Title: Jet substructure in BSM physics

Date: Feb 21, 2013 09:10 AM

URL: http://pirsa.org/13020143

Abstract:

Pirsa: 13020143 Page 1/53

# SEARCHES FOR NEW PHYSICS DURING THE SHUTDOWN

Jay Wacker SLAC February 21, 2013

Applications of Jet Substructure to New Physics Searches
Perimeter Institute

Pirsa: 13020143 Page 2/53

# OUTLINE

- Motivation
- Substructure Variables
- Multijet Searches
- Data Driven Backgrounds
- Outlook

Pirsa: 13020143 Page 3/53

## MOTIVATION

First round of the LHC is complete

New physics didn't jump out

2 years to energy upgrade

Parked data being analyzed



#### HIDDEN SIGNALS

Searches that use lots of MET or leptons are spectacularly clean

Having explored those channels, now it's prudent to examine ones that don't have those handles

Need handles to distinguish signals from QCD/Top

Pirsa: 13020143 Page 5/53

# CLASSIFICATION OF SIGNALS

#### Simple Signals

Only a few final state particles

Must make use of all kinematic information for discovery

High backgrounds

#### Complicated Signals

Lots of final state particles

Use of kinematic information too subtle for discovery

Irreducible backgrounds low, but challenge to separate S/B

Pirsa: 13020143 Page 6/53

## SIMPLE SIGNALS

2-Jet Resonance

Pair Produced 2-Jet Resonances

Resonant Produced Pair of 2-Jet Resonances

Pair Produced 3-jet Resonances

Resonant Produced Pair of 3-Jet Resonances

Pirsa: 13020143 Page 7/53

Frequently occur when lightest particles are hard to find

Low Production Rate

Poor Signal to Background

Pirsa: 13020143 Page 8/53

Susy Cascade Decays



Reconstruction not part of discovery process

Pirsa: 13020143 Page 9/53

Susy Cascade Decays With RPV



Easy: Leptons, B-jets

Pirsa: 13020143 Page 10/53

#### New Theories of Strong Dynamics

|                | SU(N) | SM | Spin |
|----------------|-------|----|------|
| q              | Z     | 3  | 1/2  |
| q <sup>c</sup> | $N^*$ | 3* | 1/2  |

|   | SM | Spin |
|---|----|------|
| π | 8  | 0    |
| ρ | 8  |      |

$$\pi \rightarrow gg, t\bar{t}$$

$$\rho \to \pi\pi$$

|                            | π→ gg | $\pi \rightarrow tt^*$ |
|----------------------------|-------|------------------------|
| $pp \to \pi\pi$            | 4g    | 4t                     |
| $pp \rightarrow \rho$      | 4g    | 4t                     |
| $pp \rightarrow \rho \rho$ | 8g    | 8t                     |

#### Add Flavor

|    | SU(N) | SM | Flavor | Spin |
|----|-------|----|--------|------|
| P  | Z     | 3  | 2      | 1/2  |
| qc | Ν*    | 3* | 2      | 1/2  |

|           | SM | Flavor | Spin |
|-----------|----|--------|------|
| π         | 8  |        | 0    |
| ρ         | 8  |        |      |
| $\pi_{f}$ | 8  | 3      | 0    |
| ρf        | 8  | 3      |      |
| $\pi_0$   |    | 3      | 0    |
| ρο        |    | 3      |      |

Colored Resonances Heavier

Long cascade decays & signals depend on details

Pirsa: 13020143 Page 12/53

#### Add Flavor

|                | SU(N) | SM | Flavor | Spin |
|----------------|-------|----|--------|------|
| q              | Z     | 3  | 2      | 1/2  |
| q <sup>c</sup> | Ν*    | 3* | 2      | 1/2  |

|           | SM | Flavor | Spin |
|-----------|----|--------|------|
| π         | 8  |        | 0    |
| ρ         | 8  |        |      |
| $\pi_{f}$ | 8  | 3      | 0    |
| ρf        | 8  | 3      |      |
| $\pi_0$   |    | 3      | 0    |
| ρο        |    | 3      |      |

