

Operator Schmidt rank purification rank

Pirsa: 13020149 Page 38/83



Pirsa: 13020149

Quantum states

Operator Schmidt rank

SJ
'
e Wy
N o s d\’a\
“\3?

purification rank

minimal middle dimension
needed to decompose p

as a sequence of two
completely positive maps

determines the quantum
communication complexity of p

Jain, 5hi, Wei & Zhang, arXiv:1203.1153.
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The counterexample

* Polytopes:

P is the convex hull of its vertices v1..... Un
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\
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The counterexample

* Polytopes:

P is the convex hull of its vertices v1..... Un

P is the finite intersection of the halfspaces
h ho defined by the facets /,,(x) < b,

l';/ h;; \"'2 h(r) - f:_,

| nonnegative matrix |

b

Slack matrixS Si; =0, — hj;(v;)

* Regular t-gon in 2 dimensions: with slack matrix 5,
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The counterexample

The slack matrix of the regular t-gon in 2 dimensions satisfies:

The rank is constant: rank(S,) = 3

.H.‘_I ’H‘- ] 'H' 1

::’,: C.”.C CI;C
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The counterexample

The slack matrix of the regular t-gon in 2 dimensions satisfies:

The rank is constant: rank(S;) = 3

.S.‘_I 'H‘-; 'Sll
C 3 C C 3 C O 3 O
The positive semidef. rank grows unboundedly with t:  rank,. (5;) ~ log?

log 2 log 3 log 4

& B8

Gouveia, Parrilo, Thomas, arXiv:1111.3164
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A multipartite
counterexample

The slack matrix of regular t-gons in 2 dimensions such that ¢ = 2"

t
Pt Z Sile,y)le,y)r,y
r.oy=1

Small Operator Schmidt rank across every cut

Unbounded purification rank across every cut

ar
0
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Upper bounds

The purification rank is upper bounded by

1. the OSR times the number of eigenvalues

2. the OSR to the power of the number of different eigenvalues
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Upper bound 1

Let p denote a density matrix with 1 eigenvalues. Then

purification rank (p) < Operator Schmidt rank(p) x n

Proof (informal, 1):
| operator Schmidt rank )

i.*/_,,
1. Operator Schmidt decomposition: p D

Page 50/83



Upper bound 1

Let p denote a density matrix with 1 eigenvalues. Then

purification rank (p) < Operator Schmidt rank(p) x n

Proof (informal, 1): _‘
| operator Schmidt rank

/4
1. Operator Schmidt decomposition: p D

k n

2. Eigenvalue decomposition: /7 E Ail0i) (0 n == number of eigenvalues )

-

Pirsa: 13020149 Page 51/83



Upper bound 1

Let p denote a density matrix with 1 eigenvalues. Then

purification rank (p) < Operator Schmidt rank(p) x n

Proof (informal, 1): _
| operator Schmidt rank )

)
1. Operator Schmidt decomposition: p 2

k n

2. Eigenvalue decomposition: /7 E Ail0i) (0 n  —= number of eigenvalues

- EE

«

This already provides a purification:

purification rank(p ) = rank( ©,))
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Upper bound 1

Let p denote a density matrix with 1 eigenvalues. Then

purification rank (p) < Operator Schmidt rank(p) x n

Proof (informal, 2):

* Project p onto a product state:

Pl V- )
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Upper bound 1

Let p denote a density matrix with 1 eigenvalues. Then
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Upper bound 1

Let p denote a density matrix with 1 eigenvalues. Then

purification rank (p) < Operator Schmidt rank(p) x n

Proof (informal, 2):

* Project p onto a product state:

PLUH I/

— rank(| X ) < D

X~/ is expressed as a linear

m (V) we only need to invert this relation...

combination of eigenvectors |0;) :
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Upper bound 2

Let p» denote a density matrix with 1 eigenvalues, 7. of which are different.

purification rank (p) < (Operator Schmidt rank(p))" '

Proof (informal, 1):

