Title: Gamma Rays at 130 GeV and How They Might Come from Dark Matter

Date: Feb 21, 2013 01:00 PM

URL: http://www.pirsa.org/13020139

Abstract: Gamma Rays at 130 GeV and How They Might Come from Dark

Matter"

I'll discuss the exciting (but somewhat controversial) new discovery of a sharp gamma ray feature at 130 GeV from near the galactic center and review some other evidence that might link it to annihilation of dark matter. I will then explain the challenges in understanding how dark matter might produce this signal and explain a model or two that overcome these difficulties.

Pirsa: 13020139 Page 1/46

Gamma Rays at 130 GeV and How They Might Come from Dark Matter

Andrew Frey

University of Winnipeg

21 Feb 2013

Pirsa: 13020139 Page 2/46

Outline

- **1** A Line at 130 GeV?
- 2 Dark Matter with Magnetic Dipole Moments
- 3 Composite Magnetic Dark Matter

Pirsa: 13020139 Page 3/46

- A Line at 130 GeV?
 - Detection Near Galactic Center
 - Evidence for DM Interpretation?
 - Challenges for DM Interpretation
- 2 Dark Matter with Magnetic Dipole Moments
- **3** Composite Magnetic Dark Matter

Pirsa: 13020139 Page 4/46

Detection Near Galactic Center

Examine regions near GC SNR optimized

- Excess over power law near 130 GeV
- Locally: 4.6σ Globally: 3.3σ
- Very narrow

Pirsa: 13020139 Page 5/46

Detection Near Galactic Center

(Tempel, Hektor, & Raidal)

- Similar analysis to verify excess
- Found regions of significant excess around galaxy

Pirsa: 13020139 Page 6/46

Detection Near Galactic Center

(Su & Finkbeiner)

- Bin gamma rays by energy
- Residual at GC in 120-140 GeV bin
- 5.0 σ before trials factor
- ullet 6.5 σ before trials with template

Double-line fit

Pirsa: 13020139 Page 7/46

Detection Near Galactic Center

(Su & Finkbeiner)

- Bin gamma rays by energy
- Residual at GC in 120-140 GeV bin
- 5.0 σ before trials factor
- ullet 6.5 σ before trials with template

Double-line fit

Pirsa: 13020139 Page 8/46

Detection Near Galactic Center

(Fermi-LAT)

Preliminary analysis
Not published, no preprint

Signal seen at 3 to 4σ depending on processing

Reprocessing:

shifts line to 135 GeV

reduces significance

Possibly finds other bumps Search areas not as sophisticated

Pirsa: 13020139 Page 9/46

Detection Near Galactic Center

Instrumental or Other Spurious Effect?

(Su, Finkbeiner, & Weniger; Hektor, Raidal, & Tempel; Whiteson)

Focus on intrumental incidence angle

- Comparison to earth limb photons
- $> 3\sigma$ feature at 130 GeV Only at small incidence angles
- ullet GC γ at all incidence angles
- Galactic center line looks real Limb line probably a fluke

But still many caveats

Pirsa: 13020139 Page 10/46

Detection Near Galactic Center

Instrumental or Other Spurious Effect?

(Su, Finkbeiner, & Weniger; Hektor, Raidal, & Tempel; Whiteson)

Focus on intrumental incidence angle

- Comparison to earth limb photons
- ${ullet} > 3\sigma$ feature at 130 GeV Only at small incidence angles
- ullet GC γ at all incidence angles
- Galactic center line looks real Limb line probably a fluke

But still many caveats

Pirsa: 13020139 Page 11/46

Detection Near Galactic Center

Other Suggested Astrophysical Sources

- Something from the Fermi bubbles? Have broken power law (Profumo & Linden)
- Inverse Compton from cold ultrarelativistic e^- pulsar wind? (Aharonian, Khangulyan, & Malyshev)
- IC from secondary e^- from knee CRs plus fluctuation (Gupta et al.)

