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Abstract: <span>The general boundary& nbsp;formulation (GBF) is an atemporal, but spacetime local formulation of quantumé& nbsp;theory.
Usually it is presented in terms of the amplitude formalism, which, in& nbsp;the presence of a background time, recovers the pure state formalism of
the& nbsp;standard formulation of quantum theory. After reviewing the essentials of the& nbsp;amplitude formalism | will introduce a new "positive
formalism",& nbsp;which recovers instead a mixed state formalism. This allows to define general & nbsp;quantum operations within the GBF and
opens it to quantum information theory.& nbsp;Moreover, the transition to the positive formalism eliminates operationally& nbsp;irrelevant structure,
making the extraction of measurement probabilities more&nbsp;direct. As a consequence, the probability interpretation takes on a
remarkably& nbsp;simple and compelling form. | shall describe implications of the positive& nbsp;formalism, both for our understanding of quantum
theory and for the practical & nbsp;formulation of quantum theories. | also observe a certain convergence with& nbsp;Lucien Hardy's operator tensor
formulation of quantum theory, on which | hope& nbsp;</span><span style="line-height: 1.22;">to comment</span><span><br></span>
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Measurement in classical physics

The system is determined by a dynamical law and a state.

A
time State space L.
observable Measurements
/ O:L—IR yield objective
Q information
about the state
state initial data

States are global

corresponds 1N spacetime
to state
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Measurement in quantum physics I

Standard formulation

The system is determined by a dynamical law and exhibits a sequence
of states. The state space is a Hilbert space H.

A
time
O:H—->H Measurements
ybservabl i
state 1 observable modify the state
/’collapse
——fm————- C  Ommmmmme <— of the States are global
wavefunction” in space but
state 1 local in time
Time plays a
P special role!
space
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Measurement in quantum physics I
Standard formulation

The system is determined by a dynamical law and exhibits a sequence

of states. The state space is a Hilbert space H.

time

observable
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Measurement in quantum physics II
Standard formulation

observable
O

observable
O

g

1

1
->

space

A positive formalism

The operator
product Op - O
encodes jont
measuremient. Its E
order is ;
temporal order of
measurements. |

|
g
i
!
]
4

Eg.[QP]=il

Time plays a
special role!
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Quantum measurement without spacetime metric?

[f spacetime is dynamical, there is no a priori metric “separating”
space and time. What do we do?

A A -
:
[
I
I

O

.
____O________________
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A closer look at the formalism

Standard formulation

The observables Oy, O>

and the time-evolution
A LI are operators ‘H — H.
time But equivalently they
are linear maps

gl O, H @H — C.
Operator composition

Corresponds to insertion
H .
&~ ( of a Complete ON-basis.

(A-B)W,n) =
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Pirsa: 13020125 Page 7/47



Pirsa: 13020125

A closer look at the formalism

Standard formulation

A positive formalism

The observables 01, Oz
and the time-evolution
U are operators %

But equivalently they

are linear maps

H'QH — L.
[ 9)

Operator composition
corresponds to insertion
of a complete ON-basis.

(A-B)(¥.m) =
Z A, &)B(Ei 1)

iEN
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Rewriting the formalism

Standard formulation

We can think of time-evolution and observables as localized in
spacetime regions.
A Associate H or H" to
time each equal-time
hypersurface depending
on orientation.
regionof O C O { ¢+  Associate the tensor
product to unions. Then
region of U ‘H* ® H each region’s boundary
carries ‘H"* ® H and
C__ SregionofO; | ~H Oy, O,, U are maps from
this boundary Hilbert
> space to the complex
Space numbers.
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General boundary formulation (GBF)

Amplitude formalism

Generalizing, we associate
@ to each hypersurface =
a Hilbert space Hy
@ to each region M an
Hn, amplitude map
pom = Hom — C

PM; @ to each region M that
contains an observable
O an observable map
> P Hop — C

