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Abstract: <span>Matrix
models, random maps and Liouvillefield
theory are prime tools which connect

random

geometry and quantum gravity in two dimensions. The
tensor track is anew program to extend this
connection to higher dimensions through

the

corresponding notions of tensor models, colored
triangulations and tensor group field theories.& nbsp;</span>
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Introduction

General Relativity

Einstein linked gravity to space-time curvature

In this way he gave new physical meaning to geometry.
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Introduction

Quantum Gravity as (Large) Random Geometry
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Introduction

\ Quantum Gravity as (Large) Random Geometry

Quantizing Gravity ~ Randomizing Geometry 7

Z ~ /’n... el %€ (&)

But what is the measure Dg? On which underlying space-time? Should one
also sum on topologies? How to relate quantum gravity to classical space and
time as we know them?
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Introduction

Probability and Enumerative Combinatorics

In probability theory careful counting is critical.

Vincent Rivasseau Quantum Gravity as Random Geometry

Pirsa: 13020132 Page 6/75



Introduction

Probability and Enumerative Combinatorics

In probability theory careful counting is critical.

We feel quantizing gravity requires mathematical techniques coming from at
least four main areas: quantum field theory, geometry, and
enumerative combinatorics.
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Enumerative Combinatorics and Geometry in Two Dimensions
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Enumerative Combinatorics and Geometry in Two Dimensions

Rooted planar quadrangulations are simple objects
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Enumerative Combinatorics and Geometry in Two Dimensions

Counting Planar Graphs a la Tutte (1963)

Q»= number of rooted planar quadrangulations with n faces
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Enumerative Combinatorics and Geometry in Two Dimensions

. Counting Planar Graphs a la Tutte (1963)

Q»= number of rooted planar quadrangulations with n faces

Adding boundaries Tutte found in 1963 a quadratic recursive equation (a la
Polchinski),

O 00 O

and solved it, getting:
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Enumerative Combinatorics and Geometry in Two Dimensions

Counting Planar Graphs a la 'tHooft and Brezin-ltzykson-Parisi-Zuber (1978)

Why planar quadrangulations?
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Enumerative Combinatorics and Geometry in Two Dimensions

Counting Planar Graphs a la 'tHooft and Brezin-ltzykson-Parisi-Zuber (1978)

Why planar quadrangulations?

QFT answer: because they are dual to the Feynman graphs which dominate
the
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Enumerative Combinatorics and Geometry in Two Dimensions

The Cori-Vauquelin-Schaeffer Map

The connection with random metrics and their (random) geodesics remained
obscure. Recent progress came from better combinatoric counting.
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Enumerative Combinatorics and Geometry in Two Dimensions

The Cori-Vauquelin-Schaeffer Map

The connection with random metrics and their (random) geodesics remained
obscure. Recent progress came from better combinatoric counting.

2n
Plane trees are well counted by Catalan numbers C, = ”11 ( ' )
' I

(n -+ 2)0!1 = 2. 3”C,,.

There exists a two-to-one map between pointed planar quadrangulations
with n faces and well-labeled plane trees with n edges.
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Enumerative Combinatorics and Geometry in Two Dimensions

The Cori-Vauquelin-Schaeffer Map

-
@ rmmmm==@

L ]
:
s

Vincent Rivasseau Quantum Gravity as Random Geometry

Pirsa: 13020132 Page 17/75



Enumerative Combinatorics and Geometry in Two Dimensions

The Cori-Vauquelin-Schaeffer Map
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Enumerative Combinatorics and Geometry in Two Dimensions

The Cori-Vauquelin-Schaeffer Map
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Enumerative Combinatorics and Geometry in Two Dimensions

The Cori-Vauquelin-Schaeffer Map
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Enumerative Combinatorics and Geometry in Two Dimensions

Large Quadrangulations
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Enumerative Combinatorics and Geometry in Two Dimensions

Large Quadrangulations
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Enumerative Combinatorics and Geometry in Two Dimensions

Large Quadrangulations
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Enumerative Combinatorics and Geometry in Two Dimensions

Large Quadrangulations
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Enumerative Combinatorics and Geometry in Two Dimensions

Large Quadrangulations
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Enumerative Combinatorics and Geometry in Two Dimensions

2D Random Geometry a la Le-Gall-Miermont

Theorem (Le Gall, Miermont (2007-2011)

Equidistributed planar quadrangulations of order n converge after rescaling the

graph distance by n='/* (in the Gromov-Hausdorff sense), towards a universal

random compact space, called the brownian 2-sphere.