But some issues with these possibilities

Pirsa: 13020139 Page 12/46

Evidence for DM Interpretation?

Assuming all DM annihilates, $\langle \sigma_{\gamma\gamma} v \rangle \approx (1-\text{few}) \times 10^{-27} \text{cm}^3/\text{s}$ You might think to see this happen elsewhere

(Hektor, Raidal, & Tempel)

Galaxy Clusters

(Hektor, Raidal, & Tempel)

- "Stacked" 6 nearby clusters
- Varied acceptance radius
- 3.6σ significance at 5° radius Decreases at larger radius

(Huang et al.)

- Individual clusters
- Limit consistent with line

As expected

Pirsa: 13020139 Page 13/46

Evidence for DM Interpretation?

DM Subhalos

A bit controversial

Claimed detection from Fermi unassociated sources

(Su & Finkbeiner)

Spectra do not match expected DM annihilation

(Hooper & Linden; Mirabal)

Line detection due to selection bias

(Hektor, Raidal, & Tempel)

Might not expect to see subhalos yet

(Hooper & Linden)

Pirsa: 13020139 Page 14/46

Evidence for DM Interpretation?

Null Results/Constraints

• Dwarf satellite galaxies: constraint near $\langle \sigma v \rangle_0$ (Geringer-Sameth & Koushiappas; Huang et al.)

(Fermi, modified by Résonaances blog)

Diffuse emission line searches in tension

(Fermi collaboration)

Pirsa: 13020139 Page 15/46

Evidence for DM Interpretation?

Null Results/Constraints

• Dwarf satellite galaxies: constraint near $\langle \sigma v \rangle_0$ (Geringer-Sameth & Koushiappas; Huang et al.)

Diffuse emission line searches in tension

(Fermi collaboration)

Pirsa: 13020139 Page 16/46

Challenges for DM Interpretation

Recall
$$\langle \sigma_{\gamma\gamma} v \rangle \approx (1-{\rm few}) \times 10^{-27} {\rm cm}^3/{\rm s}$$

Compare to thermal cross section

$$\langle \sigma v \rangle_0 \approx 3 \times 10^{-26} \text{cm}^3/\text{s}$$

- DM must be chargeless $\chi\chi\to\gamma\gamma$ a loop effect
- Alternately, virtual internal bremsstrahlung
- Both suppressed
- Slightly more massive charged particles help (Cline)

Pirsa: 13020139 Page 17/46

Challenges for DM Interpretation

Recall
$$\langle \sigma_{\gamma\gamma} v \rangle \approx (1-{\rm few}) \times 10^{-27} {\rm cm}^3/{\rm s}$$

Compare to thermal cross section

$$\langle \sigma v \rangle_0 \approx 3 \times 10^{-26} \text{cm}^3/\text{s}$$

- DM must be chargeless $\chi\chi\to\gamma\gamma$ a loop effect
- Alternately, virtual internal bremsstrahlung
- Both suppressed
- Slightly more massive charged particles help (Cline)

Pirsa: 13020139 Page 18/46

Challenges for DM Interpretation

Constraints on Continuum Emission

(Buckley & Hooper; Cohen et al; Cholis, Tavakoli, & Ullio; Huang et al.)

- DM \to SM annihilation generates final state radiation, prompt γ from decays, inverse Compton, bremsstrahlung
- $\langle \sigma \rangle \lesssim (\text{few to dozens}) \langle \sigma_{\gamma \gamma} v \rangle$
- Already rules out some SUSY models

Offset from GC

- Some evidence that DM cusp is 200 pc from GC (Su & Finkbeiner)
- Possible agreement from DM+baryon simulations
 (Kuhlen et al.)

Pirsa: 13020139 Page 19/46

Challenges for DM Interpretation

Constraints on Continuum Emission

(Buckley & Hooper; Cohen et al; Cholis, Tavakoli, & Ullio; Huang et al.)