Colored Resonances Heavier

Long cascade decays & signals depend on details

Pirsa: 13020143 Page 13/53

# THE CHALLENGE OF JETS

Thin (R=0.4) jets don't have much structure

Described by pt  $\eta \phi$ 

Signals appear at high multiplicity

Phase space is 3<sup>NJ</sup>

Parton Shower produces jets too

Pirsa: 13020143 Page 14/53

# THE ROLE OF FAT JETS

Fat (R=1.0) jets have lots of structure

Described by pt  $\eta \phi$  + Jet Shapes

High multiplicity isn't possible

Signals appear as anomalies in jet shapes

Parton Shower doesn't change multiplicity

Pirsa: 13020143 Page 15/53

# THE ROLE OF FAT JETS

Fat (R=1.0) jets have lots of structure

Described by pt  $\eta \phi$  + Jet Shapes

High multiplicity isn't possible

Signals appear as anomalies in jet shapes

Parton Shower doesn't change multiplicity

Pirsa: 13020143 Page 16/53

## SUBSTRUCTURE VARIABLES

Lots of jet variables now proposed

Mass, Girth, etc.

N-Subjettiness

Color Flow Variables

N-Subjets

Pirsa: 13020143 Page 17/53

# N-SUBJETS

Having a measure of the number of subjets in a jet is quite useful

"What about N-Subjettiness?"

Not answering this question. Not easy to turn  $\tau_1, ..., \tau_n$  into a discrete number

| N | τΙ        | τ21  | τ31       | τ41  |
|---|-----------|------|-----------|------|
| 1 | <13%      |      |           |      |
| 2 | 13% - 25% |      |           |      |
| 2 | >25%      | <40% |           |      |
| 3 | 25% - 45% | >40% | <35%      |      |
| 3 | >45%      | >40% | <35%      | <20% |
| 4 | >45%      | >40% | <35%      | >20% |
| 4 | 25% - 40% | >40% | >35%      | <40% |
| 4 | 40% - 50% | >40% | 35% - 45% | <40% |
| 5 | >25%      | >40% | >35%      | >40% |
| 5 | 25% - 50% | >40% | >45%      | <40% |
| 5 | >50%      | >40% | 35% - 45% | >40% |

Pirsa: 13020143 Page 18/53



# Subjet Counting

by reversing the CA tree



If  $m_j < m_{cut}$ , j is a subjet If not, uncluster last step

If  $R_{j1j2} < R_{cut}$ , j is a subjet

If  $p_T j_2 < y_{cut} p_T j$ ,  $j_2$  throw out

If  $p_{T j_2} < p_{T cut}$ ,  $j_2$  throw out

Iterate



Pirsa: 13020143 Page 19/53



Pirsa: 13020143 Page 20/53





# Subjet Counting

by reversing the CA tree



If  $m_j < m_{cut}$ , j is a subjet

If not, uncluster last step

If  $R_{j1j2} < R_{cut}$ , j is a subjet

If  $p_T j_2 < y_{cut} p_T j$ ,  $j_2$  throw out

If  $p_{T j_2} < p_{T cut}$ ,  $j_2$  throw out

Iterate





Pirsa: 13020143 Page 23/53



# Subjet Counting

by reversing the CA tree



If  $m_j < m_{cut}$ , j is a subjet

If not, uncluster last step

If  $R_{j1j2} < R_{cut}$ , j is a subjet

If  $p_{T_{j2}} < y_{cut} p_{T_j}$ ,  $j_2$  throw out

If  $p_{T j_2} < p_{T cut}$ ,  $j_2$  throw out

Iterate



Pirsa: 13020143



# Subjet Counting

by reversing the CA tree

If  $m_j < m_{cut}$ , j is a subjet If not, uncluster last step

If  $R_{j1j2} < R_{cut}$ , j is a subjet

If  $p_{Tj2} < y_{cut} p_{Tj}$ ,  $j_2$  throw out

If  $p_{T j_2} < p_{T cut}$ ,  $j_2$  throw out

Iterate



3 Subjets



# Values Used In Counting Algorithm

(Not strongly sensitive)

 $m_{cut} = 30 \text{ GeV}$   $R_{cut} = 0.15$   $y_{cut} = 0.10$   $P_{T cut} = 30 \text{ GeV}$ 



Pirsa: 13020143

# N-SUBJETS

Having a measure of the number of subjets in a jet is quite useful

"What about N-Subjettiness?"