This is a version of Topological Quantum Field Theory
|[E. Witten, G. Segal, M. Atiyah etc. 1980’s].
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General boundary formulation (GBF)

Amplitude formalism

Generalizing, we associate
@ to each hypersurface X
a Hilbert space Hy
@ to each region M an
FH, amplitude map
pm = Hom — C

PM; @ to each region M that
contains an observable
O an observable map
> P s Hop — C

This is a version of Topological Quantum Field Theory
[E. Witten, G. Segal, M. Atiyah etc. 1980’s].
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Rewriting the formalism
Standard formulation

We can think of time-evolution and observables as localized in

spacetime regions.

time ﬁ

| :
region of U H ©H
~ region of O; L

space..

'y

A positive formalism
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Associate H or ‘H" to
each equal-time
hypersurface depending
on orientation. an
Associate the tenSor
product to unions. Then
ary
carries H' ® H and
0,, 05, U are maps frO§
this boundary Hilbert
space to the complex
numbers.
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General boundary formulation (GBF)
Amplitude formalism

Generalizing, we ass

@ to each hypersurface Z
a Hilbert space K=

@ to each region M an
amplitude map
pm = Hom — C

o to each region M that
contains an observable
O an observable map
p;C\)I . (Haj\,[ —-C

Quantum Field Theory

Segal, M. Atiyah etc. 1980’s].

This is a version of Topological

[E. Witten, G.
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Rewriting the formalism

Standard formulation

We can think of time-evolution and observables as localized in
spacetime regions.
A Associate H or H* to
time each equal-time
hypersurface depending
on orientation.
regionof O, T D // 7 Associate the tensor
product to unions. Then
region of U ‘H* ® H each region’s boundary
carries ‘H" ® ‘H and
C__ SregionofO; | ~H 01, O,, U are maps from
this boundary Hilbert
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Rewriting the formalism
Standard formulation

We can think of time-evolution and observables as localized in
spacetime regions.

: A | Associate ‘H or ’}1 *to
time | each equal-time
hypersurface depr_nding

on orientation.

fooioicACHC__ _H Associate the terSor
product to unions. Then

1
region of U '@ each region’s boundary
arries H* ® H and
~ Sregion of O g'\(H 0,, U are maps from

boundary Hilbert
 to the complex

=

A positive formalism
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General boundary formulation (GBF)

Amplitude formalism

Generalizing, we associate
@ to each hypersurface =
a Hilbert space Hy
@ to each region M an
H, amplitude map
pm : Hop — C

PM; @ to each region M that
contains an observable
O an observable map
> P s Hop — C

This is a version of Topological Quantum Field Theory
[E. Witten, G. Segal, M. Atiyah etc. 1980’s].
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Core axioms

Amplitude formalism

@ Let & denote ~ with opposite 0r1entat10n Then Hy = H;.

o (Decomposition rule) Let . = ¥, U ¥, be a disjoint union of
hypersurfaces. Then Hy = Hy, ® Hx_l

@ (Gluing rule) If M; and M, are adjacent regions, then:

oy Y2 1 e o Y2
B 2
) ’ 2 3

oM UM, (P ® Up) := Z om, (Y1 ® Ci)pm, (& @ Y)
ieN
Here, Lihl € (/‘{:]‘ Lr-‘“'_‘_ = (/_{\_‘__‘ and {Li.fiil N 1s an ON-basis of (}‘{\_'_.
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Core axioms
Amplitude formalism

® Let T denote = with opposite onentanon Then Hz = H;.

o (Decomposition rule) Let £ = £, U £, be a disjoint union
hypersurfaces. Then Hy = Hy, ® Hw_-:.

® (Gluing rule) If M; and M, are adjacent regions, then:

U

£ QU
oayume (P11 ® ¥2) = Z ou, (1 © Epma(&; ® ¥2)
MjUM:\% 72
iEN
U € Hs, and {&;}ien is an ON- basis of Hs.