- DM \to SM annihilation generates final state radiation, prompt γ from decays, inverse Compton, bremsstrahlung
- $\langle \sigma \rangle \lesssim (\text{few to dozens}) \langle \sigma_{\gamma \gamma} v \rangle$
- Already rules out some SUSY models

Offset from GC

Some evidence that DM cusp is 200 pc from GC
 (Su & Finkbeiner)

Possible agreement from DM+baryon simulations
 (Kuhlen et al.)

Pirsa: 13020139 Page 20/46

- **1** A Line at 130 GeV?
- 2 Dark Matter with Magnetic Dipole Moments
 - Dipole Moment Operator
 - Relic Density & Gamma Ray Signal
 - Large Enough Moments?
- Composite Magnetic Dark Matter

Pirsa: 13020139 Page 21/46

- A Line at 130 GeV?
- Dark Matter with Magnetic Dipole Moments
 - Dipole Moment Operator
 - Relic Density & Gamma Ray Signal
 - Large Enough Moments?
- Composite Magnetic Dark Matter

Pirsa: 13020139 Page 22/46

Dark Matter with Magnetic Dipole Moments Dipole Moment Operator

Even uncharged classical matter can have dipole moments

For fermions: spin-field coupling

$$\frac{i}{2}\mu\bar{\chi}\gamma_{\mu\nu}\chi F^{\mu\nu}$$

Transition magnetic moment

$$\chi_1 \to \chi_2$$

• Really hypercharge magnetic moment

$$\mu_Z = -\tan\theta_W \mu_{\gamma}$$

Dark Matter with Magnetic Dipole Moments Dipole Moment Operator

Direct Detection

(many authors)

Scattering from nucleons

- From nuclear charge or dipole
- For elastic scattering $\mu \lesssim 6 \times 10^{-5} \mu_N$ (assuming canonical density)
- Transition magnetic moment allowed $\Delta m \gtrsim 150 \text{ keV}$ at $\mu \sim 1/\text{TeV}$
- Electric dipoles more suppressed

Consider lower density, allowing larger μ But too large splitting

Pirsa: 13020139 Page 24/46

Relic Density & Gamma Ray Signal

Need compatible DM density and γ flux

- γ flux $\Phi \propto \langle \sigma_{\gamma\gamma} v \rangle + \langle \sigma_{\gamma Z} v \rangle / 2$
- Need

$$\langle \sigma_{tot} v \rangle > \langle \sigma_{\gamma\gamma} v \rangle (+\langle \sigma_{\gamma Z} v \rangle + \langle \sigma_{ZZ} v \rangle)$$

Or ρ_{DM} too large

- Add coannihilations $\chi_1\chi_2 \to SM-SM$
- Adjust δm with σ_{tot} fixed Increases $\mu \& \langle \sigma_{\gamma\gamma} v \rangle$ (Tulin, Yu, Zurek)

Pirsa: 13020139 Page 25/46

Relic Density & Gamma Ray Signal

Need compatible DM density and γ flux

- γ flux $\Phi \propto \langle \sigma_{\gamma\gamma} v \rangle + \langle \sigma_{\gamma Z} v \rangle / 2$
- Need

$$\langle \sigma_{tot} v \rangle > \langle \sigma_{\gamma\gamma} v \rangle (+\langle \sigma_{\gamma Z} v \rangle + \langle \sigma_{ZZ} v \rangle)$$

Or ρ_{DM} too large

- Add coannihilations $\chi_1\chi_2 \to SM-SM$
- Adjust δm with σ_{tot} fixed Increases $\mu \& \langle \sigma_{\gamma\gamma} v \rangle$ (Tulin, Yu, Zurek)

Pirsa: 13020139 Page 26/46

Relic Density & Gamma Ray Signal

Need compatible DM density and γ flux

- γ flux $\Phi \propto \langle \sigma_{\gamma\gamma} v \rangle + \langle \sigma_{\gamma Z} v \rangle / 2$
- Need

$$\langle \sigma_{tot} v \rangle > \langle \sigma_{\gamma\gamma} v \rangle (+\langle \sigma_{\gamma Z} v \rangle + \langle \sigma_{ZZ} v \rangle)$$