Not answering this question. Not easy to turn  $\tau_1, ..., \tau_n$  into a discrete number

| N | τ1        | τ21  | τ31       | τ41  |
|---|-----------|------|-----------|------|
| 1 | <13%      |      |           |      |
| 2 | 13% - 25% |      |           |      |
| 2 | >25%      | <40% |           |      |
| 3 | 25% - 45% | >40% | <35%      |      |
| 3 | >45%      | >40% | <35%      | <20% |
| 4 | >45%      | >40% | <35%      | >20% |
| 4 | 25% - 40% | >40% | >35%      | <40% |
| 4 | 40% - 50% | >40% | 35% - 45% | <40% |
| 5 | >25%      | >40% | >35%      | >40% |
| 5 | 25% - 50% | >40% | >45%      | <40% |
| 5 | >50%      | >40% | 35% - 45% | >40% |



Pirsa: 13020143 Page 27/53

# N-SUBJETS

Having a measure of the number of subjets in a jet is quite useful

"What about N-Subjettiness?"

Not answering this question. Not easy to turn  $\tau_1, ..., \tau_n$  into a discrete number

| I WINE CO |  |
|-----------|--|

| N | τ1        | τ21  | τ31       | τ41  |
|---|-----------|------|-----------|------|
| 1 | <13%      |      |           |      |
| 2 | 13% - 25% |      |           |      |
| 2 | >25%      | <40% |           |      |
| 3 | 25% - 45% | >40% | <35%      |      |
| 3 | >45%      | >40% | <35%      | <20% |
| 4 | >45%      | >40% | <35%      | >20% |
| 4 | 25% - 40% | >40% | >35%      | <40% |
| 4 | 40% - 50% | >40% | 35% - 45% | <40% |
| 5 | >25%      | >40% | >35%      | >40% |
| 5 | 25% - 50% | >40% | >45%      | <40% |
| 5 | >50%      | >40% | 35% - 45% | >40% |



Pirsa: 13020143

#### N<sub>subjets</sub> is not Number of Jets

Does not exhibit "stair case scaling"

Many fewer subjets than jets







Pirsa: 13020143 Page 29/53

# MULTIJET SEARCHES

High multiplicity final states will appear as multiple fat jets, but with unusual fat jets

13 Jet Event

3 Jet Event







Pirsa: 13020143 Page 30/53

# DISCOVERY PROCESS

Signal

Background



VS



Pirsa: 13020143 Page 31/53

## COMBINING SUBSTRUCTURE

After requiring N-fat jets (3, 4, 5) moderate to high pT

Can try any set of variables, will use Mass & N-subjets

Fat jets are isolated from each other

Have N pairs of (mass, n<sub>subjets</sub>)

Pirsa: 13020143 Page 32/53

### USING MASS

Our studies have mostly had some MET, meaning that top becomes an important BG

Top has an intrinsic mass scale of ~350GeV

Sum of Jet Masses

$$M_J = \sum_{n=1}^{N_J} m_{j_n}$$

If dealing with MET-less signal, other combinations may be better

Perhaps using summing m/pT

### USING MASS

Our studies have mostly had some MET, meaning that top becomes an important BG

Top has an intrinsic mass scale of ~350GeV

Sum of Jet Masses

$$M_J = \sum_{n=1}^{N_J} m_{j_n}$$

If dealing with MET-less signal, other combinations may be better

Perhaps using summing m/pT

#### $M_J$ as a replacement for $H_T$

$$H_T = \sum E_{Ti} = \sum (p_{Ti}^2 + m_{ji}^2)^{\frac{1}{2}}$$

<u>Signal</u>

**Background** 

$$m_j/p_T \sim 1$$

$$m_j/p_T \lesssim 1$$

$$H_T \sim M_J$$

$$H_T \gtrsim M_J$$

Signal has higher  $M_J$  for fixed  $H_T$ 

Keep less background at same signal efficiency

Never does parametrically worse

# USING SUBJETS

Simplest thing to do with subjets is

$$N_J = \sum_i n_i$$

Not the same as the number of jets in an event Steeper fall off in multiplicity due to grooming