* Consider the purifying state

1l [l Il [l 1l 1l
lll [?H i) + f’l 2 + + I’H | )

powers of rho ancillas

/
p tranc|W) (W]
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Upper bound 2

Let p» denote a density matrix with n eigenvalues, 7. of which are different.

purification rank (p) < (Operator Schmidt rank(p))" '

Proof (informal, 1):

* Consider the purifying state

1l 1l Il [l 1l 1l
'l‘ ) lrr” (L) + lJI (] + + ;r” ! an

powers of rho ancillas

!
P = trane| W) (V]

purif. rank (p') < rank(|¥)) < Oo(D™" 1)
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Upper bound 2

Let p denote a density matrix with n eigenvalues, 7 of which are different.
purification rank (p) < (Operator Schmidt rank(p))" '

Proof (informal, 2):

* p'has the same eigenvectors as / , and its eigenvalues are a polynomial of those of / .

n
p= " pA)lo) (o,
i=] A

/

/
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Upper bound 2

Let p denote a density matrix with n eigenvalues, 7. of which are different.

purification rank (p) < (Operator Schmidt rank(p))" '

Proof (informal, 2):

» p'has the same eigenvectors as / , and its eigenvalues are a polynomial of those of / .

n
p="pAi)lo) (o,
j=1

A

The coefficients are the Ron Roy Ryo
sums of the antidiagonals R = Rio Ry BRyo
. of a pos. semidef. matrix. Rog Hoy  Roo
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Upper bound 2

Let p denote a density matrix with n eigenvalues, 7. of which are different.

purification rank (p) < (Operator Schmidt rank(p))" '

Proof (informal, 2):

* p'has the same eigenvectors as / , and its eigenvalues are a polynomial of those of / .

\ Z e R is the Gram matrix of the ancillary states!
pPlA;) = ChA; . \
Pt Ri; = (ai|a;)
o €] 2
S v .4 4
The coefficients are the Hon 1o Roo L €3
sums of the antidiagonals R = Rio Ry Rys
Cyq
of a pos. semidef. matrix. | Roo RIP"Roal/"
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Upper bound 2

Let p» denote a density matrix with n eigenvalues, 7 of which are different.

purification rank (p) < (Operator Schmidt rank(p))" '
Proof (informal, 3):

. . \ (Y0 n » | — [ PT \\
 The polynomial can be written as 7(A) = \J AL AR XY (vi| Rlvi)
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Upper bound 2

Let p» denote a density matrix with n eigenvalues, 7 of which are different.

purification rank (p) < (Operator Schmidt rank(p))" '

Proof (informal, 3):

. . \ 0 n ¥ { — -"’ ] ) ) \\
* The polynomial can be written as  7(\) = AV AL AT '\*,' (il ifs)
Al
A
* The vectors {lvi).[v2).....[vq)} are linearly independent by construction.
Hence there exists a biorthogonal basis {|w;)..... wy)} such that (v, |w;) = 9,
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Upper bound 2

Let p» denote a density matrix with n eigenvalues, 7. of which are different.

purification rank (p) < (Operator Schmidt rank(p))" '

Proof (informal, 3):

. . \ [y0 n » ( — (2 2oy \\
* The polynomial can be written as  7(\) = AV AL AT '\’ll (vi| R|v;)
Xl
AR~
* The vectors {lvi).[v2).....[vq)} are linearly independent by construction.
Hence there exists a biorthogonal basis {|w))..... w; )} such that (v, |w,) = 4,

* Choose p Z,\, w;j)(w;
j=1

This satisfies p(\,) = A,

* Hence, p' = p .Thus, purif.rank (p) < O(D" 1)
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Approximate solutions

Finding the closest density matrix with a maximum purification rank

is formulated as a Semidefinite Program.
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Exact solution

[ Constructrive proof |

of upper bound 2

p(\;) = \; foralli. f—

!