Or ρ_{DM} too large

- Add coannihilations $\chi_1\chi_2 \to SM-SM$
- Adjust δm with σ_{tot} fixed Increases $\mu \& \langle \sigma_{\gamma\gamma} v \rangle$ (Tulin, Yu, Zurek)

Relic Density & Gamma Ray Signal

Need compatible DM density and γ flux

- γ flux $\Phi \propto \langle \sigma_{\gamma\gamma} v \rangle + \langle \sigma_{\gamma Z} v \rangle / 2$
- Need

$$\langle \sigma_{tot} v \rangle > \langle \sigma_{\gamma\gamma} v \rangle (+\langle \sigma_{\gamma Z} v \rangle + \langle \sigma_{ZZ} v \rangle)$$

Or ρ_{DM} too large

- Add coannihilations $\chi_1\chi_2 \to SM-SM$
- Adjust δm with σ_{tot} fixed Increases $\mu \& \langle \sigma_{\gamma\gamma} v \rangle$

Relic Density & Gamma Ray Signal

Re-examine relic density

- $n \propto \langle \sigma_{tot} v \rangle^{-1}$ at fixed mass
- Suppose

$$\langle \sigma_{tot} v \rangle = \langle \sigma_{\gamma\gamma} v \rangle + \langle \sigma_{\gamma Z} v \rangle + \langle \sigma_{ZZ} v \rangle \propto \mu^4$$

- γ flux $\Phi \propto n^2 \langle \sigma_{\gamma\gamma} v \rangle \propto \mu^{-4}$
- Need $\mu \sim 2/\text{TeV}$
- ullet Subdominant component of DM Adding some coannihilation reduces n

Page 29/46

Another Route

(Weiner & Yavin)

- Coannihilations dominate early
- Then $\Phi \propto \mu^0$
- Can be subdominant again

Pirsa: 13020139

Relic Density & Gamma Ray Signal

Re-examine relic density

- $n \propto \langle \sigma_{tot} v \rangle^{-1}$ at fixed mass
- Suppose

$$\langle \sigma_{tot} v \rangle = \langle \sigma_{\gamma\gamma} v \rangle + \langle \sigma_{\gamma Z} v \rangle + \langle \sigma_{ZZ} v \rangle \propto \mu^4$$

- γ flux $\Phi \propto n^2 \langle \sigma_{\gamma\gamma} v \rangle \propto \mu^{-4}$
- Need $\mu \sim 2/\text{TeV}$
- ullet Subdominant component of DM Adding some coannihilation reduces n

Another Route

(Weiner & Yavin)

- Coannihilations dominate early
- Then $\Phi \propto \mu^0$
- Can be subdominant again

Large Enough Moments?

How might you build DM with a dipole moment?

- Ingredients:
 - Fermionic DM χ
 - Hypercharged scalar ϕ , fermion ψ
 - Yukawa $y\phi \bar{\psi} \chi$
- Dipole generated at 1 loop

$$\mu \sim \frac{y^2 g'}{4\pi M}$$

- $\mu \sim 1/{\rm TeV}$ difficult perturbatively Need $M \gtrsim m_\chi$
- Can be done, but messy (Weiner & Yavin)
- Motivates composite models

Large Enough Moments?

How might you build DM with a dipole moment?