A positive s formalism

Here, Ll EH‘*
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Probabilities

Amplitude formalism

Consider a spacetime region M. The associated amplitude p)s allows
to extract probabilities for measurements in M.

Probabilities in quantum theory are generally conditional probabilities.
They depend on two pieces of information. Here these are:

@ § C ‘H,) representing preparation or knowledge

o A C ‘H,)\ representing observation or the question

The probability that the physics in M is described by ‘A given that it is
described by S is: (here A C S) [RO 2005]

< P &) pt (P (&
PAIS) = Z;.’PM(“)(’M( _f’l(“ )
Yier Pm (&) pm (Ps(&))

Ps and P4 are the orthogonal projectors onto the subspaces § and A; {&i}ier
dan ().\u{“.l\f*\ Ol ‘I—{,;;\/.].
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Pirsa: 13020125 Page 20/47



Pirsa: 13020125 Page 21/47




Recovering transition amplitudes and probabilities

A Y
/Qz )
f2 ; ®_ . © region: M = [t;,tr] X R3
: =2 =
: M @ boundary: oM =X; U X,
¢ . o state space:
.y
>~ Hom =Hy, ®Hz = Hy, @H;,
x b el

As before, we identify Hy, = Hy, = H. Then,
Pit 11 @ 1) = (P2, Ut B2) 1),

To compute the probability of measuring ), at t; given that we
prepared ', at t; we set

S=1@H, A=HRY,.
The resulting expression recovers precisely the transition probability

P(A|S) = (Y, U(ty, tr) ).

A positive formalism PI 20130205 12/29
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Recovering transition amplitudes and probabilities

A y
/"1_42 )
’25 \_\ o region: M = [t;,t,] X R’
; =2 =
: M @ boundary: M = X2 U L
¢ . o state space:
-8
» 1 Hom =Hg, ®Hz = Hy, @H
x s et

As before, we identify Hy, = Hy, = H. Then,
Pt L1(Y1 @ P3) = (o, Ulty, b)),

To compute the probability of measuring ¢, at t given that we
prepared ), at t; we set

S=1@H, A=HRY,.
The resulting expression recovers precisely the transition probability

P(A|S) = (Y, U(ty, tr) ).
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Recovering transition amplitudes and probabilities

A y
/"1_42 )
[25 \-E—V @ region: M = [fl,leXlR3
=L _
: M @ boundary: M = £; U X,
¢ . o state space:
-
> ~1 .Hr);’\/T = ‘HL| ®.H?‘ = (HE| ®‘H:1
x L -—

As before, we identify Hy, = Hy, = H. Then,
Pia (Y1 ® P3) = (o, Uk, £2)y1).

To compute the probability of measuring ¢, at t> given that we
prepared 1 at t; we set

S=1@H, A=HRY,.
The resulting expression recovers precisely the transition probability

P(A|S) = (i, U(ty, tr) ).
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Recovering transition amplitudes and probabilities

A y
/Qz )
fZ; \_\ @ region: M = [ty,t,] X R3
=Ll _
: M @ boundary: M = £; U X
£ ¢ R . state space:
» “1 Hopm =Hy, ®Hz = Hy, ®H..
x -l L -—

As before, we identify Hy, = Hy, = H. Then,
Pl 11 ® P3) = (o, Uk, £2)y1).

To compute the probability of measuring ¢, at t; given that we
prepared 1 at t; we set

S=1@H, A=HRY,.
The resulting expression recovers precisely the transition probability

P(A|S) = (i, U(ty, tr) i),
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Observables and expectation values

Amplitude formalism

Consider a spacetime region M carrying an observable O. The
associated observable map pf) allows to extract expectation values for
measurements in M.