eigenvalues of p

eigenvalues of p

Pirsa: 13020149 Page 68/83



Pirsa: 13020149

p(A\) = A; foralli. ——
There's always a polynomial of degree 2(;; — 1) that passes through 7 points.
A
whose coefficients P(A1)
are the sums of the
antidiagonals of a =
(Y.
positive semidef. -
v
matrix 2 p(\y)
= PlA2
>
=
[
2
v !H' \ } ) |
le ’\i\
plAs)
1 ] >
) A \ \,

Exact solution

Constructrive proof

. of upper bound 2 |

eigenvalues of p
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Exact solution

[, Constructrive proof "

: ."\ of upper bound 2 |

p(A;) = A; foralli. ———
There's always a polynomial of degree 2(;; — 1) that passes through 7 points.
A
whose coefficients p(A1)
are the sums of the
antidiagonals of a =
(Y.
positive semidef. -
%
matrix = ()
= PlA2
>
[
[
2
QJ !”' ,\..\
fll \;\ —
{JI \"
T I I *
LI VIS PR W \ \, _ .
" Only different eigenvalues
eigenvalues of p — matter (/1)
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Approximate solution

Given p with OSR D,
provide ' that is closest (in 1-norm) to p

and such that purif. rank( ') < D"
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Approximate solution

We have formulated itas a semidefinite Program.

Given p with OSR D,
provide ' that is closest (in 1-norm) to p

and such that purif. rank( ') < D"
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Approximate solution

purification rank( /') - D' wmp polynomial of degree 2(/ — 1)

A polynomial of degree 2(/ — 1) can only cross the line 2(i: — 1) times.

Find the polynomial of degree 2(k — 1)
that minimizes the distance (in 1-norm)

to the . points.

whose coefficients are the
sums of the antidiagonals of a

positive semidef. matrix
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Approximate solution

Jrn,\|3‘
-
(e}
o
S p(ha)
©
>
c
v
2
[+}]
pPlA3)
[:1,\13
plAs)L
! »
A, A Ay \s Al

eigenvalues of p
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Approximate solution

Pl ,\| ]“ ---------------------------
- * Easy distributions:
°
§ bOre) eig. cluster around some points.
2 2
>
=
Es * Hardest distribution:
w -
e I all eigenvalues equally separated.
Pl ,\1 ===
p(As)8
T 1 | »

' A5 Ay A3 A2 Al

eigenvalues of p
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Approximate solution

A
P(A])g=======eccmcccccccccccannn-
- * Easy distributions:
°
“ eig. cluster around some points.
3 plA2)
©
>
g
o * Hardest distribution:
v .
powl . all eigenvalues equally separated.
p(A )=
p(As)8
L ! >
A A A \2 A

eigenvalues of p
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Approximate solution

A
P(A])gr=======cmececmccceccnannn-
- * Easy distributions:
°
a eig. cluster around some points.
3 plAg)
©
>
5
=) * Hardest distribution:
w -
) all eigenvalues equally separated.
plA 1 ===
p(As)8
T T »
1D VD PR ¥ \s \)

eigenvalues of p

Towards:  Given p , provide p' such that ||p — p'||; < € and purif. rank( p') < f(¢)
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Conclusions

Develop a good theoretical description of mixed states with tensor networks
Find a canonical form for Matrix Product Density Operators

\

Relate the two decompositions of Matrix Product Density Operators
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Conclusions

Develop a good theoretical description of mixed states with tensor networks

v

Find a canonical form for Matrix Product Density Operators

-

Relate the two decompositions of Matrix Product Density Operators
Operator Schmidt decomposition Local purification

operator Schmidt rank
purification rank
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Conclusions (2)

operator Schmidt rank purification rank

The purification rank cannot be upper bounded by a function of the OSR only.

The purification rank is upper bounded by:

1. the OSR times the number of eigenvalues

2. the OSR to the power of the number of different eigenvalues
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Outlook

* Potential applications

canonical form for MPDOs ?
thermal Hamiltonians
symmetries

numerical algorithms
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Outlook

* Potential applications * Collateral implications
e canonical form for MPDOs ? » Divisibility of CP maps
* thermal Hamiltonians  Communication complexity

symmetries -

* numerical algorithms
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Thank youl!
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