Pirsa: 13020143

# Mass vs N-Subjets

Mass and N-subjets are correlated, but most mass generated with 2 subjets





Pirsa: 13020143 Page 37/53



Pirsa: 13020143 Page 38/53



Pirsa: 13020143 Page 39/53



Pirsa: 13020143 Page 40/53

#### Improvements of N<sub>J</sub> vs M<sub>J</sub> only Search

$$E_T > 125 \text{ GeV}$$

$$M_J \ge 425 \,\, \mathrm{GeV}$$

$$N_{J} > 14$$

$$\sigma_{\text{SM}} \simeq 0.07 \text{fb}$$





Factor of 8
improvement in cross
section,
factor of 64 less
luminosity

#### Improvements of N<sub>J</sub> vs M<sub>J</sub> only Search

$$M_J + N_J$$
 $M_J \ge 1050 \text{ GeV}$ 
 $N_J > 14$ 

$$\sigma_{\text{SM}} \simeq 0.7 \text{fb}$$



Pirsa: 13020143

#### Can be combined with other requirements

b-tags

leptons

Having these new techniques requires that less weight is placed upon these objects

May be single lepton or b-tag can tame QCD

Pirsa: 13020143

# OUTLINE

- Motivation
- Substructure Variables
- Multijet Searches
- Data Driven Backgrounds
- Outlook

Pirsa: 13020143 Page 44/53

# DATA DRIVEN BACKGROUNDS

## QCD jets only have small correlations



$$x = m_j/p_T$$

 $P_3(x_1, x_2, x_3) \simeq P_1(x_1)P_1(x_2)P_1(x_3)$ 



Measure in one sample and extrapolate Also can use other control regions (MET/leptons/bjets)

Would like a calculation to understand correlations

Should measure in multiple settings (q vs g composition)

Pirsa: 13020143 Page 45/53

Natural "Data-Driven" approach to backgrounds

$$P_1(x; p_T)$$

Now use in the multijet sample

Predict event-by-event acceptances

(probability an event passes cut)

$$A(p_{T\,1},p_{T\,2},p_{T\,3}) = \int_{M_J > m_{\text{cut}}} d^3x P_1(x_1;p_{T\,1}) P_1(x_2;p_{T\,2}) P_1(x_3;p_{T\,3})$$

Can make an M<sub>J</sub> prediction based upon the events measured

Don't need to be able to calculate M<sub>J</sub> distribution from first principles

Natural "Data-Driven" approach to backgrounds

$$P_1(x; p_T)$$

Now use in the multijet sample

Predict event-by-event acceptances

(probability an event passes cut)

$$A(p_{T\,1},p_{T\,2},p_{T\,3}) = \int_{M_J > m_{\text{cut}}} d^3x P_1(x_1;p_{T\,1}) P_1(x_2;p_{T\,2}) P_1(x_3;p_{T\,3})$$

Can make an M<sub>J</sub> prediction based upon the events measured

Don't need to be able to calculate M<sub>J</sub> distribution from first principles

#### Works well in Monte Carlo

< 20% systematic differences





Pirsa: 13020143 Page 48/53

#### Works well in Monte Carlo

< 20% systematic differences





Pirsa: 13020143 Page 49/53

#### Works well in Monte Carlo

< 20% systematic differences





Pirsa: 13020143 Page 50/53

# Can use Data Driven approach to M<sub>J</sub> & N<sub>J</sub> $\rho(m/p_T, n; p_T)$



Can reduce QCD by 2<sup>+</sup> orders of magnitude

Pirsa: 13020143 Page 51/53

### DESPERATELY SEEKING CORRELATIONS

Have seen no evidence yet of correlations

Actively looking for them

Looking at samples with different compositions



Pirsa: 13020143 Page 52/53

# OUTLOOK

Approach of looking for multiple jets with anomalous properties has not been optimized

Appears that factors of 3-10 in expected sensitivity on  $\sigma$  × Br are possible

Use of data-driven approach should be explored Q v. G Templates & Validation

Using N-subjets can be useful at classifying jets e.g. don't compute  $\tau_4$  if n<5

Pirsa: 13020143 Page 53/53