The expectation value of the observable O conditional on the system
being prepared in the subspace & C Hy can be represented as follows:
[RO 2010]
(O)s = Yier Pm (&) p5r (Ps(&0)
Yicr Pm (&) pm (Ps(&:))

Ps is the orthogonal projector onto the subspace S; {&i}ie; an ON-basis of Hyp.

A positive formalism PP1 20130205 13 /29
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Recovering standard expectation values

A ¥ @ region: M = [t,t] x R’
| - M (r()p é}; @ boundary: oM = L U b3

y
» — @ state space:

5 'H,)M - fo ®‘H§ . ‘HL X ‘Hi

To compute the expectation value of observable O at time f given by

p?t)’fl(lfﬁl X [jhf_)) = <11h2’ (A)[thl>

in the state 1) we set
S =19 ®H,.

The standard expectation value is then correctly recovered as

(O)s = (1, O).

A positive formalism PI 20130205 14 /29
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A remark on fermions

The amplitude formalism in the form presented so far only applies to
bosonic theories. In the presence of fermionic degrees of freedom
certain modifications apply [RO 2012]:
@ All structures are equipped with a Z,-grading that distinguishes
even and odd fermion number.
@ Hilbert spaces are replaced by Krein spaces. These are indefinite
inner product spaces decomposing into a positive definite and
negative definite part.

Hy = H & H;

The reason that these Krein spaces are “invisible” in ordinary QFT
has to do with the restriction to spacelike hypersurfaces and to a
global choice of time orientation.

For simplicity I will continue to restrict my attention to the purely
bosonic case.

A positive formalism P120130205 15/29
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Applications of the amplitude formalism (AF)

@ By restricting to spacetimes with spacelike foliations the standard

formulation is reproduced exactly. [RO 2005; 2010]

@ Three dimensional quantum gravity is already formulated as a
TQFT and fits thus “automatically” into the AF.

@ (Part of) the AF is extensively used in spin foam quantum
gravity. [C. Rovelli et al.]
@ A natural testing ground for the GBF is quantum field theory.
» State spaces on timelike hypersurfaces and “evolution” in spacelike
directions. [RO 2005]
» New S-matrix type asymptotic amplitudes in Minkowski space,
deSitter space, Anti-deSitter space. [D. Colosi, RO 2008; D. Colosi
2009; M. Dohse 2011; 2012]
» Quantum Yang-Mills theory in 2 dimensions for arbitrary regions
and hypersurfaces with corners. [RO 2006]
» Rigorous and functorial quantization of linear and affine field
theories without metric background. [RO 2010; 2011; 2012]
» Unruh effect. [D. Colosi, D. Ratzel 2012]

A positive formalism PI 20130205 16/ 29
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Probabilities and expectation values

Positive formalism

Given a region M and subspaces A< S € ‘H,y we have Pz, Ps € Dy
n

The probability for measuring A given S is,
o _ Am(Pa)

P(A|S) = ———=—
Am(Ps)

Given a region M carrying an observable O and given a subspace
S C Hyp, the corresponding expectation value is,

/\x_} (Ps)

OVe = L/ Rt
Ols Apm(Ps)

This looks much simpler than in the amplitude formalism. ..

A positive formalism PI 20130205

19 /29
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Realness and positivity
Positive formalism
... but it is also more natural!

@ Consider the subset Dﬁ C Dy of self-adjoint operators. This is a
real vector space and Dy is its complexification.

o Consider the subset D C D of positive operators. This forms a
generating proper cone in the real vector space D' making it into
an ordered vector space.

@ The orthogonal projection operators form a lattice in Dy This is
equivalent the lattice of closed subspaces of ‘Hy. That is,

P;f’ll < P;ql — A C A

@ The probability map is positive, i.e.,
Am(o) e Rifo € Dy and Ap(o) 2 0if 0 € Dy

This implies 0 < P(A|S) < 1.

A positive formalism PI 20130205 20/ 29
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Realness and positivity

Positive formahsx‘n

..butitis als'o more natural!