- Ingredients:
 - Fermionic DM χ
 - Hypercharged scalar ϕ , fermion ψ
 - Yukawa $y\phi \bar{\psi} \chi$
- Dipole generated at 1 loop

$$\mu \sim \frac{y^2 g'}{4\pi M}$$

- $\mu \sim 1/{\rm TeV}$ difficult perturbatively Need $M \gtrsim m_\chi$
- Can be done, but messy (Weiner & Yavin)
- Motivates composite models

Large Moments for Dark Hadrons

Neutral baryons have moments $\mu \sim e/m$ (sum of constituents)

- Consider a confining dark gauge group (SU(2))
- Matter: scalar S, fermion ψ with charges -(n+1/2)
- Leads to dipole moments $\mu \sim (2n+1)/\text{TeV}$

Mesons (Neutral)

- \bullet $\eta = S\psi$
- $\bullet \ \tilde{\eta}_S = S^*S$
- $\bullet \ \tilde{\eta}_{\psi} = \bar{\psi}\psi$
- $\tilde{\eta}_S, \tilde{\eta}_{\psi}$ heavier: S^4 , spin-spin interactions

Baryons

- $N^- = S^* \psi$
- $\tilde{N}_{\mu}^{+} = S \partial_{\mu} S$
- $\tilde{N}_{\psi}^{-} = \psi \psi$

Large Moments for Dark Hadrons

Neutral baryons have moments $\mu \sim e/m$ (sum of constituents)

- Consider a confining dark gauge group (SU(2))
- Matter: scalar S, fermion ψ with charges -(n+1/2)
- Leads to dipole moments $\mu \sim (2n+1)/\text{TeV}$

Mesons (Neutral)

- \bullet $\eta = S\psi$
- $\bullet \ \tilde{\eta}_S = S^*S$
- $\bullet \ \tilde{\eta}_{\psi} = \bar{\psi}\psi$
- $\tilde{\eta}_S, \tilde{\eta}_\psi$ heavier: S^4 , spin-spin interactions

Baryons

- $N^- = S^* \psi$
- $\tilde{N}_{\mu}^{+} = S \partial_{\mu} S$
- $\tilde{N}_{\psi}^{-} = \psi \psi$

Large Moments for Dark Hadrons

Neutral baryons have moments $\mu \sim e/m$ (sum of constituents)

- Consider a confining dark gauge group (SU(2))
- Matter: scalar S, fermion ψ with charges -(n+1/2)
- Leads to dipole moments $\mu \sim (2n+1)/\text{TeV}$

Mesons (Neutral)

$$\bullet$$
 $\eta = S\psi$

$$\bullet \ \tilde{\eta}_S = S^*S$$

$$\bullet \ \tilde{\eta}_{\psi} = \bar{\psi}\psi$$

• $\tilde{\eta}_S, \tilde{\eta}_\psi$ heavier: S^4 , spin-spin interactions

Baryons

•
$$N^- = S^* \psi$$

$$\tilde{N}_{\mu}^{+} = S \partial_{\mu} S$$

$$\tilde{N}_{\psi}^{-}=\psi\psi$$

Large Moments for Dark Hadrons

Only a transition magnetic moment is allowed by direct detection

- Add Majorana singlet χ with $y\bar{\chi}S\psi$
- Becomes $\eta \chi$ mass mixing
- With parity, exactly diagonalizable Leaves 3 Majorana fermions
- χ_1 mostly η , χ_3 mostly χ χ_2 is purely composite (η)
- Transition moments μ_{12}, μ_{23} only

Pirsa: 13020139 Page 36/46

Large Moments for Dark Hadrons

Only a transition magnetic moment is allowed by direct detection

- Add Majorana singlet χ with $y\bar{\chi}S\psi$
- Becomes $\eta \chi$ mass mixing
- With parity, exactly diagonalizable Leaves 3 Majorana fermions
- χ_1 mostly η , χ_3 mostly χ χ_2 is purely composite (η)
- Transition moments μ_{12}, μ_{23} only

Pirsa: 13020139 Page 37/46

Large Moments for Dark Hadrons

Only a transition magnetic moment is allowed by direct detection

- Add Majorana singlet χ with $y\bar{\chi}S\psi$
- ullet Becomes $\eta-\chi$ mass mixing
- With parity, exactly diagonalizable Leaves 3 Majorana fermions
- χ_1 mostly η , χ_3 mostly χ χ_2 is purely composite (η)
- Transition moments μ_{12}, μ_{23} only