This space has Hausdorff dimension 4 and is almost surely homeomorphic to
the two-dimensional sphere.
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Enumerative Combinatorics and Geometry in Two Dimensions

Large Quadrangulations
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Enumerative Combinatorics and Geometry in Two Dimensions

Large Quadrangulations
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Enumerative Combinatorics and Geometry in Two Dimensions

A Look at Large Random Quadrangulations

The Probabilist's View: The Brownian Snake, Part Profile
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Enumerative Combinatorics and Geometry in Two Dimensions

A Look at Large Random Quadrangulations

The Topological View
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Enumerative Combinatorics and Geometry in Two Dimensions

A Look at Large Random Quadrangulations
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Landing on the Brownian sphere
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Enumerative Combinatorics and Geometry in Two Dimensions

A Look at Large Random Quadrangulations

Artist's view in 3D (Courtesy: Marckert)
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Enumerative Combinatorics and Geometry in Two Dimensions

A Look at Large Random Quadrangulations

Uniformized Through Riemann Mapping Theorem
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Enumerative Combinatorics and Geometry in Two Dimensions

A Look at Large Random Quadrangulations

Using the Circle Packing Theorem (Courtesy: Krikun)
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Enumerative Combinatorics and Geometry in Two Dimensions

A Look at Large Random Quadrangulations

The Liouville Theory (Courtesy: Duplantier)
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tion
Enumerative Combinatorics and Geometry in Two Dimensions
Rand ( tr n Hi r dimensi

2D Random Geometry a la KPZ-DDK-DS (1984-2011)
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Enumerative Combinatorics and Geometry in Two Dimensions

Lessons to draw

2d Random geometry can be based on the careful counting of large
triangulations or on the continuum (Liouville) picture. The two pictures should
be equivalent, but the first one is particularly convincing from a conceptual

point of view.
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Enumerative Combinatorics and Geometry in Two Dimensions

Lessons to draw

2d Random geometry can be based on the careful counting of large
triangulations or on the continuum (Liouville) picture. The two pictures should
be equivalent, but the first one is particularly convincing from a conceptual
point of view.

Random 2d planar geometry can be interpreted as trees or branched polymers
equipped with fluctuation fields (the labels). These fields generate space-time
shortcuts which change the Hausdorff dimension from 2 to 4.

Yes, pure 2d quantum gravity is topological, but there is much more in it.
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Enumerative Combinatorics and Geometry in Two Dimensions
otr n Hi

=
/

i,

4

There exists a relationship between critical exponents x and /A of matter on a

fixed (x) and on a geometry.

"

(= A+ (1-

X 2 (
The matter type is characterized by a number ~ € [0, 2[, related to the
Schramm-Loewner evolution parameter x through ~ = \,-"Jmin(f.'. 16/k), and to

the central charge ¢ = “ ;,.‘22.(,. °) (for Ising, c = 1/2,k = 3,v = V/3).
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Random Geometry in Higher dimensions

Colored Triangulations
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Random Geometry in Higher dimensions

Colored Triangulations

Any d-dimensional triangulation uniquely defines a (d + 1) vertex-colored
triangulation, its barycentric subdivision.
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Random Geometry in Higher dimensions

Colored Triangulations

Any d-dimensional triangulation uniquely defines a (d + 1) vertex-colored
triangulation, its barycentric subdivision.

®
The dual graph is an edge colored graph (Lins, Crystallization theory..)
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Random Geometry in Higher dimensions

Colored Triangulations

Any d-dimensional triangulation uniquely defines a (d + 1) vertex-colored
triangulation, its barycentric subdivision.

®
The dual graph is an edge colored graph (Lins, Crystallization theory..)
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Random Geometry in Higher dimensions

Colored Triangulations

Any d-dimensional triangulation uniquely defines a (d + 1) vertex-colored
triangulation, its barycentric subdivision.

L
The dual graph is an edge colored graph (Lins, Crystallization theory..)
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Random Geometry in Higher dimensions

Random Tensors

Vector Models are probability measures for random vectors of size V.
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Random Geometry in Higher dimensions

Random Tensors

Vector Models are probability measures for random vectors of size V.
Matrix models are probability measures for N by N random matrices M.

are probability measures for tensors of higher rank D > 2, with

eg NP coefficients.
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Random Geometry in Higher dimensions

Random Tensors

Vector Models are probability measures for random vectors of size V.
Matrix models are probability measures for N by N random matrices M.

are probability measures for tensors of higher rank D > 2, with

eg NP coefficients.