° Cons1der the subset DY C Dr of self-adjoint operators. Thisis a
real vector space and Dy is its complexification.

o Consider the subset D% C DF of positive operators. This fprms
generatmg proper cone in the real vector space Dy making it into
an ordered vector space. ‘1-,1

o The orthogonal projection operators form a lattice in DF. @his is
equlvalent the lattice of closed subspaces of Hs. That s,

J Pa, <Pa, & % C Az

o The probability map is positive, i.e.,
Ay(0) eRifoe DF and Au(0)20ifo € Ds

This 1rnp11es 0 < P(AlSaasek
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A formalism in its own right

Positive formalism

@ Remarkably, the new structures Dy, Ay, and /\5;1 satisfy axioms
quite similar to those satisfied by Hy, p) and p5,.

@ This suggests to postulate the new structures as objects in their
own right, rather than to derive them from the amplitude
formalism. This gives rise to the positive formalism [RO 2012].

@ Positivity and normalization of probabilities now derive directly
from the positivity of the probability map.

@ We may restrict to the real vector spaces Dy, even forgetting Dy.

@ The latter step provokes a transition from an oriented to an
unoriented formalism.

@ We can generalize the expectation maps to not only represent
observables, but more general quantum operations. We call these
then operation maps.

A positive formalism PI 20130205 21/29
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Spacetime assignments

Positive formalism

We associate

o to each hypersurface =
an ordered vectdr space

D
@ to each region Iﬁa

positive probability

map Ay : DJ;M — R

o to each region M that
contains an operation
O an operation map
sy, = C

M ~aN

A positive formalism

Pirsa: 13020125
Page 34/47



First summary

Positive formalism

The positive formalism is intriguing for a number of reasons:
@ its spacetime locality and metric background independence (as an
incarnation of the GBF)
@ its wide applicability inherited from the amplitude formalism
@ its potential applicability beyond the amplitude formalism
@ its operationalism with a simple and elegant way to predict
probabilities and expectation values

@ its amenability to quantum information theory

At the same time it immediately invites many further questions. ..

A positive formalism PI 20130205 23/29
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No states, no collapse, but. ..?

Question 1

@ As becomes particularly clear in the positive formalism, the
traditional concept of “state” as a specification of the reality of a
system is untenable in the GBF. This also kills “collapse”
interpretations and any model of the “collapse” as a physical
event.

@ Instead, the relevant mathematical objects entering the probability
interpretation are the elements of the spaces D7 . We tentatively

call them quantum boundary conditions. Only the “atomic”

elements (one-dimensional projectors) correspond to elements in a

Hilbert space. In turn, these coincide only in special circumstances

with the traditional quantum states.

@ But can we say anything more about the physical interpretation of
the elements of D{? Do only special elements of D have a
physical interpretation (e.g. the projectors)?

A positive formalism PI 20130205 24 /29
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No states, no collapse, but. . . ?
Question 1 |

|
® As becomes particularly clear in the positive formalism, the
traditionz?l concept of “state” as a specification of the realil"r ofa
system is{untenable in the GBE. This also kills “collapse” -
interpretations and any model of the “collapse” as a physidal

event.
Instead, the relevant mathematical objects entering the pr#ability

interpretation are the elements of the spaces D3, . We tentatively

call them quantum boundary conditions. Only the “atomic”

elements [one-dimensional projectors) correspond to elements ina
oaIn turn, these coincide only in special circumstances

ifjonal quantum states.

anything more about the physical interpretation of
D2 Do only special elements of D¢ havea

- fterbretation (e.g. the projectors)?
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S’ ' 0 ps , * @

@ As becorries particularly clear in the positive formalism, the
traditional concept of “state” as a specification of the realit}
system is untenable in the GBE. This also kills “collapse”
interpretations and any model of the “collapse” as a physi al
event. |
Instead, the relevant mathematical objects entering the prgbability
interpretation are the elements of the spaces D5, - We tentatively
call them quantum boundary conditions. Only the “atomic”
elements [one-dimensional projectors) correspond to elements ina
Hilbert space. In turn, these coincide only in special circumstances
with the traditional quantum states.