Pirsa: 13020139 Page 38/46

More Ways to Produce Photons

Many more couplings between DM and SM in EFT

Dark Yukawas and Scalar Decays

- Nothing forbids $y_{iab}\tilde{\eta}_i\bar{\chi}_a\chi_b$ $(i=S,\psi)$
- To prevent $\chi_1\chi_1 \to \gamma\tilde{\eta}$:

$$m_{\tilde{\eta}} \sim m_{\eta} = m_2 > 2m_1$$

- But also $\tilde{\eta}_i F_{\mu\nu} F^{\mu\nu}$ (like π^0)
- $\chi_1\chi_1 \to \tilde{\eta} \to \gamma\gamma$ important if resonant

Rayleigh Operators

- Also have $\bar{\chi}\chi F_{\mu\nu}F^{\mu\nu}$, e
- Contribute directly to σ
- Many contributions to

Pirsa: 13020139 Page 39/46

More Ways to Produce Photons

Many more couplings between DM and SM in EFT

Dark Yukawas and Scalar Decays

- Nothing forbids $y_{iab}\tilde{\eta}_i\bar{\chi}_a\chi_b$ $(i=S,\psi)$
- To prevent $\chi_1\chi_1 \to \gamma\tilde{\eta}$:

$$m_{\tilde{\eta}} \sim m_{\eta} = m_2 > 2m_1$$

- But also $\tilde{\eta}_i F_{\mu\nu} F^{\mu\nu}$ (like π^0)
- $\chi_1\chi_1 \to \tilde{\eta} \to \gamma\gamma$ important if resonant

Rayleigh Operators

- Also have $\bar{\chi}\chi F_{\mu\nu}F^{\mu\nu}$, etc
- Contribute directly to $\sigma_{\gamma\gamma}$
- Many contributions to "effective μ "

Pirsa: 13020139 Page 40/46

Collider Signatures

Some spectacular signatures: LHC sees constituents

Meson Production

- Produce dark constituents & hadronize
- DM and excited states
 Monophotons/jets and missing energy
- Or $2\tilde{\eta}_{S,\psi}$ Pairs of photons w/same m^2
- Cross sections near interesting levels

Pirsa: 13020139 Page 41/46

Collider Signatures

Some spectacular signatures: LHC sees constituents

Meson Production

- Produce dark constituents & hadronize
- DM and excited states
 Monophotons/jets and missing energy
- Or $2\tilde{\eta}_{S,\psi}$ Pairs of photons w/same m^2
- Cross sections near interesting levels

Pirsa: 13020139 Page 42/46

Collider Signatures

Baryon Production

- N^- can couple to leptons $N^- \to \gamma l^-$ or $N^- \to (2n+1)l^-$
- Alternately $N^- \to (2n+1)l^- + \tilde{\eta}$ Gives leptons plus multiphotons
- \tilde{N}_{μ}^{+} and \tilde{N}_{ψ}^{+} decays to DM+ l^{+} Under SM background

Pirsa: 13020139 Page 43/46

Summary

- **1** A Line at 130 GeV?
- Dark Matter with Magnetic Dipole Moments
- Composite Magnetic Dark Matter

Maybe first non-gravitational detection of DM Indicates rich DM physics
Thank You

Pirsa: 13020139 Page 44/46

Summary

- **1** A Line at 130 GeV?
- Dark Matter with Magnetic Dipole Moments
- **3** Composite Magnetic Dark Matter

Maybe first non-gravitational detection of DM Indicates rich DM physics

Thank You

Pirsa: 13020139 Page 45/46

Detection Near Galactic Center

(Su & Finkbeiner)

- Bin gamma rays by energy
- Residual at GC in 120-140 GeV bin
- 5.0 σ before trials factor
- ullet 6.5 σ before trials with template

Double-line fit

Pirsa: 13020139 Page 46/46