Universal properties when N gets large stem from the existence of a 1/
expansion.

There is an link between random (unsymmetrized) tensors of rank D
and D + 1 colored triangulations, namely classical invariant theory.
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Random Geometry in Higher dimensions

Classical Invariants

Polynomial U(N)®? invariants for pairs of rank D (unsymmetrized)
complex-conjugate tensors are linear combinations of amplitudes associated to
D-regular bipartite colored graphs.

2 o @ p ®

Vector Invariants Matrix Invariants

Tensor Invariants
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Random Geometry in Higher dimensions

Classical Invariants

Polynomial U(N)®? invariants for pairs of rank D (unsymmetrized)
complex-conjugate tensors are linear combinations of amplitudes associated to
D-regular bipartite colored graphs.
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Vector Invariants Matrix Invariants

Tensor Invariants
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Random Geometry in Higher dimensions

Classical Invariants

Polynomial U(N)®? invariants for pairs of rank D (unsymmetrized)
complex-conjugate tensors are linear combinations of amplitudes associated to
D-regular bipartite colored graphs.
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Vector Invariants Matrix Invariants

Tensor Invariants
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Random Geometry in Higher dimensions

Invariants, |l

The algebraic invariants associated to the vector and matrix drawings are

= S MM MY = Tr [ MTMMTM )

2aij.k.l
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Random Geometry in Higher dimensions

Invariants, ||

The algebraic invariants associated to the tensorial drawings are

T kq T Imr yp
= ¥ Ti,{;: T TJ‘A:; T Tnmr T

Ldij k,,m,n,p,q.r

— \ T;'”, Trkq T!Aq Tl’rrr;l Tnm; T

Laif k. mn,p,q,r

and so on...
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Random Geometry in Higher dimensions

Random Vectors and Matrices

@ iid random vectors have a Gaussian limit as N — oc (eg in the sense of
the central limit theorem);

@ invariant random vector models (eg Gaussian plus invariant interactions)
have a 1/N expansion, dominated by bubble chains;
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Random Geometry in Higher dimensions

Random Vectors and Matrices

@ iid random vectors have a Gaussian limit as N — oo (eg in the sense of
the central limit theorem);

@ invariant random vector models (eg Gaussian plus invariant interactions)
have a 1/N expansion, dominated by bubble chains;

@ iid (centered) random matrices such as GUE have a Gaussian limit as
N — oc, and the invariant observables such as eigenvalues converge to the
Wigner-Dyson distribution;
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Random Geometry in Higher dimensions

Random Vectors and Matrices

@ iid random vectors have a Gaussian limit as N — oc (eg in the sense of
the central limit theorem);

@ invariant random vector models (eg Gaussian plus invariant interactions)
have a 1/N expansion, dominated by bubble chains;

@ iid (centered) random matrices such as GUE have a Gaussian limit as
N — oc, and the invariant observables such as eigenvalues converge to the
Wigner-Dyson distribution;
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Random Geometry in Higher dimensions

Random Vectors and Matrices

iid random vectors have a Gaussian limit as N — o¢ (eg in the sense of
the central limit theorem);

invariant random vector models (eg Gaussian plus invariant interactions)
have a 1/N expansion, dominated by bubble chains;

iid (centered) random matrices such as GUE have a Gaussian limit as
N — oc, and the invariant observables such as eigenvalues converge to the
Wigner-Dyson distribution;

invariant random matrix models (eg Gaussian plus invariant interactions)
have a 1/N expansion, dominated by planar graphs;

until recently there was no corresponding expansion for tensors of rank

> o
2.
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Random Geometry in Higher dimensions

\ Random Tensors

Random tensors are best analyzed using unsymmetrized colored models. These
models
triangulate pseudo-manifolds (Gurau, 2010)

admit a (Gurau 2010), whose leading graphs, called melons
triangulate only spheres in any dimension (Gurau, R., 2011)

have computable (Bonzom, Gurau, Riello, R. 2011) to a
leading melonic phase of branched polymers (Gurau, Ryan, 2013)

Matter fields can be included (Bonzom et al)
In short: the theory of U(N)®"-invariant random tensors is universal