But can we say anything more about the physical interpretation of
the elements of D52 Do only special elements of D5 havea

physical interpretation (e.g- the projectors)?

A positive formalism P120130205 /29
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Spaces of quantum boundary conditions

Question 2

There are also mathematical questions about the spaces Dsy .

@ Is the structure of ordered vector spaces sufficient? Do we need
rr

e.g., a Jordan product or even the “full” operator product? (In [RO
2012] I'have also given them a Hilbert space structure.)

@ What is the right “size” and topology for these spaces? In this talk
[ have assumed that these contain all bounded operators. In [RO
2012] I have assumed that these are only the Hilbert-Schmidt
operators.

A related remark: The probability map A), is actually not defined on
Dsm, but on a “dense” subspace ¢ ‘ij. Positivity suggests a solution to

this problem. First, restrict Ay to Z 5;;1' Second, extend the range of Ay,
+

from [0, o] to [0, o) to obtain a map Ay : D7, — [0, ).

A positive formalism PI 20130205 25/29
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The new fr:eedom
Question 3 |

|

o The transition from Hilbert spaces Hy to spaces of quan
boundary conditions Dsx gets rid of operationally irrelevar
information (mostly phases). What is more, the structural

requirements on Dy are weaker than those coming from 7#. This
gives us new freedom in the construction of quantum theories.

@ What caq we do with this freedom? I am hopeful in particular

concernirjg solving the “state locality problem” in QFT. ..

A positive formalism

Pirsa: 13020125
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Quantum information theory

Question 4

@ The positive formalism enables us in particular to do within the
GBF everything that can be done with the mixed state formalism
of the standard formulation. We can implement arbitrary
quantum operations, compose them, define notions of entropy, etc.

@ [wild speculation] Can this help us to work towards a general
relativistic (and quantum) framework for statistical physics,
thermodynamics etc.?

A positive formalism PI 20130205 27 /29

Pirsa: 13020125 Page 42/47



Extracting operator tensors

Question 5

Choose orientations for the gluing hypersurfaces (X1, £13, £3). Draw
the oriented dual 1-skeleton, connecting O, O,, Os.

A
O4
A/\/]‘,
Dﬁm
Dy, .
A O
A/'\/h

'(DEIZ

What is the relation to the operator tensor formulation [L. Hardy 2012]?

A positive formalism PI 20130205 28/29
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il
Extracting operator tensors
Question 5 |

Choose orienflations for the gluing hypersurfaces (Z12, Z13, Z23)
the oriented dual 1-skeleton, connecting Oy, O3, Os.

Dxy,

—>

Hardy 20122

ator tensor formulation [L.
o PI20130205  28/29

A positive formalism
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The new freedom

Question 3

@ The transition from Hilbert spaces ‘Hy to spaces of quantum
boundary conditions Dy gets rid of operationally irrelevant
information (mostly phases). What is more, the structural
requirements on Dy are weaker than those coming from ‘Hy. This
gives us new freedom in the construction of quantum theories.

@ What can we do with this freedom? I am hopeful in particular
concerning solving the “state locality problem” in QFT. ..
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Extracting operator tensors
Question 5 ‘

Choose orientations for the gluing hypersurfaces (Z12, Z13, £23)
the oriented dual 1-skeleton, connecting O;, O3, O;.

Ds,
2 >

n to the operator tensor formulation [L. Hardy 201

A positive formalism

What is the relatio

Loowiuy
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|
Extracting operator tensors
|
Choose orientations for the gluing hypersurfaces (Z12, 13, Z23)
the oriented dual 1-skeleton, connecting O;, 02, Os.

Question 5
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