(Gurau 2011; Bonzom, Gurau, R. 2012), and different from the theory of
random matrices.
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Random Geometry in Higher dimensions

\ Random Tensors

Random tensors are best analyzed using unsymmetrized colored models. These
models

triangulate pseudo-manifolds (Gurau, 2010)

admit a (Gurau 2010), whose leading graphs, called melons
triangulate only spheres in any dimension (Gurau, R., 2011)

have computable (Bonzom, Gurau, Riello, R. 2011) to a
leading melonic phase of branched polymers (Gurau, Ryan, 2013)

Matter fields can be included (Bonzom et al)
In short: the theory of U(N)*“-invariant random tensors is universal

(Gurau 2011, Bonzom, Gurau, R. 2012), and different from the theory of
random matrices.
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Random Geometry in Higher dimensions

lTensor Group Field T heon

Melonic Graphs
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tork ind Geometry in Two Dimensio
Random Geometry in Higher dimensions
lensor Group Field Theon

Melonic Graphs

Melonic graphs are trees (branched polymers) without random labels. But we
know that a rich structure of labels hides in the sub-melonic contributions,
because random tensors in particular
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Random Geometry in Higher dimensions

Models/Field Theories

One could distinguish

e Invariant models, with an action fully invariant under U(N)®". These are
the analogs of ultralocal quantum field theories.
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Tensor Group Field Theories

. Building Rules for TFT’s

What could be the natural building rules for TFT's?

Replace rotation and translation invariance by color permutation symmetry

Replace locality by (use invariant interactions, but not
invariant propagator)

Replace clustering by decay of correlation functions in the number and
type of the boundary components (external legs)
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Tensor Group Field Theories

Renormalization

e All standard model interactions (except gravity, until now....) are
renormalizable

@ Renormalizability is approximate scale invariance over many scales

@ Renormalizable (marginal) interactions are the natural ones for physics
because they survive long RG flows

@ There exist (Ben Geloun, R, 2011).
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Tensor Group Field Theories

Renormalization

All standard model interactions (except gravity, until now....) are
renormalizable

Renormalizability is approximate scale invariance over many scales

Renormalizable (marginal) interactions are the natural ones for physics
because they survive long RG flows

There exist (Ben Geloun, R, 2011).

It is also possible to renormalize Boulatov-type
(Carrozza, Oriti, R. 2012).
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Tensor Group Field Theories

Asymptotic Freedom

e Standard model interactions (except gravity, until now....) are essentially
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Tensor Group Field Theories

Asymptotic Freedom

@ Standard model interactions (except gravity, until now....) are essentially

e Asymptotic freedom (AF) seems generic in the tensor world because the
wave-function renormalization is stronger and dominates the coupling
renormalization [Ben Geloun, Ben Geloun and Dine, 2012]

e AF is a very desirable physical property: it makes the ultraviolet limit fully
consistent and leads typically to phase transitions in the infrared, hence
gravitational analogs of quark confinement.

Vincent Rivasseau Quantum Gravity as Random Geometry

Page 68/75



Tensor Group Field Theories

\ Enumerative Combinatorics in 3D and 4D

Until now it seemed difficult to find analogues of CVS map in 3D. Even the
Gromov conjecture is unproven today.

Gromov Conjecture: The number ST, of triangulations of the sphere with n

tetrahedra is

ST, < K"
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Tensor Group Field Theories

Uniformization in 3D

The transfer to a reference frame (eg a fixed sphere) is an
essential step in understanding quantum gravity. It requires some form of

Uniformization in 3D is possible thanks to the works of Thurston, Hamilton
and Perelman.
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Conclusion

Results

. in higher diemnsions can be better understood analytically
through the use of random tensors and colored triangulations.
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Conclusion

Suggestions

To quantize gravity this suggests
@ no need for supersymmetry

@ no need for Kaluza-Klein dimensions
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Tensor Group Field Theories

Asymptotic Freedom

e Standard model interactions (except gravity, until now....) are essentially

@ Asymptotic freedom (AF) seems generic in the tensor world because the
wave-function renormalization is stronger and dominates the coupling
renormalization [Ben Geloun, Ben Geloun and Dine, 2012]

@ AF is a very desirable physical property: it makes the ultraviolet limit fully
consistent and leads typically to phase transitions in the infrared, hence
gravitational analogs of quark confinement.
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